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Abstract

Linear programming (LP) is used in many machine learning applications, such as
{1-regularized SVMs, basis pursuit, nonnegative matrix factorization, etc. Interior
Point Methods (IPMs) are one of the most popular methods to solve LPs both in
theory and in practice. Their underlying complexity is dominated by the cost of
solving a system of linear equations at each iteration. In this paper, we consider
infeasible IPMs for the special case where the number of variables is much larger
than the number of constraints (i.e., wide), or vice-versa (i.e., tall) by taking the
dual. Using tools from Randomized Linear Algebra, we present a preconditioning
technique that, when combined with the Conjugate Gradient iterative solver, prov-
ably guarantees that infeasible IPM algorithms (suitably modified to account for
the error incurred by the approximate solver), converge to a feasible, approximately
optimal solution, without increasing their iteration complexity. Our empirical
evaluations verify our theoretical results on both real and synthetic data.

1 Introduction

Linear programming (LP) is one of the most useful tools available to theoreticians and practitioners
throughout science and engineering. In Machine Learning, LP appears in numerous settings, including
¢1-regularized SVMs [57], basis pursuit (BP) [54], sparse inverse covariance matrix estimation
(SICE) [55], the nonnegative matrix factorization (NMF) [45], MAP inference [37], etc. Not
surprisingly, designing and analyzing LP algorithms is a topic of paramount importance in computer
science and applied mathematics.

One of the most successful paradigms for solving LPs is the family of Interior Point Methods (IPMs),
pioneered by Karmarkar in the mid 1980s [25]. Path-following IPMs and, in particular, long-step
path following IPMs, are among the most practical approaches for solving linear programs. Consider
the standard form of the primal LP problem:

Tx, subjectto Ax =b,x >0, (1
where A € R™*" b € R™, and ¢ € R" are the inputs, and x € R" is the vector of the primal
variables. The associated dual problem is

max by, subjectto ATy +s=c,s >0, 2)

min ¢
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where y € R™ and s € R"™ are the vectors of the dual and slack variables respectively. Triplets
(x,y,s) that uphold both (1) and (2) are called primal-dual solutions. Path-following IPMs typically
converge towards a primal-dual solution by operating as follows: given the current iterate (x*, y*, s*),
they compute the Newton search direction (Ax, Ay, As) and update the current iterate by following
a step towards the search direction. To compute the search direction, one standard approach [41]
involves solving the normal equations':

AD?ATAy = p. (3)

Here, D = X!/281/2 i a diagonal matrix, X, S € R™*™ are diagonal matrices whose i-th diagonal
entries are equal to x; and s;, respectively, and p € R™ is a vector whose exact definition is given in
eqn. (16)*. Given Ay, computing As and Ax only involves matrix-vector products.

The core computational bottleneck in IPMs is the need to solve the linear system of eqn. (3) at each
iteration. This leads to two key challenges: first, for high-dimensional matrices A, solving the linear
system is computationally prohibitive. Most implementations of IPMs use a direct solver; see Chapter
6 of [41]. However, if AD?AT is large and dense, direct solvers are computationally impractical. If
AD?2AT is sparse, specialized direct solvers have been developed, but these do not apply to many
LP problems arising in machine learning applications due to irregular sparsity patterns. Second, an
alternative to direct solvers is the use of iterative solvers, but the situation is further complicated since
ADZ2AT is typically ill-conditioned. Indeed, as IPM algorithms approach the optimal primal-dual
solution, the diagonal matrix D is ill-conditioned, which also results in the matrix AD2AT being
ill-conditioned. Additionally, using approximate solutions for the linear system of eqn. (3) causes
certain invariants, which are crucial for guaranteeing the convergence of IPMs, to be violated; see
Section 1.1 for details.

