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Abstract

In machine learning applications such as ranking fairness or fairness over intersec-
tional groups, one often encounters optimization problems with extremely large
numbers of constraints. In particular, with ranking fairness tasks, there may even
be a variable number of constraints, e.g. one for each query in the training set. In
these cases, the standard approach of optimizing a Lagrangian while maintaining
one Lagrange multiplier per constraint may no longer be practical. Our proposal is
to associate a feature vector with each constraint, and to learn a “multiplier model”
that maps each such vector to the corresponding Lagrange multiplier. We prove
optimality, approximate feasibility and generalization guarantees under assump-
tions on the flexibility of the multiplier model, and empirically demonstrate that
our method is effective on real-world case studies.

1 Introduction

Constrained optimization has proven to be useful for a variety of machine learning applications,
including churn reduction, Neyman-Pearson classification, and the imposition of statistical fairness
constraints [e.g. 1, 2]. In such problems, there are generally only a handful of constraints: for example,
in a fairness problem, there will typically be only one constraint per protected group. As a result,
while optimizing such a constrained ML problem is more difficult than optimizing an unconstrained
problem, the difference is usually relatively small.

In some cases, however, it may be desirable to include an extremely large number of constraints. For
example, in a fairness problem in which the data are partitioned into protected groups in multiple
distinct ways (e.g. race, gender, age buckets, etc.), enforcing a constraint independently for each
of the individual groups may not satisfy the constraint for each intersection of those groups [3].
Therefore, it may be necessary to impose a separate constraint for each such intersection. As one
tries to impose statistical fairness requirements along an increasing number of such dimensions, the
total number of constraints can quickly get out of hand.

Despite the difficulties with such a setting, the situation in such an intersectional statistical fairness
problem isn’t as bad as it could be, since there are still a known, finite number of constraints. In other
settings, even this might not be the case. In many ranking problems, for example, the workflow is that
a “query” is provided, with each query being associated with some set of “documents”, which are then
handed off to a model to be ranked. Here, we’re mainly interested in the problem of imposing fairness
constraints on a per-query basis. When statistical fairness constraints (such as ranking analogues to
demographic parity or equal opportunity [4], adapted to the ranking setting as in Narasimhan et al.
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[5]) are imposed on a ranking problem, they are generally enforced on average across all queries [e.g.
6, 5]. As a result, any particular query might be “unfair” (w.r.t. whatever fairness metric is being
used), as long as this unfairness averages out. Existing work on per-query fairness metrics is, so far as
we’re aware, restricted to post-processing approaches [7–9]. Our goal is to formulate such a problem
as an explicit constrained optimization problem, with one (or potentially more) fairness constraints
per query. One of the main difficulties of this setting is that, while one could think of there being one
constraint per query in the training set, it would be more accurate to imagine that there are potentially
an infinite number of constraints, one for each possible query, and those corresponding to the training
set are merely those that we happen to be able to easily observe. This raises the interesting question
of how well such constraints generalize.

A third example we consider is a variant of robust optimization, specifically in a statistical fairness
setting in which protected group information isn’t available, but we do have access to correlated
“noisy” features. In one canonical example, “zip codes” serve as a noisy proxy for “race”. Wang et al.
[10] proposed using a robust-optimization-like approach to this problem, in which the correlations
between the “true” and “noisy” groups were assumed to be known (or estimated from a side-dataset),
and the fairness constraints were required to hold for the worst true-group labeling that was consistent
with both the known proxy-group labeling and these known correlations. Applied to their problem,
our approach differs only formally, in that instead of imposing one constraint for the worst consistent
labeling, we have a separate constraint for each such labeling, and want all of them to hold.

The unifying property of the above tasks is that each includes either a very large constraint set, or
worse, an infinite one. In the former case, the model being learned could easily have insufficient
capacity to satisfy all of the constraints simultaneously (i.e. the problem could be infeasible), while in
the latter case, unless the constraints are highly-structured, expecting all of them to hold is unrealistic.
For this reason, our approach does not attempt to satisfy all of the constraints simultaneously. Instead,
it is based on the Lagrangian formulation, and parameterizes the Lagrange multipliers using a model.
In general, as the complexity of this model increases, so too does its ability to satisfy the constraints. If
it is under-parameterized (as will typically be the case), then some constraints are likely to be violated
(Section 4 provides some intuition on how our approach copes with this situation). However, if we
use e.g. a neural network, then because the same set of weights will be used for every constraint, the
model will be capable of learning relationships and redundancies between constraints, and therefore
could perform better than its apparent complexity might indicate.

We make five main contributions: (i) in Section 3, we introduce the idea of using the Lagrangian
formulation when the Lagrange multipliers are not taken to be a simple vector, but instead are the
output of a model, given some set of features; (ii) in Definition 1 of Section 5, we introduce a new
notion of how one can measure constraint violations in our Lagrangian-model setting, in a way
that permits theoretical results to be proved; (iii) later in Section 5, we prove a suboptimality and
infeasibility guarantee; (iv) in Section 5.2 we prove a generalization result that applies to the per-query
ranking fairness setting described above; (v) in Section 6, we provide an extensive experimental
evaluation of several of the highly-constrained settings we have discussed.

2 Related Work

There is a significant body of work that handles heavily-constrained problems by projecting onto each
constraint (see e.g. Wang and Bertsekas [11, 12] and references therein). The use of a Lagrangian-
like formulation is also popular, but we are aware of relatively little work that tries to reduce the
complexity of the Lagrange multiplier space itself. A near-exception is Cotter et al. [13], which
points out that one can partition the constraint set, and then associate each partition element with the
maximum over the constraint functions of its components, thereby creating an equivalent problem
with only as many constraints as partition elements.

In recent years, with the growing popularity of various statistical fairness metrics, Lagrangian-
like approaches have started to be applied to fairness problems, with the goal being to satisfy the
constraints as a part of the main training pipeline, instead of being applied as a post processing
step [14–17]. In such approaches, intersectional groups have always been a potential problem, as
they require constraining an exponential number of group intersections, many of which may contain
very few training examples. As a remedy, Kearns et al. [3] propose imposing constraints instead on
subgroups defined by a class of membership functions over protected attributes. They then show how
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one can provably learn a classifier that satisfies false positive rate and coverage constraints over this
class as long as it has bounded VC dimension. They additionally assume access to an oracle to find
the maximally violated constraint at each step of their optimization. Hebert-Johnson et al. [18] also
propose a similar approach for calibration-based fairness constraints.

Like these prior methods, our approach also seeks to exploit the redundancies in the dual solution, but
does so by limiting the flexibility of the Lagrange multiplier model used to enforce constraints. As a
result, our optimization strategy is simpler, and does not require keeping track of the most violated
constraint. We are thus able to handle a more general set of problems, including the ranking fairness
example in which we have one constraint per query, and finding the maximum violation over all
queries seen so far would be prohibitively expensive. The downside to this generality is that our
approach is only able to satisfy the constraints approximately, but as we show in our experiments, the
quality of the approximation improves with the capacity of the Lagrange multiplier class used.

Another closely related area of research is fairness in ranking [e.g. 19, 6, 8, 20, 5, 21]. Many existing
proposals for ranking fairness impose constraints on average, instead of per query, including more
recent policy gradient based methods [20]. The exceptions that we are aware of that do handle
per-query constraints do not impose them during training, but instead later while post-processing a
pre-trained scoring model [7–9]. Our approach differs from both of these lines of research in that it
attempts to impose per-query fairness constraints during training.

3 Modeling Lagrange Multipliers

Our goal is to find a parameter vector θ ∈ Θ that minimizes an objective function g : Θ→ R, subject
to a total of m inequality constraints defined by the functions hi : Θ→ R for i ∈ [m]:

minimize
θ∈Θ

g (θ) s.t. ∀i ∈ [m] .hi (θ) ≤ 0 (1)

We do not assume that any of these functions are convex. Typically, the objective function g will be
an average loss over some dataset, but our main focus is on the constraints. Our interest is in problems
for which m is extremely large (or even unknown). For example, there might be one constraint per
training example, in which case we could define hj (θ) = h† (xj ; θ) to be a function of the associated
feature vector xj . Alternatively, in a ranking problem, we might have one constraint per query, and
could take hj (θ) = h† (zj ; θ), where zj would contain features summarizing the jth query.