In this paper, we address the aforementioned challenges, for the special case where m < n, i.e.,
the number of constraints is much smaller than the number of variables; see Appendix A for a
generalization. This is a common setting in ML applications of LP solvers, since ¢1-SVMs and basis
pursuit problems often exhibit such structure when the number of available features (n) is larger than
the number of objects (m). This setting has been of interest in recent work on LPs [17, 4, 31]. For
simplicity of exposition, we also assume that the constraint matrix A has full rank, equal to m. First,
we propose and analyze a preconditioned Conjugate Gradient (CG) iterative solver for the normal
equations of eqn. (3), using matrix sketching constructions from the Randomized Linear Algebra
(RLA) literature. We develop a preconditioner for AD? AT using matrix sketching which allows
us to prove strong convergence guarantees for the residual of CG solvers. Second, building upon
the work of [39], we propose and analyze a provably accurate long-step infeasible IPM algorithm.
The proposed IPM solves the normal equations using iterative solvers. In this paper, for brevity and
clarity, we primarily focus our description and analysis on the CG iterative solver. We note that a
non-trivial concern is that the use of iterative solvers and matrix sketching tools implies that the
normal equations at each iteration will be solved only approximately. In our proposed IPM, we
develop a novel way to correct for the error induced by the approximate solution in order to guarantee
convergence. Importantly, this correction step is relatively computationally light, unlike a similar
step proposed in [39]. Third, we empirically show that our algorithm performs well in practice. We
consider solving LPs that arise from ¢; -regularized SVMs and test them on a variety of synthetic and
real datasets. Several extensions of our work are discussed in Appendix A.

1.1 Our contributions

Our point of departure in this work is the introduction of preconditioned, iterative solvers for solving
eqn. (3). Preconditioning is used to address the ill-conditioning of the matrix AD?AT. Iterative
solvers allow the computation of approximate solutions using only matrix-vector products while
avoiding matrix inversion, Cholesky or LU factorizations, etc. A preconditioned formulation of
eqn. (3) is:

Q 'AD’ATAy = Q7 'p, 4)

where Q € R™*™ ig the preconditioning matrix; Q should be easily invertible (see [3, 22] for
background). An alternative yet equivalent formulation of eqn. (4), which is more amenable to

! Another widely used approach is to solve the augmented system [41] which is less relevant for this paper.
2The superscript k in eqn. (16) simply indicates iteration count and is omitted here for notational simplicity.



theoretical analysis, is
Q ?PAD’ATQ "z = Q *p, (5)

where z € R™ is a vector such that Ay = Q~"/?z. Note that the matrix in the left-hand side of the
above equation is always symmetric, which is not necessarily the case for eqn. (4). We do emphasize
that one can use eqn. (4) in the actual implementation of the preconditioned solver; eqn. (5) is much
more useful in theoretical analyses.

Recall that we focus on the special case where A € R"™*" has m < n, i.e., it is a short-and-fat
matrix. Our first contribution starts with the design and analysis of a preconditioner for the Conjugate
Gradient solver that satisfies, with high probability,
2 9 _1 9 1 2

m < Umin(Q QAD) < Jmax(Q 2AD) < ﬁ7 (6)
for some error parameter ¢ € [0, 1]. In the above, oyin (+) and opax(+) correspond to the smallest and
largest singular value of the matrix in parentheses. The above condition says that the preconditioner
effectively reduces the condition number of AD to a constant. We note that the particular form of the
lower and upper bounds in eqn. (6) was chosen to simplify our derivations. RLA matrix-sketching
techniques allow us to construct preconditioners for all short-and-fat matrices that satisfy the above
inequality and can be inverted efficiently. Such constructions go back to the work of [2]; see Section 2
for details on the construction of Q and its inverse. Importantly, given such a preconditioner, we then
prove that the resulting CG iterative solver satisfies

1Q "2 AD?ATQ 2% — Qpl|> < ¢*(|Q"/2p||>. @

Here z' is the approximate solution returned by the CG iterative solver after ¢ iterations. In words,
the above inequality states that the residual achieved after ¢ iterations of the CG iterative solver drops
exponentially fast. To the best of our knowledge, this result is not known in the CG literature: indeed,
it is actually well-known that the residual of CG may oscillate [21], even in cases where the energy
norm of the solution error decreases monotonically. However, we prove that if the preconditioner is
sufficiently good, i.e., it satisfies the constraint of eqn. (6), then the residual decreases as well.

Our second contribution is the analysis of a novel variant of a long-step infeasible IPM algorithm
proposed by [39]. Recall that such algorithms can, in general, start with an initial point that is not
necessarily feasible, but does need to satisfy some, more relaxed, constraints. Following the lines
of [56, 39], let S be the set of feasible and optimal solutions of the form (x*, y*, s*) for the primal
and dual problems of eqns. (1) and (2) and assume that S is not empty. Then, long-step infeasible
IPMs can start with any initial point (x°,y?, s") that satisfies (x°,s”) > 0 and (x°,s") > (x*,s*),
for some feasible and optimal solution (x*,s*) € S. In words, the starting primal and slack variables
must be strictly positive and larger (element-wise) when compared to some feasible, optimal primal-
dual solution. See Chapter 6 of [52] for a discussion regarding why such choices of starting points
are relevant to computational practice and can be identified more efficiently than feasible points.

The flexibility of infeasible IPMs comes at a cost: long-step feasible IPMs converge in O(n log 1/¢)
iterations, while long-step infeasible IPMs need O(n? log 1/e) iterations to converge [56, 39] (Here ¢
is the accuracy of the approximate LP solution returned by the IPM; see Algorithm 2 for the exact
definition.). Let

Ax"—b=r), 8)
ATy? +5% —c =1, 9)
where rg € R™ and rg € R™ are the primal and dual residuals, respectively, and characterize how far

the initial point is from being feasible. As long-step infeasible IPM algorithms iterate and update the
primal and dual solutions, the residuals are updated as well. Let r* = (rf, r%) € R"*™ be the primal
and dual residual at the k-th iteration: it is well-known that the convergence analysis of infeasible
long-step IPMs critically depends on r* lying on the line segment between 0 and r’. Unfortunately,
using approximate solvers (such as the CG solver proposed above) for the normal equations violates
this invariant. [39] proposed a simple solution to fix this problem by adding a perturbation vector
v to the current primal-dual solution that guarantees that the invariant is satisfied. Again, we use
RLA matrix sketching principles to propose an efficient construction for v that provably satisfies the
invariant. Next, we combine the above two primitives to prove that Algorithm 2 in Section 3 satisfies
the following theorem.



Theorem 1 Let 0 < € < 1 be an accuracy parameter. Consider the long-step infeasible IPM Algo-
rithm 2 (Section 3) that solves eqn. (5) using the CG solver of Algorithm I (Section 2). Assume that
the CG iterative solver runs with accuracy parameter ¢ = 1/2 and iteration countt = O(logn). Then,
with probability at least 0.9, the long-step infeasible IPM converges after O(n? log 1/e) iterations.

We note that the 0.9 success probability above is for simplicity of exposition and can be easily
amplified using standard techniques. Also, at each iteration of our infeasible long-step IPM algorithm,
the running time is O((nnz(A) + m3) logn), ignoring constant terms. See Section 3 for a detailed
discussion of the overall running time.

Our empirical evaluation demonstrates that our algorithm requires an order of magnitude much fewer
inner CG iterations than a standard IPM using CG, while producing a comparably accurate solution
(see Section 4).

1.2 Prior Work

There is a large body of literature on solving LPs using IPMs. We only review literature that is
immediately relevant to our work. Recall that we solve the normal equations inexactly at each
iteration, and develop a way to correct for the error incurred. We also focus on IPMs that can use
a sufficiently positive, infeasible initial point (see Section 1.1). We discuss below two papers that
present related ideas.