The usual approach to tackling such problems is to formulate the Lagrangian:

L (θ, λ) := g (θ) +

m∑
i=1

λihi (θ) (2)

and to then seek a mixed (due to the non-convexity of g and the his, see e.g. Cotter et al. [15]) Nash
equilibrium of the game that results from minimizing the Lagrangian in θ and maximizing it in λ.
If we can find such an equilibrium, then the random variable corresponding to the θ portion of the
mixed equilibrium will be feasible and optimal, in expectation. One way to accomplish this would
be to iteratively choose the best-response in θ, and perform a stochastic gradient ascent update in λ,
resulting in a long sequence of θ and λ, over which the uniform distribution will be an approximate
mixed Nash equilibrium [e.g. 22, 23].

In our setting, m might be extremely large, so this approach can easily fail in practice, since there
will simply be far too many Lagrange multipliers. For example, if the training data are provided as a
continuous stream of i.i.d. samples, and there is one constraint per training example (or per-query,
in the ranking setting), then the approach described above would perform only one update to each
Lagrange multiplier (occurring the first and only time that it is encountered), and the constraints will
be all-but ignored.

Instead, we propose modifying the Lagrangian in such a way that λ is no longer an element of Rm+ ,
but is instead represented as a function ~λ : Γ → Rm+ , where Γ is a set of learned parameters. The
Lagrangian can then be approximated as:

L̃ (θ, γ) = g (θ) +
〈
~λ (γ),~h (θ)

〉
(3)
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where, to simplify the notation, we’ve written the sum of Equation 2 as an inner product, with
~λ (γ) = [λ1 (γ) , λ2 (γ) , . . . , λm (γ)]

T and ~h (θ) = [h1 (θ) , h2 (θ) , . . . , hm (θ)]
T . Notice that we

recover the usual Lagrangian by defining Γ = Rm+ and taking ~λ to be the identity function.

4 Simple Example: Linear Multiplier Model

As a thought experiment, imagine that the ith constraint is associated with a non-negative feature
vector Mi,: ∈ Rm̃+ , where m̃ � m, and that we’ve stacked these feature vectors in the matrix
M ∈ Rm×m̃+ with one row for each constraint. We’ll take our Lagrange multiplier model to have a
particularly simple form, with γ ∈ Γ := Rm̃+ being the parameter vector that we will learn, and ~λ
being a linear function of these parameters, i.e. ~λ (γ) := Mγ. With this Lagrange multiplier model,
the Lagrangian becomes:

L̃ (θ, γ) = g (θ) +
〈
Mγ,~h (θ)

〉
= g (θ) +

〈
γ,MT~h (θ)

〉
.

Interestingly, the latter expression is the “usual” Lagrangian of the constrained problem:

minimize
θ∈Θ

g (θ) s.t. ∀i ∈ [m̃] .
〈
M:,i,~h (θ)

〉
≤ 0. (4)

Hence, there is an alternative interpretation of a linear Lagrange multiplier model: we can instead
consider it to be the usual (non-approximated) Lagrangian, with a linear transformation being applied
to the constraint functions, instead of the γs.

Shared multipliers: As an even simpler special-case, imagine that γ consists of a set of Lagrange
multipliers that are shared among the constraints, i.e. for each i ∈ [m̃], there is a set Si ⊆ [m]
containing the indices of all constraints that will use γi as their Lagrange multiplier, with the Sis
forming a partition of [m]. Then M will have exactly one element in each row equal to one and the
others equal to zero, and the resulting constrained problem (Equation 4) will be:

minimize
θ∈Θ

g (θ) s.t. ∀i ∈ [m̃] .
1

|Si|
∑
j∈Si

hj (θ) ≤ 0.

Here, we’ve written the constraints as an average, rather than a sum, since an arbitrary positive scaling
factor can be applied to each constraint without changing the constrained problem.

As this example illustrates, this highly-simplified approach of “sharing” Lagrange multipliers has an
important property: it fails gracefully. Specifically, when the Γ space doesn’t have enough capacity to
satisfy all of the constraints, it falls back on the behavior of satisfying particular average constraints.

Discussion: Our actual proposal (Section 3) is to associate a feature vector with each constraint,
and to learn a not-necessarily-linear model (a neural network, for example) that learns the Lagrange
multipliers based on this data. Hence, information could be shared between constraints in a more
nuanced manner than a simple average (or a weighted average, as will be the case for a general
non-negative M ). However, we believe, based on the above discussion, that it will still be possible to
interpret such a model as a transformation of the constraints, and that our proposal will therefore still
tend to “fail gracefully”. In Section 6.1, we provide experimental evidence that this intuition holds in
practice. Making this notion precise is, we believe, an exciting area for future research.

5 Algorithm & Analysis

In the previous section, we observed that an under-parameterized Lagrange multiplier model cannot
be expected to satisfy all of the constraints simultaneously (and expressed our hope that it would still
tend to “fail gracefully”). For this reason, we need to define how we will measure the magnitudes of
the constraint violations.
Definition 1. (Violation function) We measure the violation in the m constraints by a function
Φ : Rm → R+, which for any random variable θ∗ taking values in parameters Θ satisfies:

Φ
(

Eθ∼θ∗
[
~h (θ)

])
≤ max

γ∈Γ

〈
~λ (γ),Eθ∼θ∗

[
~h (θ)

]〉
.
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Table 1: Examples of violation functions that satisfy Definition 1. Here, θ∗ is a random variable
taking values on Θ, 1{·} is an indicator function, and (z)+ retains the positive entries of vector z and
replaces the others with 0. In the fourth row, p, q ≥ 1 and 1/p+ 1/q = 1. The four examples of Φ
include the positive part of the average constraint violation, the L1-norm of the positive violations,
the squared L2-norm of the positive violations, and the p-norm violation measured on a linear
transformation of the constraints (see linear model example in Section 4).

Assumption on multiplier model λ(·) Φ(z)

Γ = [0, 1/m] and ∀x, λ(γ;x) = γ
(

1
m

∑m
j=1 zj

)
+

∀θ∗,∃γ s.t. ~λ(γ) = 1
{

Eθ∼θ∗
[
~h(θ)

]
> 0
}

‖(z)+‖1

∀θ∗,∃γ s.t. ~λ(γ) =
(

Eθ∼θ∗
[
~h(θ)

])
+

‖(z)+‖22

Γ =
{
γ ∈ Rm̃+ : ‖γ‖q ≤ 1

}
and ~λ(γ) = Mγ for M ∈ Rm×m̃+ ‖(M>z)+‖p

One should observe that Φ is needed purely for our theory: it has no influence on the algorithm, which
depends only on the Lagrange multiplier model itself. Given the form of this model (i.e. its function
class), there are many compatible choices of Φ, each of which determines the sort of infeasibility and
generalization guarantees that we can achieve. For example, if we choose the Lagrange multiplier
models to be constant functions of the form λ(γ;x) = γ, for γ ∈ [0, 1/m], we would be constraining
the average constraint function 1

m

∑m
j=1 hj(θ) to be non-negative, and a choice of Φ that satisfies

Definition 1 in this case is Φ(z) =
(

1
m

∑m
j=1 zj

)
+

. In Table 1, we give examples of Φ satisfying
Definition 1 for some other simple function classes. For more complicated function classes, the form
of Φ may not be known, but can still be reasoned about formally.

Ideally, we would like Φ to measure the maximum constraint violation, but this can be a very strong
requirement, since it essentially states that the Lagrange multiplier model has sufficient capacity to
penalize violations in each of the m constraints, even when m is extremely large. With that said,
Table 1 shows that we can come up with reasonable candidates for Φ for some settings. Notice that,
in this table, none of the provided choices of λ can grow without bound, which should be a cause
for concern, since we might expect it to be necessary for λ to be very large for nearly-infeasible
problems. For this reason, we actually scale the constraint portion of the Lagrangian by an additional
positive scaling factor (R) in the upcoming theorem.