[39] proposed the use of an approximate iterative solver for eqn. (3), followed by a correction step
to “fix” the approximate solution (see our discussion in Section 1.1). We propose efficient, RLA-
based approaches to precondition and solve eqn. (3), as well as a novel approach to correct for the
approximation error in order to guarantee the convergence of the IPM algorithm. Specifically, [39]
propose to solve eqn. (3) using the so-called maximum weight basis preconditioner [46]. However,
computing such a preconditioner needs access to a maximal linearly independent set of columns of
AD in each iteration, which is costly, taking O(m?n) time in the worst-case. More importantly,
while [38] was able to provide a bound on the condition number of the preconditioned matrix that
depends only on properties of A, and is independent of D, this bound might, in general, be very
large. In contrast, our bound is a constant and it does not depend on properties of A or its dimensions.
In addition, [39] assumed a bound on the two-norm of the residual of the preconditioned system,
but it is unclear how their preconditioner guarantees such a bound. Similar concerns exist for the
construction of the correction vector v proposed by [39], which our work alleviates.

The line of research in the Theoretical Computer Science literature that is closest to our work is [15],
who presented an IPM that uses an approximate solver in each iteration. However, their accuracy
guarantee is in terms of the final objective value which is different from ours. More importantly, [15]
focuses on short-step, feasible IPMs, whereas ours is long-step and does not require a feasible starting
point. Finally, the approximate solver proposed by [15] works only for the special case of input
matrices that correspond to graph Laplacians, following the lines of [47, 48].

We also note that in the Theoretical Computer Science literature, [26, 27, 28, 29, 30, 7, 12] proposed
and analyzed theoretically ground-breaking algorithms for LPs based on novel tools such as the
so-called inverse maintenance for accelerating the linear system solvers in IPMs. However, all these
endeavors are primarily focused on the theoretically fast but practically inefficient short-step feasible
IPMs and, to the best of our knowledge, no implementations of these approaches are available
for comparisons to standard long-step IPMs. We highlight that our work is focused on infeasible
long-step IPMs, known to work efficiently in practice.

Another relevant line of research is the work of [14], which proposed solving eqn. (3) using precondi-
tioned Krylov subspace methods, including variants of generalized minimum residual (GMRES) or
CG methods. Indeed, [14] conducted extensive numerical experiments on LP problems taken from
standard benchmark libraries, but did not provide any theoretical guarantees.

From a matrix-sketching perspective, our work was also partially motivated by [8], which presented
an iterative, sketching-based algorithm to solve under-constrained ridge regression problems, but
did not address how to make use of such approaches in an IPM-based framework, as we do here.
In another work, [1] proposed a similar sketching-based preconditioning technique. However, their
efforts broadly revolved around speeding up and scaling kernel ridge regression. [43, 53] proposed
the so-called Newton sketch to construct an approximate Hessian matrix for more general convex
objective functions of which LP is a special case. Nevertheless, these randomized second-order



methods are significantly faster than the conventional approach only when the data matrix is over-
constrained, i.e. m > n. It is unclear whether the approach of [43, 53] is faster than IPMs when
the optimization problem to be solved is linear. [49] proposed a probabilistic algorithm to solve
LP approximately in a random projection-based reduced feature-space. A possible drawback of this
paper is that the approximate solution is infeasible with respect to the original region. Finally, we
refer the interested reader to the surveys [51, 19, 33, 18, 24, 34] for more background on Randomized
Linear Algebra.

1.3 Notation and Background

A B, ... denote matrices and a, b, ... denote vectors. For vector a, ||a||o denotes its Euclidean
norm; for a matrix A, || A ||z denotes its spectral norm and || A||  denotes its Frobenius norm. We use
0 to denote a null vector or null matrix, dependent upon context, and 1 to denote the all-ones vector.
For any matrix X € R™*" with m < n of rank m its thin Singular Value Decomposition (SVD)
is the product USVT | with U € R™*™ (the matrix of the left singular vectors), V € R™"*™( the
matrix of the top-m right singular vectors), and ¥ € R™*™ a diagonal matrix whose entries are
equal to the singular values of X. We use o;(+) to denote the i-th singular value of the matrix in
parentheses.

We now briefly discuss a result on matrix sketching [13, 11] that is particularly useful in our theoretical
analyses. In our parlance, [13] proved that, for any matrix Z € R™*" there exists a sketching matrix
W e R™*" such that
ToT T <« ¢ 2, I1ZII%

|lzwwzT - zz7||, < 5 (J1zl)} + =) (10)
holds with probability at least 1 — § for any » > 1. Here ¢ € [0, 1] is a (constant) accuracy parameter.
Ignoring constant terms, w = O(r log(7/s)); W has s = O(log(r/J)) non-zero entries per row with
s uniformly random entries are chosen without replacement and set to i% independently; the product
ZW can be computed in time O(log(r/d) - nnz(Z)).

2 Conjugate Gradient Solver

In this section, we discuss the computation of the preconditioner QQ (and its inverse), followed by a
discussion on how such a preconditioner can be used to satisfy eqns. (6) and (7).

Algorithm 1 Solving eqn. (5) via CG
Input: AD € R™*", p € R™, sketching matrix W € R"*"  iteration count t;
1: Compute ADW and its SVD: let Uq be the matrix of its left singular vectors and let 232 be
the matrix of its singular values;
2: Compute Q2 = Uq =g " U;
3: Initialize z° + 0,,, and run standard CG on the preconditioned system of eqn. (5) for ¢ iterations;
Output: z!;

Algorithm 1 takes as input the sketching matrix W € R"**_ which we construct as discussed in
Section 1.3. Our preconditioner Q is equal to

Q=ADWW'DAT. (11)
Notice that we only need to compute Q /2 in order to use it to solve eqn. (5). Towards that end,
we first compute the sketched matrix ADW € R™*%, Then, we compute the SVD of the matrix
ADW: let Ug be the matrix of its left singular vectors and let 2g2 be the matrix of its singular
values. Notice that the left singular vectors of Q/? are equal to Uq and its singular values are equal
to Eal/z. Therefore, Q "/ = UQE(SI/zUTQ

Let AD = UXVT be the thin SVD representation of AD. We apply the results of [13] (see
Section 1.3) to the matrix Z = VT € R™*" with r = m to get that, with probability at least 1 — &,

[VIWWTV -1, ||, < ¢/ (12)



The running time needed to compute the sketch ADW is equal to (ignoring constant factors)
O(nnz(A) - log(m/d)). Note that nnz(AD) = nnz(A). The cost of computing the SVD of ADW

(and therefore Q~"/?) is O(m?> log(m/¢)). Overall, computing Q~"/* can be done in time
O(nnz(A) - log(m/8) + m> log(m/9)). (13)

Given these results, we now discuss how to satisfy eqns. (6) and (7) using the sketching matrix W.
We start with the following bound, which is relatively straight-forward given prior RLA work (see
Appendix C.1 for a proof).

Lemma 2 [f the sketching matrix W satisfies eqn. (12), then, foralli =1...m,
(1+¢/2)7' <of(Q"PAD) < (1-¢/2)7".

This lemma directly implies eqn. (6). We now proceed to show that the above construction for Q /2,
when combined with the conjugate gradient solver to solve eqn. (5), indeed satisfies eqn. (7)°. We
do note that in prior work most of the convergence guarantees for CG focus on the error of the
approximate solution. However, in our work, we are interested in the convergence of the residuals
and it is known that even if the energy norm of the error of the approximate solution decreases
monotonically, the norms of the CG residuals may oscillate. Interestingly, we can combine a result on
the residuals of CG from [6] with Lemma 2 to prove that in our setting the norms of the CG residuals
also decrease monotonically (see Appendix C.2 for details).

We remark that one can consider using MINRES [42] instead of CG. Our results hinges on bounding
the two-norm of the residual. MINRES finds, at each iteration, the optimal vector with respect the
two-norm of the residual inside the same Krylov subspace of CG for the corresponding iteration.
Thus, the bound we prove for CG applies to MINRES as well.