We are now ready to prove our main result, which builds on Agarwal et al. [14]. We will make a mild
assumption that the Lagrange multiplier model is capable of representing an all-zero λ:
Assumption 1. There exists a γ ∈ Γ such that ~λ (γ) = 0.
Theorem 1. For any given radius R > 0, suppose that θ∗ and γ∗ are random variables taking values
from Θ and Γ (respectively), and that they’re an Rε-approximate mixed Nash equilibrium, i.e.:

sup
γ∈Γ

E
[
g (θ∗) +R

〈
~λ (γ),~h (θ∗)

〉]
− inf
θ∈Θ

E
[
g (θ) +R

〈
~λ (γ∗),~h (θ)

〉]
≤ Rε. (5)

Notice that an additional weight of R has been applied to the constraint portion of the Lagrangian.
Assuming that the problem is feasible and that Assumption 1 holds, and choosing R = 1/

√
ε, we

have that θ∗ will be approximately optimal, in expectation:
E [g (θ∗)] ≤ inf

θ∈Θ:∀i∈[m].hi(θ)≤0
g (θ) +

√
ε.

Further for any violation function Φ : Rm → R+ that satisfies Definition 1, we have that θ∗ will
likewise be approximately feasible (measured in terms of Φ):

Φ
(

E
[
~h (θ∗)

])
≤ G

√
ε+ ε.

Where G ≥ supθ∈Θ g (θ)− infθ∈Θ g (θ) bounds the range of the objective function g.

Proof. In Appendix A.

This theorem shows that, assuming that Assumption 1 holds and a suitable Φ exists, an approximate
Nash equilibrium will be approximately feasible and optimal. Other refinements from the literature,
such as the use of a non-zero-sum formulation with proxy-constraints [15, 17], or to improve
constraint generalization [16], could be integrated with some extra effort.
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5.1 Algorithm

Theorem 1 does not describe how one can find an approximate mixed Nash equilibrium, particularly
given that the objective and constraint functions are not assumed to be convex. This however, is
well-studied: as we mentioned in Section 3, it’s straightforward to see that if we treat the Lagrangian
as a two-player game, and have the players iteratively play against each other, with the θ player using
best-response (i.e. choosing the global minimum in θ for a fixed γ—this is necessary due to the
non-convexity of the objective g and constraints hi), and the γ player playing e.g. stochastic gradient
ascent (assuming that the Lagrange multiplier model λ is a concave function of γ), then the uniform
distribution over the resulting sequence of iterates will define a pair of random variables θ∗ and γ∗
that form an approximate mixed Nash equilibrium, and, by Theorem 1, θ∗ will be approximately
feasible and optimal. In practice, having both players use e.g. SGD, and ignoring the non-convexity,
often works well [e.g. 24], and this is the approach that we take in the experiments of Section 6.

We seek a mixed equilibrium because our Lagrangian is non-convex in θ, so a pure Nash equilibrium
might not even exist [15]. A mixed equilibrium is therefore difficult to avoid, but it does come
with the unfortunate consequence that it results in a stochastic classifier: instead of finding a single
parameter vector θ, we find a distribution θ∗ over multiple parameter vectors. At evaluation time,
each time that we receive a new example, we will sample a θ ∼ θ∗, and then classify the example
using the sampled θ. Deterministic classifiers are of course much more convenient, and we’ve found
that ignoring this issue by deterministically taking the last iterate (instead of the uniform distribution
over all iterates), often (but not always) works well. Alternatively, one could first create a stochastic
classifier by finding a mixed equilibrium, and then convert it into a deterministic classifier using e.g.
the procedure of Cotter et al. [25].

We include further details in Appendix C.

5.2 Generalization

In heavily constrained problems, one obvious area of concern is generalization. The naïve approach
would be to determine a separate generalization bound for each constraint, and to then apply the
union bound to find a common bound on all constraints. However, this might not scale well to
heavily-constrained problems like those that we discussed in Section 1, and in particular, cannot be
applied at all in the setting in which we have (implicitly) an infinite number of constraints, e.g. when
there is one constraint per example (or per query).

In Appendix B, we consider the setting in which the number of constraints is constant (but large), and
each constraint function is represented as an expectation over the data distribution (or a subset of it, as
in e.g. fairness over intersectional groups). Many previous papers describe how such constraints can
be constructed [e.g. 1, 2, 24]. Interestingly, it turns out that it is possible to bound the generalization
of constraints in such a way that the bound depends not on the number of constraints, but rather on a
complexity measure of the function class associated with the Lagrange multiplier model, although
the performance is measured indirectly, in terms of a particular choice of Φ.

Below, we will study the constraint generalization of our approach assuming that there is one
constraint per example (or per query), and that the constraint function itself only depends on the
particular example (or query) with which it is associated (e.g. ranking fairness). In the experiments
of Section 6.3, we construct constraints in the ranking setting using an approach that is basically
identical to that of Narasimhan et al. [5], except that we will include one constraint per query, instead
of averaging over the entire dataset. One interesting thing about this setting is that, while during
training we will only have access to those constraints that correspond to queries that occur in the
training set, implicitly there is a constraint for every possible query. Since, at evaluation time, we
will observe queries, and therefore constraints, that were not present in the training dataset, it’s very
important to ensure that the constraints generalize well.

We will use D to denote the underlying data distribution over instances x ∈ X . We would like
to find parameters θ that satisfy the following constraints: for each instance x ∈ X , h(θ;x) ≤ 0.
For the constraint associated with each x, we will use the Lagrange multiplier λ(γ;x). Similar to
Definition 1, we will measure the overall constraint violations with a particular choice of Φ:

Φ(θ) = max
γ∈Γ

Ex∼D [λ(γ;x)h(θ;x)] .
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Notice that unlike Definition 1, we’ve written Φ in terms of θ instead of the constraint functions
h(θ;x), but the hs are themselves functions of θ, so this is nothing but a change of notation. In
practice, we are given a sample S of n examples drawn from D, and we instead work with the
empirical constraint violation, given by:

Φ̂(θ) = max
γ∈Γ

1

n

n∑
j=1

λ(γ;xj)h(θ;xj).

We now bound the gap between the expected and empirical constraint violations.
Theorem 2. Suppose supγ,x λ(γ;x) ≤ Bλ and supθ,x |h(θ;x)| ≤ Bθ. With probability at least
1− δ over the i.i.d. draw of S ∼ Dn, for all θ ∈ Θ:

Φ(θ) ≤ Φ̂(θ) + R̂n(HΘ) + R̂n(ΛΓ) +BλBθ

√
log(1/δ)

n
,

where R̂n(HΘ) is the empirical Rademacher complexity of the class of constraint functions {x 7→
h(θ;x)|θ ∈ Θ} for any sample of size n and R̂n(ΛΓ) is the empirical Rademacher complexity of the
class of multipliers {x 7→ λ(γ;x)|γ ∈ Γ}.

Proof. In Appendix A.

6 Experiments

We present experiments on (i) fairness task with intersectional protected groups, (ii) a fairness task
with noisy protected groups, and (iii) a ranking fairness task with per-query constraints. We report
running times and additional experimental details in Appendices D–F.1

6.1 Fairness Constraints on Intersectional Groups

We first demonstrate how our approach fails gracefully as we decrease the complexity of the La-
grangian model. For this, we consider the task of training a linear classifier to predict crime rate
for a community, subject to intersectional group fairness constraints. We use the Communities and
Crime dataset [26], which contains 1,994 communities in the US described by 140 features, and seek
to predict the per capita crime rate for each community. As with prior work [e.g. 15], we label the
communities with a crime rate above the 70th percentile as ‘high crime’ and the others as ‘low crime’.
We form intersectional groups based on the percentages of the Black, Hispanic and Asian populations
(z1, z2, z3) in a community. We define a protected group using three thresholds (t1, t2, t3), and
include in it all communities where the race percentages zk ≥ tk,∀k ∈ [3]. We consider a total
of 1000 threshold combinations (t1, t2, t3) from [0, 1]3, refer to each such group by Gt1,t2,t3 , and
impose a constraint on its error rate: error(Gt1,t2,t3). Specifically, we seek to minimize the overall
error rate, subject to the constraint error(Gt1,t2,t3) ≤ error(ALL) + 0.01, for all (t1, t2, t3), except
those groups that contain less than 1% of the data. We end up with a total of 535 groups.