3 The Infeasible IPM algorithm

In order to avoid spurious solutions, primal-dual path-following IPMs bias the search direction
towards the central path and restrict the iterates to a neighborhood of the central path. This search
is controlled by the centering parameter o € [0, 1]. At each iteration, given the current solution
(x*,y*,s¥), a standard infeasible IPM obtains the search direction (Ax*, Ay* As*) by solving the
following system of linear equations:

AD?ATAy* = pF, (14a)
AsF = — r]j — ATAyk , (14b)
AxF = —xF 4+ op 8711, — D2ASK. (14¢)

Here D and S are computed given the current iterate (x* and s¥). After solving the above system,
the infeasible IPM Algorithm 2 proceeds by computing a step-size & to return:

(xFHL gy R k) — (xF y* sF) 4+ a(AxF, Ay”, AsF). (15)

Recall that r* = (rk r*) is a vector with r¥ = Ax* — b and r% = ATy* 4 s¥ — ¢ (the primal and
dual residuals). We also use the duality measure ji, = x*'s* /n and the vector

p" = -1} — o AS™'1, + Ax" — AD?r}). (16)

Given Ay* from eqn. (14a), As* and Ax* are easy to compute from eqns. (14b) and (14c), as they
only involve matrix-vector products. However, since we will use Algorithm 1 to solve eqn. (14a)
approximately using the sketching-based preconditioned CG solver, the primal and dual residuals
do not lie on the line segment between 0 and r°. This invalidates known proofs of convergence for
infeasible IPMs.

For notational simplicity, we now drop the dependency of vectors and scalars on the iteration counter
k. Let Ay = Q2% be the approximate solution to eqn. (14a). In order to account for the loss of
accuracy due to the approximate solver, we compute Ax as follows:

Ax = —x—‘,—U,uS_lln —D?As—S"v. (17)

3See Chapter 9 of [32] for a detailed overview of CG.



Here v € R"™ is a perturbation vector that needs to exactly satisfy the following invariant at each
iteration of the infeasible [PM:

AS 'v=AD?’ATAy — p. (18)

We note that the computation of As is still done using eqn. (14b), which does not change. [39] argued
that if v satisfies eqn. (18), the primal and dual residuals lie in the correct line segment.

Construction of v. There are many choices for v satisfying eqn. (18). A general choice is v =

(AS~1)T(AD2ATAy — p), which involves the computation of the pseudoinverse (AS~1)T, which
is expensive, taking time O(m?n). Instead, we propose to construct v using the sketching matrix W
of Section 1.3. More precisely, we construct the perturbation vector

v = (XS)”*W(ADW)(AD2ATAy — p). (19)
The following lemma proves that the proposed v satisfies eqn. (18); see Appendix C.3 for the proof.

Lemma 3 Let W € R™"*Y be the sketching matrix of Section 1.3 and v be the perturbation vector
of egn. (19). Then, with probability at least 1 — 6, rank(ADW) = m and v satisfies eqn. (18).

We emphasize here that we will use the same exact sketching matrix W € R"** to form the
preconditioner used in the CG algorithm of Section 2 as well as the vector v in eqn.(19). This allows
us to form the sketching matrix only once, thus saving time in practice. Next, we present a bound for
the two-norm of the perturbation vector v of eqn. (19); see Appendix C.4 for the proof.

Lemma 4 With probability at least 1 — 6, our perturbation vector v in Lemma 3 satisfies

[vlle < \/%”?(UH% (20)
with f'(t) = Q*1/2AD2ATQ71/2Zt _ Qfl/Qp.

Intuitively, the bound in eqn. (20) implies that || v||2 depends on how close the approximate solution
AAy is to the exact solution. Lemma 4 is particularly useful in proving the convergence of Algorithm 2,
which needs ||v||2 to be a small quantity. More precisely, combining a result from [39] with our
preconditioner Q /2, we can prove that |Q "/*p||z < O(n),/z. This bound allows us to prove
that if we run Algorithm 1 for O(log n) iterations, then ||f®) ||, < %\/ﬁ and [|v|2 < 27 p. The
last two inequalities are critical in the convergence analysis of Algorithm 2; see Appendix F.1 and
Appendix F.2 for details.

We are now ready to present the infeasible IPM algorithm. We will need the following definition for
the neighborhood N (v) = {(x*,y*,s%) : (x¥,s%) > 0,28 sk > (1 —~)pand 12/, < /o }.

’ (22

Here v € (0, 1) and we note that the duality measure i, steadily reduces at each iteration.

Algorithm 2 Infeasible IPM
Input: A € R™*", b € R™, ¢c € R", v € (0,1), tolerance € > 0, o € (0,4/5);
Initialize: £ < 0; initial point (x°, y°,s°);
while i, > e do
Compute sketching matrix W € R™*% (Section 1.3) with ¢ = 1/2 and § = O(n~2);
Compute rzlf = AxF — b; r’; = ATy* +s* — ¢; and p* from eqn. (16);

BN

Solve the linear system of eqn. (5) for z using Algorithm 1 with W from step (2) and
t = O(logn). Compute Ay = Q™ /?z;

5: Compute v using eqn. (19) with W from step (2); As using eqn. (14b); Ax using eqn. (17);
6:  Compute & = argmax{a € [0,1] : (x*,y* s*) + a(AAxk, Ayk, Ask) e N(v)}.

7: Compute & = argmin{a € [0,a] : (x* + aAAxk)T(sk + aﬁsk)}.

8:  Compute (xF 1 yF+l ghtl) = (xF yk k) + (Sz(AAxk7 Ayk, Ask); seth « k+1;

9: end while

Running time of Algorithm 2. We start by discussing the running time to compute v. As discussed
in Section 2, (ADW)' can be computed in O(nnz(A) - log(m/d) + m3log(m/4)) time. Now, as



W has O(log(m/§)) non-zero entries per row, pre-multiplying by W takes O(nnz(A) log(m/§))
time (assuming nnz(A) > n). Since X and S are diagonal matrices, computing v takes O(nnz(A) -
log(m/8)+m?log(m/§)) time, which is asymptotically the same as computing Q /> (see eqn. (13)).

We now discuss the overall running time of Algorithm 2. At each iteration, with failure probability J,
the preconditioner Q /> and the vector v can be computed in O(nnz(A)-log(m/8) +m?>log(m/4))
time. In addition, for ¢ = O(log n) iterations of Algorithm 1, all the matrix-vector products in the CG
solver can be computed in O(nnz(A)-log n) time. Therefore, the computational time for steps (2)-(5)
is given by O(nnz(A) - (log n + log(m/§)) + m3log(m/4)). Finally, taking a union bound over all
iterations with 6 = O(n~?) (ignoring constant factors), Algorithm 2 converges with probability at
least 0.9. The running time at each iteration is given by O((nnz(A) + m3) logn).

4 Experiments

We demonstrate the empirical performance of our algorithm on a variety of synthetic and real-world
datasets from the UCI ML Repository [20], such as ARCENE, DEXTER [23], DrivFace [16], and
a gene expression cancer RNA-Sequencing dataset that is part of the PANCAN dataset [50]. See
Appendix G, Table 1 for a description of the datasets. We observed that the results for both synthetic
(Appendix G.2) and real-world data were qualitatively similar; we highlight results on representative
real datasets. The experiments were implemented in Python and run on a server with Intel ES-
2623V3@3.0GHz 8 cores and 64GB RAM. As an application, we consider ¢; -regularized SVMs:
all of the datasets are concerned with binary classification with m < n, where n is the number of
features. In Appendix G.1, we describe the £1-SVM problem and how it can be formulated as an LP.
Here, m is the number of training points, n is the feature dimension, and the size of the constraint
matrix in the LP becomes m x (2n + 1).
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Figure 1: ARCENE data set: Our Algorithm 2 (Sk. IPM) requires an order of magnitude fewer (a)
inner iterations than the Standard IPM with CG, at each outer iteration, due to the improved (b)
conditioning of Q /2PAD2ATQ /2 compared to AD?A™. For various (w, tolCG) settings, (c) the
maximum number of inner iterations used by our algorithm and (d) the maximum condition number
of Q"2 AD2ATQ /2, across outer iterations. The standard IPM, across all settings, needed on the
order of 1,000 iterations and x(AD?AT) was on the order of 108.