We solve this constrained optimization problem by using a multiplier model that takes the three thresh-
olds (t1, t2, t3) as input and assigns a Lagrange multiplier to the corresponding error rate constraint.
During training, we sample a threshold combination at random and perform gradient updates on the
Lagrangian for the sampled constraint. We experiment with five multiplier architectures, ranging
from under-parameterized to over-parameterized models. This includes a common multiplier for all
constraints, a linear model, and neural networks with one, two and three hidden layers (with 50 nodes
each). We compare with an unconstrained baseline that optimizes error rate without constraints.

The violation in the constraint for groupGt1,t2,t3 is measured as error(Gt1,t2,t3)−error(ALL)−0.01,
where a negative value indicates that the constraint is satisfied. The plots in Figure 1 shows different
percentiles of the constraint violations, with the left-most point showing the median violation and
the right-most point showing the 95th percentile violation. The unconstrained classifier incurs
positive violations for all percentiles, while the 3-hidden layer multiplier model is able to satisfy
most constraints on the training set. Interestingly, as we move from a 3-hidden layer model to a
common multiplier, the higher percentile violations go up, but the lower percentile violations are still

1Code available at: https://github.com/google-research/google-research/tree/master/many_constraints.
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Figure 1: Plots of pth percentile violations as a function of p (averaged over 5 trials) for the
intersectional group constraints on the Communities & Crime dataset. The overall test error rates
(lower better) are reported in the titles. Negative violations indicate the constraints are satisfied.

Table 2: Comparison with the FairFictitiousPlay approach of Kearns et al. [3] with a brute-force
oracle to find the most-violated constraint on the Communities & Crime intersectional fairness task.
We report the error rates and 95th percentile violations (means and standard errors over 5 trials).

Method Train Test
Error 95th Perc. Violation Error 95th Perc. Violation

Unconstrained 0.11 ± 0.002 0.05 ± 0.006 0.15 ± 0.003 0.09 ± 0.012
Common multiplier 0.14 ± 0.002 0.03 ± 0.003 0.17 ± 0.006 0.11 ± 0.015
Linear 0.14 ± 0.003 0.03 ± 0.004 0.15 ± 0.005 0.14 ± 0.004
1-hidden-layer 0.14 ± 0.013 0.02 ± 0.005 0.16 ± 0.010 0.10 ± 0.015
2-hidden-layer 0.21 ± 0.013 -0.02 ± 0.006 0.23 ± 0.012 0.07 ± 0.021
3-hidden-layer 0.20 ± 0.008 -0.02 ± 0.004 0.21 ± 0.009 0.05 ± 0.017
FairFictitiousPlay 0.20 ± 0.010 -0.02 ± 0.004 0.22 ± 0.011 0.04 ± 0.008

better than the unconstrained approach. Thus with a simpler architecture, the Lagrange multiplier
model tries to satisfy a simpler transformation of the constraints, and is better-able to fail gracefully
(Section 4). Despite the large number of constraints, the overall error doesn’t reach the trivial error
rate (0.3 for an all-negatives classifier), likely because of redundancies in the constraints.

We also compare our results with the FairFictitiousPlay algorithm of Kearns et al. [3], who also
impose constraints on intersectional groups, but assume access to an oracle for finding the maximally
violated constraint at each step. We implement this oracle using a brute-force search. As seen in
Table 2, despite not having access to a brute-force oracle, the 3-hidden layer multiplier model is able
to satisfy the constraints almost as well as FairFictitiousPlay, while yielding a similar error rate.

6.2 Fairness Constraints with Noisy Group Memberships

We next apply our proposed approach to impose group-based fairness constraints when the protected
groups are noisy. The goal is to equalize true positive rates over the unknown, “true” group member-
ship assignments, when we only have access to known noisy group membership assignments. Wang
et al. [10] propose robust-optimization-like approaches for this problem. We replicate their setup, but
propose a different optimization strategy. Denoting the true group for an instance by G ∈ [k] and the
noisy group by Ĝ ∈ [k], we assume access to the marginal probabilities P (G = i|Ĝ = j),∀i, j ∈ [k].
Then given a dataset {(xi, yi, Ĝi)}ni=1 with noisy group memberships, we consider the set of all

candidate true group memberships Z =
{
{G(1)

i }ni=1, {G
(2)
i }ni=1, . . .

}
that satisfy the marginal

probabilities, and seek to impose the fairness constraints on each of these candidate memberships.
Specifically, we wish to solve the following optimization problem:

minimize
θ∈Θ

g(θ) s.t. ∀Z ∈ Z, j ∈ [k]. hj(θ, Z) ≤ 0, (6)

where hj(θ, Z) denotes an equal opportunity fairness constraint evaluated on group j with the
candidate group memberships Z. Note that the number of constraints can be exponential in the
number of instances n, and hence its impractical to maintain one Lagrange multiplier per constraint.
Instead, we use a model that maps a group membership assignment Z to a Lagrange multiplier, and
we sample group memberships from Z at random to perform gradient updates.

We use the UCI Adult dataset [26]. We optimize for the error rate subject to equality of opportunity
[4] on three race groups ‘white’, ‘black’ and ‘other’, and train a linear classification model. We use
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Table 3: Equal opportunity constraints on Adult with different group noise levels (mean and standard
error over 10 trials). We report the test error rates (lower better) and test equal opportunity violations
evaluated with the true groups. A negative fairness violation indicates the constraints are satisfied.

DRO [10] SoftAssign [10] Proposed
Noise Error rate Violation Error rate Violation Error rate Violation

0.1 0.152 ± 0.001 0.002 ± 0.019 0.148 ± 0.001 -0.048 ± 0.002 0.147 ± 0.002 0.015 ± 0.035
0.2 0.200 ± 0.002 -0.045 ± 0.003 0.157 ± 0.003 -0.048 ± 0.002 0.168 ± 0.006 -0.004 ± 0.013
0.3 0.216 ± 0.010 -0.044 ± 0.004 0.158 ± 0.005 0.002 ± 0.030 0.165 ± 0.003 -0.016 ± 0.002
0.4 0.209 ± 0.006 -0.019 ± 0.031 0.188 ± 0.003 -0.016 ± 0.016 0.157 ± 0.002 -0.005 ± 0.028
0.5 0.219 ± 0.012 -0.030 ± 0.032 0.218 ± 0.002 0.004 ± 0.006 0.189 ± 0.006 -0.020 ± 0.009

Table 4: Pairwise ranking fairness with per-query constraints on MSLR-WEB10K (averaged over 5
trials). Constraint violation is measured as |err0,1 − err1,0| − 0.25 (lower is better).

Pairwise Error 90th Percentile Violation
Method Train Test Train Test
Unconstrained 0.386 ± 0.010 0.394 ± 0.008 0.068 ± 0.003 0.282 ± 0.029
Narasimhan et al. [5] 0.396 ± 0.014 0.400 ± 0.014 0.060 ± 0.004 0.246 ± 0.025
Proposed 0.406 ± 0.012 0.412 ± 0.011 0.040 ± 0.005 0.195 ± 0.023

a linear multiplier model which takes as input an n-dimensional boolean encoding of the sampled
group membership assignment Z. We compare our approach with the two approaches proposed by
Wang et al. [10], based on distributionally robust optimization (DRO) and “soft” group assignments.

Table 3 shows the error rates, and fairness violations on the true groups G for the trained classifiers,
evaluated on the test set. As done by Wang et al. [10], we run five different experiments with five
different noise levels added to the true groups in the training set: the “noisy” groups that we observe
are a perturbation of the true groups using the given noise level. Higher noise yields a larger candidate
set Z . The baseline unconstrained model achieves an error rate of 0.145± 0.004 and a maximum
constraint violation of 0.02± 0.05 [10]. Most importantly, the proposed approach is able to satisfy
the fairness constraints on the true groups not seen during training, albeit with a higher variance
for lower noise levels. Table 3 shows that when the noise level is low, the soft group assignments
approach from Wang et al. [10] has better performance; when the noise level is high, the proposed
approach achieves lower error rates than the more conservative soft assignments approach.