Experimental Results. We compare our Algorithm 2 with a standard IPM (see Chapter 10, [44])
using CG and a standard IPM using a direct solver. We also use CVXPY as a benchmark to compare
the accuracy of the solutions; we define the relative error IX—x"ll2/||x*||,, where X is our solution and
x* is the solution generated by CVXPY. We also consider the number of outer iterations, namely
the number of iterations of the IPM algorithm, as well as the number of inner iterations, namely the
number of iterations of the CG solver. We denote the relative stopping tolerance for CG by t0/CG and
we denote the outer iteration residual by 7. If not specified: 7 = 1077, t0ICG = 1072, and o = 0.5.
We evaluated a Gaussian sketching matrix and the initial triplet (x,y,s) for all IPM algorithms was
set to be all ones.

Figure 1(a) shows that our Algorithm 2 uses an order of magnitude fewer inner iterations than the
un-preconditioned standard solver. This is due to the improved conditioning of the respective matrices
in the normal equations, as demonstrated in Figure 1(b). Across various real and synthetic data sets,
the results were qualitatively similar to those shown in Figure 1. Results for several real data sets are
summarized in Appendix G, Table 1. The number of outer iterations is unaffected by our internal
approximation methods and is generally the same for our Algorithm 2, the standard IPM with CG,
and the standard IPM with a direct linear solver (denoted IPM w/Dir), as seen in Appendix G, Table 1.
Figure 1 also demonstrates the relative insensitivity to the choice of w (the sketching dimension, i.e.,
the number of columns of the sketching matrix W of Section 1.3). For smaller values of w, our
algorithm requires more inner iterations. However, across various choices of w, the number of inner
iterations is always an order of magnitude smaller than the number required by the standard solver.

Figures 1(c)-1(d) show the performance of our algorithm for a range of (w, tolCG) pairs. Figure 1(c)
demonstrates that the number of the inner iterations is robust to the choice of t0/CG and w. The
number of inner iterations varies between 15 and 35 for the ARCENE data set, while the standard
IPM took on the order of 1,000 iterations across all parameter settings. Across all settings, the
relative error was fixed at 0.04%. In general, our sketched IPM is able to produce an extremely high
accuracy solution across parameter settings. Thus we do not report additional numerical results for
the relative error, which was consistently 10~3 or less. Figure 1(d) demonstrates a tradeoff of our
approach: as both 10/CG and w are increased, the condition number x(Q~7>AD?ATQ~"?) de-
creases, corresponding to better conditioned systems. As a result, fewer inner iterations are required.
Additional experiments can be found in Appendix G.4.

5 Conclusions

We proposed and analyzed an infeasible IPM algorithm using a preconditioned conjugate gradient
solver for the normal equations and a novel perturbation vector to correct for the error due to the
approximate solver. Thus, we speed up each iteration of the IPM algorithm, without increasing the
overall number of iterations. We demonstrate empirically that our IPM requires an order of magnitude
fewer inner iterations within each linear solve than standard IPMs. Several extensions of our work
are discussed in Appendix A.

Broader Impact

Our work is focused on speeding up algorithms for tall/wide LPs. As such, it could have significant
broader impacts by allowing users to solve increasingly larger LPs in the numerous settings discussed
in our introduction. While applications of our work to real data could result into ethical considerations,
this is an indirect (and unpredictable) side-effect of our work. Our experimental work uses publicly
available datasets to evaluate the performance of our algorithms; no ethical considerations are raised.
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