6.3 Ranking Fairness with Per-query Constraints

We finally consider the problem of imposing per-query constraints for ranking fairness. We adopt
the pairwise ranking fairness setup from Narasimhan et al. [5], but unlike them, we wish to satisfy
the fairness constraints per-query, and not on average across all queries. We use the Microsoft
Learning to Rank Dataset (MSLR-WEB10K) [27] which contains 136 document features for each
query-document pair. Similar to Yadav et al. [20], we divide all documents into two protected groups
G ∈ {0, 1} based on the 40th percentile of the QualityScore feature, and binarize the relevance labels.
We also consider a second W3C experts ranking dataset [21], which we include in Appendix F.

Denoting the set of document features by X and query features by Q, the goal is to learn a ranking
function f : X ×Q → R that assigns a score f(X,Q) to a given query-document pair (X,Q). We
adopt the pairwise equal opportunity fairness criteria from Narasimhan et al. [5] and measure the
group-specific pairwise errors for groups i, j ∈ {0, 1} and a given query q ∈ Q as:

erri,j(q) = E[1{f(X, q) < f(X ′, q)}|Y > Y ′, G = i, G′ = j,Q = q]

where (X,Y,G) and (X ′, Y ′, G′) are tuples of document features, labels and groups sampled for
query Q = q. We seek to then optimize the overall pairwise error subject to the constraint that the
cross-group errors are similar for each query: |err0,1(q)− err1,0(q)| ≤ 0.25, for all q ∈ Q.

We use a one-hidden layer multiplier neural network model containing 128 nodes to assign a Lagrange
multiplier for each query q ∈ Q, with the average of the feature vectors within a query used as input.
The ranking model is also a one-hidden layer neural network. Table 4 shows the pairwise error rates
and 90th percentile query level constraint violations for our proposed method on a training set of 1000
queries and a test set of 100 queries, and compares against unconstrained training and the approach
of Narasimhan et al. [5], which enforces the same constraints but on average. The proposed method
achieves the least 90th percentile violation at the cost of a larger error rate.
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Broader Impact

From an ethical standpoint, we believe that the main contribution of our work is that it will make
it easier to approximately impose fine-grained statistical fairness constraints, particularly in the
intersectional and ranking settings. The greatest weakness is that we cannot guarantee that every
constraint will hold: instead, constraint violations are measured in terms of a function Φ, and while
this function could technically be e.g. the magnitude of the most violated constraint, it is unlikely
that any practical Lagrange multiplier model will work with such a Φ when the number of constraints
is extremely large. However, as we show in our experiments, for many real-world problems our
approach is effective in optimizing for reasonable choices of Φ (such as the 90-th percentile violation).

A particular advantage of our approach is that we hope that it will fail gracefully, i.e. even when
all of the constraints cannot be satisfied simultaneously, the observed behavior will still fall-back to
something that most would consider “sensible”. However, except for the simple types of Lagrange
multiplier models considered in Section 4, this remains largely an intuition, and while we provide
experimental evidence that this intuition holds in practice, making this notion more precise is an
exciting area for future research.
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A Proofs

Theorem 1. For any given radius R > 0, suppose that θ∗ and γ∗ are random variables taking values
from Θ and Γ (respectively), and that they’re an Rε-approximate mixed Nash equilibrium, i.e.:

sup
γ∈Γ

E
[
g (θ∗) +R

〈
~λ (γ),~h (θ∗)

〉]
− inf
θ∈Θ

E
[
g (θ) +R

〈
~λ (γ∗),~h (θ)

〉]
≤ Rε. (5)

Notice that an additional weight of R has been applied to the constraint portion of the Lagrangian.
Assuming that the problem is feasible and that Assumption 1 holds, and choosing R = 1/

√
ε, we

have that θ∗ will be approximately optimal, in expectation:

E [g (θ∗)] ≤ inf
θ∈Θ:∀i∈[m].hi(θ)≤0

g (θ) +
√
ε.

Further for any violation function Φ : Rm → R+ that satisfies Definition 1, we have that θ∗ will
likewise be approximately feasible (measured in terms of Φ):

Φ
(

E
[
~h (θ∗)

])
≤ G

√
ε+ ε.

Where G ≥ supθ∈Θ g (θ)− infθ∈Θ g (θ) bounds the range of the objective function g.

Proof. We’ll mostly follow the analysis of Agarwal et al. [14]. We’ll begin by proving the optimality
portion. Let θ̂ minimize g (θ) over all feasible θ ∈ Θ (i.e. all θs for which ~h (θ) � 0). Plugging this
into the right-hand side of Equation 5, and using Assumption 1:

E [g (θ∗)] ≤ g
(
θ̂
)

+Rε

which completes the optimality portion of the proof.

We’ll now move on to feasibility. Again plugging in θ̂ on the right-hand side of Equation 5:

sup
γ∈Γ

E
[
g (θ∗) +R

〈
~λ (γ),~h (θ∗)

〉]
≤ g(θ̂) +Rε

E [g (θ∗)] + R sup
γ∈Γ

E
[〈
~λ (γ),~h (θ∗)

〉]
≤ g(θ̂) +Rε

R sup
γ∈Γ

E
[〈
~λ (γ),~h (θ∗)

〉]
≤ g(θ̂)− E [g (θ∗)] +Rε

sup
γ∈Γ

E
[〈
~λ (γ),~h (θ∗)

〉]
≤ G/R+ ε.

where we used the upper bound on g. Further, using Definition 1, we get:

Φ
(

E
[
~h (θ∗)

])
≤ G/R+ ε.

Setting R = 1/
√
ε completes the feasibility portion of the proof.

Theorem 2. Suppose supγ,x λ(γ;x) ≤ Bλ and supθ,x |h(θ;x)| ≤ Bθ. With probability at least
1− δ over the i.i.d. draw of S ∼ Dn, for all θ ∈ Θ:

Φ(θ) ≤ Φ̂(θ) + R̂n(HΘ) + R̂n(ΛΓ) +BλBθ

√
log(1/δ)

n
,

where R̂n(HΘ) is the empirical Rademacher complexity of the class of constraint functions {x 7→
h(θ;x)|θ ∈ Θ} for any sample of size n and R̂n(ΛΓ) is the empirical Rademacher complexity of the
class of multipliers {x 7→ λ(γ;x)|γ ∈ Γ}.

Proof. We would like to bound:

max
θ∈Θ

(
Φ(θ)− Φ̂(θ)

)
≤ max
θ∈Θ,γ∈Γ

Ex [λ(γ;x)h(θ;x)]− 1

n

n∑
j=1

λ(γ;xj)h(θ;xj)

 . (7)

12



All we need to do is to bound the generalization error for the product λ(γ; ·)h(θ; ·) over Θ× Γ. We
first directly apply a result from DeSalvo et al. [28] (Lemma 2) to bound the Rademacher complexity
of this product class by sum of the Rademacher complexities of the individual classes. This result
states that, if C = {x 7→ λ(γ;x)h(θ;x)|γ ∈ Γ, θ ∈ Θ}, then the empirical Rademacher complexity
of C for any sample of size n is given by R̂n(C) ≤ R̂n(ΛΓ) + R̂n(HΘ).

Equipped with this above result, we can apply standard uniform convergence based techniques to
derive a generalization bound for the product λ(γ;x)h(θ;x). Using the fact that λ(γ;x)h(θ;x) ≤
BλBθ for all θ and γ, we have with probability at least 1− δ that, for all θ ∈ Θ and γ ∈ Γ:

Ex [λ(γ;x)h(θ;x)] ≤ 1

n

n∑
j=1

λ(γ;xj)h(θ;xj) + R̂n(ΛΓ) + R̂n(HΘ) +BλBθ

√
log(1/δ)

n
.

Plugging this back into Equation 7 completes the proof.

B Generalization for a Fixed Number of in-Expectation Constraints

In Section 5.2, we considered the one-constraint-per-example (or per-query) setting. Here, we
consider the other major setting of interest, in which there are a known, fixed number of queries, and
each constraint function is represented as an expectation over the data distribution (or a subset of it, as
in e.g. fairness over intersectional groups). Examples of how such constraints might be constructed
can be found in e.g. Goh et al. [1], Narasimhan [2], Cotter et al. [24].

We would like to find parameters θ that satisfy a constant number of m constraints, where the ith
constraint is defined by:

hi (θ) = Ex∼D [`i(x; θ)] ,

where `i : X × θ → R. In practice, we are given a sample S = {x1, . . . , xn} ⊆ X drawn i.i.d. from
D, and we find a θ that satisfies the following empirical constraints instead:

hi (θ;S) =
1

n

n∑
j=1

`i(xj ; θ).

We would like to bound the violations in the expected constraints in terms of the violations in the
empirical constraints. To this end, we measure the expected constraint violation by:

Φ(θ) = max
γ∈Γ

1

m

〈
~λ (γ),~h (θ)

〉
and the empirical constraint violation by:

Φ̂(θ) = max
γ∈Γ

1

m

〈
~λ (γ),~h (θ;S)

〉
.

We measure the complexity of the Lagrange multiplier model class using its pseudo-dimension.
Definition 2 (Pseudo-dimension of multiplier class). We define the pseudo-dimension of the multiplier
class Γ as the VC-dimension of the function class {(i, r) 7→ sign(λi(γ)− r) : γ ∈ Γ}.
We now present our generalization bound for the constraint violation that is independent of the
number of constraints and instead depends on the pseudo-dimension of the multiplier class:

Theorem 3. Suppose
∥∥∥~h(θ)− ~h(θ;S)

∥∥∥
∞
≤ G for all θ ∈ Θ and

∥∥∥~λ(γ)
∥∥∥
∞
≤ B for all γ ∈ Γ.

Suppose that, for any γ ∈ Γ, with probability at least 1− δ over draw of S ∼ Dn, for all θ ∈ Θ:
1

m

〈
~λ (γ),~h (θ)− ~h (θ;S)

〉
≤ GenBnd (δ) (8)

where GenBnd(δ) is an upper bound on the generalization error of the inner product on the LHS and
a decreasing function of δ, and holds for any particular γ. We show that this generalization bound
can be “lifted” to one that holds uniformly, with an additional term depending on the complexity
of the multiplier model. To this end, fix ρ > 0. Then with probability at least 1 − δ over draw of
S ∼ Dn, for all θ ∈ Θ:

Φ(θ) ≤ Φ̂(θ) + GenBnd

(
δ
( ρ
B

)D)
+Gρ,
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where D is the pseudo-dimension of the multiplier class, i.e. the class of functions {i 7→ λi(γ) : γ ∈
Γ}. Also observe that for most generalization bounds, GenBnd(δ) will have a δ-dependence of the
form log(1/δ).

Proof. We would like to bound:

Φ(θ) ≤ Φ̂(θ) + max
γ∈Γ

1

m

〈
~λ (γ),~h (θ)− ~h (θ;S)

〉
. (9)

Let Γ̃ ⊆ Γ be a finite set of “covering centers” such that, for all γ ∈ Γ there exists a γ̃ ∈ Γ̃ for which
1
m

∥∥∥~λ (γ)− ~λ (γ̃)
∥∥∥

1
≤ ρ. Then:

1

m

〈
~λ (γ),~h (θ)− ~h (θ;S)

〉
≤ 1

m

∣∣∣〈~λ (γ̃),~h (θ)− ~h (θ;S)
〉∣∣∣

+
1

m

∥∥∥~λ (γ)− ~λ (γ̃)
∥∥∥

1

∥∥∥~h (θ)− ~h (θ;S)
∥∥∥
∞

≤ 1

m

〈
~λ (γ̃),~h (θ)− ~h (θ;S)

〉
+Gρ.

Using the above relationship we can approximate the the ‘max’ over Γ in Equation 9 with a ‘max’
over the covering centers Γ̃:

Φ(θ) ≤ Φ̂(θ) + max
γ∈Γ̃

1

m

〈
~λ (γ),~h (θ)− ~h (θ;S)

〉
+Gρ.

We then bound the ‘max’ over the covering centers using the generalization bound in Equation 8 and
a union bound over Γ̃, and have with probability at least 1− δ:

Φ(θ) ≤ Φ̂(θ) + GenBnd

(
δ

|γ̃|

)
+Gρ. (10)

A standard bound [e.g. 29] on the size of the covering centers for a function class in terms of its
pseudo-dimension D is: ∣∣∣Γ̃∣∣∣ ≤ O((B

ρ

)D)
.

Substituting this into Equation 10, combined with the observation that GenBnd(·) will be a decreasing
function of its argument, completes the proof.

C Outline of Algorithm

“Theoretical” algorithm: We’ll begin by showing that the best-response based algorithm that we
mentioned in Section 5.1 converges to a mixed Nash equilibrium. Algorithm 1 has the θ-player
using best response at each iteration (i.e. finding a global minimizer of the modeled Lagrangian of
Equation 3), and the γ-player using (stochastic) gradient ascent, under the assumption that ~λ is a
concave function of γ. The particular choice of algorithm for the γ-player doesn’t matter—we only
need it to satisfy a low-regret guarantee:

sup
γ

1

T

T∑
t=1

L̃(θ(t), γ)− 1

T

T∑
t=1

L̃(θ(t), γ(t)) ≤ ε (11)

where ε depends the regret bound of whatever algorithm is being used (for stochastic gradient ascent
on a concave objective, it will be O(1/

√
T )). For the θ-player, best-response trivially gives us a

no-regret guarantee:

1

T

T∑
t=1

L̃(θ(t), γ(t))− 1

T

T∑
t=1

inf
θ∈Θ
L̃(θ, γ(t)) =0

1

T

T∑
t=1

L̃(θ(t), γ(t))− inf
θ∈Θ

1

T

T∑
t=1

L̃(θ, γ(t)) ≤0 (12)

14



Algorithm 1 finds an approximate mixed Nash equilibrium of the modeled Lagrangian of Equation 3:
L̃(θ, γ) = g(θ) +

〈
~λ(γ),~h(θ)

〉
. As we discussed in Section 5.1, the θ-player plays best response,

while the γ-player plays (stochastic) gradient ascent. The use of best response is necessary because
we do not assume that the objective or constraint functions are convex. There is nothing special
about gradient ascent, however. In Appendix C, we discuss this further, and include an outline of a
convergence proof.

θ(0) ← 0 // or some other initial value ....
γ(0) ← 0 // ....
for t = 1 to T do
Jγ ← the Jacobian of ~λ(γ(t−1)) // or a stochastic Jacobian
∆γ ← JTγ

~h(θ(t−1))

γ(t) ← γ(t−1) + η∆γ

θ(t) ← argminθ∈Θ

(
g(θ) +

〈
~λ(γ(t)),~h(θ)

〉)
end for
θ∗ ← a random variable that equals θ(t) with probability 1/T for every t ∈ [T ]
γ∗ ← a random variable that equals γ(t) with probability 1/T for every t ∈ [T ]

Algorithm 2 uses stochastic gradient descent and ascent to optimize the modeled Lagrangian of
Equation 3: L̃(θ, γ) = g(θ) +

〈
~λ(γ),~h(θ)

〉
. This is basically the algorithm that we use in our

experiments (although often with a different first-order method than SGD). Because we do not
assume convexity, this algorithm is not guaranteed to converge to a mixed Nash equilibrium, but it
seems to work well in practice.

θ(0) ← 0 // or some other initial value ....
γ(0) ← 0 // ....
for t = 1 to T do
Gθ ← a stochastic gradient of g(θ(t−1))

Jθ ← a stochastic Jacobian of ~h(θ(t−1))

∆θ ← Gθ + JTθ
~λ(γ(t−1))

θ(t) ← θ(t−1) − ηθ∆θ

Jγ ← a stochastic Jacobian of ~λ(γ(t−1))

∆γ ← JTγ
~h(θ(t−1))

γ(t) ← γ(t−1) + ηγ∆γ

end for

Adding Equations 11 and 12 together yields:

sup
γ

1

T

T∑
t=1

L̃(θ(t), γ)− inf
θ∈Θ

1

T

T∑
t=1

L̃(θ, γ(t)) ≤ε

sup
γ

E
[
g(θ∗) +

〈
~λ(γ),~h(θ∗)

〉]
− inf
θ∈Θ

E
[
g(θ) +

〈
~λ(γ∗),~h(θ)

〉]
≤ε

which is, aside from the R scaling, exactly the requirement of Theorem 1 (Equation 5).

“Practical” algorithm: In our experiments, we use something closer to Algorithm 2, which is not
guaranteed to converge to a mixed Nash equilibrium, but is easy to implement and works well in
practice. This algorithm, however, leaves one major question unanswered: “how do we find stochastic
gradients?”. Typically, this will be done by sampling. The objective function will generally be an
empirical average over a dataset, so we can find a stochastic gradient of g by sampling a minibatch
from the training set. When the constraints have the same form, the same approach can be used, and
when the constraints are functions of individual examples (or queries), each row of the Jacobian can
be calculated exactly without sampling.

Since our underlying assumption is that m is extremely large, we would also like to sample the
constraints. This, again, is straightforward: we sample a constraint i ∈ [m] uniformly, find a
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(stochastic) gradient of hi, and construct a Jacobian matrix that is all-zero, except that the ith row is
equal to this gradient, multiplied by m (to account for the sampling probability). This approach could
of course be improved upon (minibatching being the most obvious change, but different importance
sampling strategies could also be beneficial), but this discussion shows that, in principle, each iteration
can be made extremely computationally inexpensive.

Notice that, unlike Algorithm 1, in Algorithm 2 we do not construct and return uniform distributions
over the iterates. While one could do this, there are numerous other options, as well: one could take
the last iterate, or heuristically search for the “best” iterate, or even search for the best pair of random
variables supported on the iterates (i.e. the “shrinking” procedure of Cotter et al. [15]).

D Experimental Details for Fairness over Intersectional Groups

As noted in Section 6.1, we seek to minimize the overall error rate, subject to the constraint
error(Gt1,t2,t3) ≤ error(ALL) + 0.01, for all 1000 thresholds (t1, t2, t3), except those groups that
contain less than 1% of the data. This results in a total of 822 constraints. Since some of the threshold
combinations represent the same partitioning of the data, only 535 of the constraints are unique (i.e.
are computed on distinct groups).

We use Algorithm 2 to solve the resulting constrained optimization problem, where at each step we
sample a single threshold combination (t1, t2, t3) uniformly at random, and compute a stochastic
gradient using the sampled constraint. We use Adagrad for the individual gradient updates, run the
algorithm for a total T = 10000 gradient steps, with step-sizes ηθ = 0.1 and ηγ = 0.5. After training,
we use the “best iterate” heuristic of Cotter et al. [24] to pick a model that best trades-off between the
objective and constraints. We train a linear classifier in all experiments and use hinge surrogates to
approximate the objective and constraints. We implemented our method in TensorFlow using the
open-source TensorFlow Constrained Optimization (TFCO) library [24]2.

We split the dataset into 2/3-rd for training and 1/3-rd for testing, and average the results over 5
such random train-test splits. We measure the violation in the constraint for group Gt1,t2,t3 as:
error(Gt1,t2,t3)− error(ALL)− 0.01, where a negative violation value indicates that the constraint
is satisfied. In Table 2, we report the error rates and the 95-th percentile constraint violation for
imposing the constraints with five Lagrangian model architectures: (i) a common multiplier for all
constraints, (ii) a linear model, (iii) a neural network with a single hidden layer of 50 nodes, (iv)
a neural network with two hidden layers of 50 nodes each, and (v) a neural network with three
hidden layers of 50 nodes each. Note that (iv) and (v) are over-parameterized models, i.e. have more
parameters than the number of constraints. We compare our approach with an unconstrained baseline
that optimizes error rate without constraints.

We ran experiments on a single machine with a 36-core Intel(R) Xeon(R) Gold 6154 Processor (3.00
GHz) and 191GB RAM. For this dataset, our approach incurs similar running times with the different
Lagrange multiplier models. For example, with the linear multiplier model it takes 31.7 minutes,
whereas with the 3-layer multiplier model it takes 33 minutes.

D.1 Comparison with Kearns et al. [3]

As noted in Section 2, Kearns et al. [3] also consider the setting of intersectional fairness constraints,
but impose constraints on subgroups defined by a class of membership functions over protected
attributes. They then show how one can provably impose constraints on these subgroups when
the class of membership functions has bounded VC dimension. On the other hand, we make no
assumption on the given groups, but instead limit the flexibility of the Lagrange multiplier model
used to impose constraints on them.

Our optimization strategy is also very different. Kearns et al. [3] propose having the λ- and θ-players
play Fictitious Play using an oracle to find the most-violated constraint at each step. Such an
oracle, however, many not be efficient to implement for general constraint sets. So in our algorithm
(Algorithm 2), we do not assume access to an oracle for picking the most-violated constraint, but
instead sample a constraint uniformly at random, compute gradients for the sampled constraint, and
perform stochastic gradient updates on γ and θ.

2https://github.com/google-research/tensorflow_constrained_optimization
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For completeness, we compare our results with the FairFictitiousPlay algorithm of Kearns et al. [3]
(see Algorithm 3 in their paper). We impose equal error rate constraints on the same threshold-
based groups considered in our original experiment, and use a brute-force search strategy to find
the most-violated constraint. Note that such a brute-force oracle may not be efficient to implement
when the number of protected attributes is very large. We run their algorithm for a total of 100
rounds of Fictitious Play, with 250 gradient steps to implement the cost-sensitive learner needed
for the θ-player’s update step, and with the multiplier radius parameter C chosen from the range
{1.0, 5.0, 10.0} to minimize the train error rate while satisfying the constraints.

As seen in Table 2, the proposed approach with a 3-hidden layer Lagrangian model is able to satisfy
the constraints at least as well as the brute-force FairFictitiousPlay variant, while yielding a similar
error rate. Moreover, the proposed approach is able to achieve this performance using a simple
random sampling strategy to pick the constraint at each step, and without relying on an inefficient
brute-force search to pick the maximally violated constraint.

E Experimental Details for Fairness with Noisy Group Memberships

The generation of noisy protected groups is the same as in Wang et al. [10]. In the experiments, we
replace all the expectations in the objective and constraints with finite-sample empirical versions.

Let f(x; θ) be a binary classifier, where f(x; θ) > 0 indicates a positive classification. Let Y ∈ {0, 1}
be a binary classification label. Recall that M is a candidate true group assignment over a dataset
D: in finite samples, M ∈ M =

{
{G(1)

j }ni=1, {G
(2)
i }ni=1, . . .

}
, and Mi = j implies that the ith

example is assigned to group j.

To equalize true positive rates between groups with slack α, we set

hj(θ,M) =
Ex,y∼D[1{f(x; θ) > 0, y = 1}]

Ex,y∼D[1{y = 1}]
− Ex,y,M∼D[1{f(x; θ) > 0, y = 1,M = j}]

Ex,y,M∼D[1{y = 1,M = j}]
− α.

We evaluate fairness violations hj(θ,G) for the true group membership assignment G on the test
dataset. We do not directly use G to train the binary classifier f . The only place we use G in the
training process is to estimate the marginal probabilities P (G = i|Ĝ = j) ahead of time on the
training set, as done by Wang et al. [10]. These marginal probabilities are used to generate the
candidate setM.

We use Algorithm 2 to solve the resulting constrained optimization problem, where at each step we
sample a group membership assignment M uniformly at random, and compute a stochastic gradient
using the sampled constraint. We train a linear classifier in all experiments and use hinge surrogates
to approximate the objective and constraints. For the Lagrange multiplier, we use a linear model with
a one-hot encoding M as input. While this amounts to maintaining a total of n parameters, one for
each entry Mi, this is far fewer than the total number of constraints, which is exponential in n.

After training, we report results from the best iterate, where we define “best” as the iterate that
achieves the lowest objective value [24], while also satisfying all constraints on a sample of 20
candidates from the candidate setM.

For this experiment, we trained on a single machine with a 6-core Intel Xeon E5-1650 V3 Processor
(3.50GHz) and 32GB RAM. The average training time over 5 trials for the proposed method was
13.36 minutes. The results from Wang et al. [10] were taken directly from the results reported in that
paper, and were not retrained or reproduced in this paper. Their results were trained using a 4-core
Intel Core i7-7700HQ CPU (2.80GHz) and 16GB RAM. The average training times over 5 trials are:
DRO [10]: 5.56 minutes, and SoftAssign[10]: 5.52 minutes.

E.1 Comparison to baseline with a single Lagrange multiplier per group

As a baseline to illustrate the effectiveness of the Lagrange multiplier model, we also trained using
the same setup as Section 6.2, but instead of the linear Lagrange multiplier model described in
Section 6.2, we simply update a single Lagrange multiplier λj per group j ∈ [k]. We still resample
the group assignments M ∈ M each epoch, but we associate a single Lagrange multiplier λj
with constraint hj(θ,M). Results in Table 5 on the five different noise levels show that this single
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Table 5: Equal opportunity constraints on Adult with different group noise levels in the training
data (averaged over 10 trials). We report the test error rates (lower better) and test fairness violations
evaluated with the true groups. A negative fairness violation indicates the constraints are satisfied.

Per-group multiplier
Noise Error rate Violation

0.1 0.146 ± 0.001 0.008 ± 0.030
0.2 0.146 ± 0.002 0.040 ± 0.015
0.3 0.146 ± 0.001 0.057 ± 0.018
0.4 0.146 ± 0.002 0.068 ± 0.021
0.5 0.145 ± 0.002 0.068 ± 0.008

Lagrange multiplier per group achieved approximately the same error rate and true group violations
as the unconstrained model. Thus, even though the group assignments M ∈M were resampled each
epoch, the shared Lagrange multiplier per group did not have the complexity to control the violations
over all group assignments M ∈M.

E.2 Relation to soft group assignments from Wang et al. [10]

We discuss the relation of the generated candidate groups with the soft group assignments proposed
in Wang et al. [10]. We show that the generated samples are actually “hard” group assignments,
which are in a subset of the soft group assignments. Therefore, the proposed algorithm in Section 6.2
solves an optimization problem in which the constraints are sampled from the feasible set of the soft
group assignments.

The soft group assignments approach in Wang et al. [10] uses a function w : [k]× {0, 1} × {0, 1} ×
[k] → [0, 1] to estimate P (G = j|ŷ, y, Ĝ = k) by w(j | ŷ, y, k), where ŷ = 1(f(x; θ) > 0).
The soft group assignments approach in Wang et al. [10] then constrains w in a feasible setW by
enforcing the marginal probabilities estimated from auxiliary datasets:

W(θ) =

{
w :

∑
ŷ,y∈{0,1} w(j|ŷ,y,k)P (ŷ,y|Ĝ=k)=P (G=j|Ĝ=k),∑m

j=1 w(j|ŷ,y,k)=1,w(j|ŷ,y,k)≥0 ∀ŷ,y∈{0,1},k∈Ĝ

}
. (13)

The robust optimization problem takes the form:

minimize
θ∈Θ

g(θ)

s.t. ∀j ∈ [k]. max
w∈W

hj(θ, w) ≤ 0

where g(θ) represents the training loss, i.e. average error rates; hj(θ) = E[l1(θ, x, y)|G = j] where
l1(θ, x, y) represents some function to constrain over the true groups to ensure certain fairness
constraints (see Wang et al. [10]).

Instead of solving the maximization as Wang et al. [10], the proposed algorithm in Section 6.2 solves
this problem empirically by sampling from the candidate set of possible true group assignments.
The candidate setM that we consider in Section 6.2 is a subset of W(θ), where the function w
simply assigns a "hard" group assignment to each data point, i.e. {w : w ∈ W, w(j | ŷ, y, k) =
1 for some j ∈ [k]}. Any feasible w in this subset corresponds to applying a candidate true group
assignment to the data points.

While any feasible solution to the robust optimization problem would be guaranteed to satisfy the
fairness constraints on the true groups, this is not necessarily true of the empirical procedure in
Section 6.2 of sampling a different candidate fromM every epoch to perform gradient updates.

F Experimental Details for Ranking Fairness with Per-query Constraints

By labeling documents with relevance score 3 and 4 as positive, we end up with approximately 12.5%
positive documents overall. As the pairwise constraints are better captured when the positive and
negative labels are balanced, we take a two-step approach to slightly adjust the ratio of positive and
negative documents in the training set. We first generate two [-1,1] uniformly distributed random
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Table 6: Pairwise ranking fairness with per-query constraints on W3C Expert (averaged over 5 trials).
Constraint violation is measured as |err0 − err1| − 0.3 (lower is better).

Pairwise Error 90th Percentile Violation
Method Train Test Train Test
Unconstrained 0.4446 ± 0.0009 0.4704 ± 0.0758 0.2170 ± 0.0000 0.3252 ± 0.0247
Narasimhan et al. [5] 0.4528 ± 0.0018 0.4992 ± 0.0937 0.1932 ± 0.0205 0.2336 ± 0.0888
Proposed 0.4706 ± 0.0333 0.5384 ± 0.0844 0.1104 ± 0.0852 0.2082 ± 0.0499

numbers (v1, v2) per query and discard a negative document from the query with the probability
(0.7 + 0.3 · v1) · 1

2

(
1− v2 · m+1−2i

m−1

)
if it has the ith smallest QualityScore2 (feature 133) in the

query. As a result, v1 influences the number of negative documents, and v2 controls the quality of the
selected negative documents. After applying this step, we also filter out all queries that have either
less than 10 positive documents or less than 10 negative documents. By doing so we prevent the
calculation of cross-group error rates with overly small denominators. Finally, reporting the error
rates, we assign a penalty of 0.5 for ties in the ranking.

We use Algorithm 2 to solve the constrained optimization problem, where at each step we receive a
single query, and compute a stochastic gradient using the sampled constraint. We use Adagrad for the
individual gradient updates, run the algorithm for a total T = 100000 gradient steps, with step-sizes
ηθ = 0.05 and ηγ = 0.1. After training, we use the “best iterate” heuristic of Cotter et al. [24] to
pick a model that best trades-off between the objective and constraints. We train a ranking model
with a single hidden layer of 128 nodes, and use hinge surrogates to approximate the objective and
constraints. The Lagrange multiplier model is also a single-hidden-layer neural network with 128
nodes which takes the mean feature vector from a query as input. We implemented our method in
TensorFlow using the open-source TensorFlow Constrained Optimization (TFCO) library [24].

We ran experiments on a single machine with a 36-core Intel(R) Xeon(R) Gold 6154 Processor (3.00
GHz) and 188GB RAM. The average training times over 5 trials for the unconstrained method is 3.13
hours, for the approach of Narasimhan et al. [5] is 4.43 hours, and for the proposed approach is 5.05
hours.

F.1 Additional Experiments

We consider a similar ranking problem with a marginal equal opportunity fairness criterion defined as

erri(q) = E[1{f(X, q) < f(X ′, q)}|Y > Y ′, G = i, Q = q]

and constraining |err0(q) − err1(q)| ≤ 0.3 for all queries q ∈ Q. We use the W3C Expert dataset
studied in Zehlike and Castillo [21], Narasimhan et al. [5], which is a subset of the TREC 2005
enterprise track data. The dataset contains 60 topics, with 200 candidates per topic, where each
candidate labeled as an expert or non-expert for the topic. The goal is to rank the candidates based on
their expertise on a topic. We use the same features as Zehlike and Castillo [21] to represent how
well each topic matches each candidate (a set of five aggregate features derived from word counts
and tf-idf scores), and treat gender as the protected attribute. We learn a ranking model with one
hidden layer of 8 nodes, and a multiplier model with one hidden layer of 8 nodes. We use 30 queries
to learn both models using 20k gradient steps and a learning rate of 0.01, 15 queries to validate, then
test the model performance on the left-out 15 queries. Table 6 summaries the pairwise error rates and
the 90th percentile query level constraint violations. We see similar patterns as in Table 4 that the
proposed method achieves the least constraint violation. However because of the small size of this
dataset, we find that the standard deviations are generally higher, and the overall pairwise error on the
test set is closer to 0.5. Because the proposed method more closely satisfies the per-query constraints
it incurs a larger training error, and as a result a higher test error than the other methods.
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