
We thank all the reviewers and ACs for their work in this challenging time. We will fix all typos found and improve the1

presentation of the appendix.2

Constants in the approximation factor We agree with the reviewers that the constants in the statements of our3

theorems are not small. We stress that as in prior work (see [17], and [42]) we did not optimize for the worst case4

approximation constants. The bulk of the constant comes from the use of the well-known Meyerson sketch. Our5

results are very close to that of the simpler insertion-only case. Specifically, [42] shows a 23p+5ρ approximation for the6

insertion-only case (here p is the norm, ρ is the offline algorithm factor). This compares with our result in Lemma D.17

which is only a factor of 2 higher, 23p+6ρ, but solves the more general problem. Note that the the SODA16 baseline [17]8

does not explicitly state the constant factor thus making a precise comparison difficult, but it uses the same Meyerson9

sketch as a subroutine thus incurring similar constants (see Lemma 3.2 in [17]). Importantly, these large factors appear10

only in the worst case analysis, and as our experiments (as well those of [42]) confirm that real instances behave much11

better. This could be explained by the fact that only a small fraction of all orderings of a set of points lead to large12

approximations in the Meyerson sketch (this has been shown formally by prior work).13

Reviewer 1: For our algorithm we used a standard optimization from the literature ([42]): running one copy of the14

Meyerson sketch instead of the O(log(1/γ)) copies that are needed for high probability statements. We also developed15

a lazy evaluation of the cost of the Meyerson sketch that saves update time. Notice that for fairness of comparison16

with SODA16 [17] (which uses at its core a Meyerson sketch as well) we use the same implementation of the sketch17

(with the same optimizations) for the two algorithms. This shows that our speedups over SODA16 come mostly from18

avoiding the additional factors of their algorithm; we will clarify this detail in the updated paper. We will also clarify19

in the O() notation the dependency on p. We will improve the presentation in the appendix and we will change the20

notation of Aτ vs Aλ as suggested. Q: Line 827: What is m? A: It is the lower bound on the optimum as in the21

preliminary section. We will clarify that here we mean that, for the first threshold in Λ, the associated sketch Am is not22

empty. Q: Line 828: Well it is clear that λ∗ exists. A: We mean that it is in the set of the thresholds Λ for which we23

computed a sketch. Q: Line 832: from the invariants. A: We will clarify that it is invariant (iv) in Lemma D.224

Reviewer 2: Please see the answer above on the approximation factor. We will state the intuition behind the probability25

of adding a center to the Meryerson sketch. This is now a standard approach; the reason is that a point that is far from26

the current centers should be be added to avoid a large cost for that point. We ran experiments with k-median objective,27

p = 1; the results are in line with that of p = 2. For instance, for vmeasure accuracy over our datasets with ground-truth28

(see L.327 for the setup) the offline algorithm, our stream algorithm and the sampling baseline obtain 81.8%, 79.9%,29

78.5%, respectively, confirming the same trend observed for k-means. We will add more details in the paper.30

Reviewer 3: We will clarify at the beginning of the paper that the algorithm works on arbitrary metric spaces which31

we access only through distance function evaluations. We will increase the size of the plots. Q: L 41-31 .. Euclidean32

or metric? A: We will clarify the citations. k-median, k-means, and k-center are NP-Hard even in the Euclidean33

case but there are constant factor approximation algorithms for the general metric space case as well. Q: Lower34

bounds on the space complexity A: Correct, but it is trivial to show that at least k points must be stored to provide35

any approximation. Q: L 185: f̂ was not defined A: We apologize for the notation, f̂ is defined in that line as an36

approximation to the cost of the ε-consistent mapping that is computed by the algorithm Q: Algorithm 1: why is it37

called "Update of Meyerson"? A: we will rename it as it is confusing, it processes indeed the entire stream not a38

single update. Q: Table 1: why not use ratios? A: We will use ratios to make the table easier to read. We reported39

the ratio of the cost of our algorithm over the baseline as a percentage, i.e. 102% means that the cost is 1.02 times the40

baseline cost. Q: L 287: cost means time? Correct, we mean update time. Q: Table 2: Max percentage is out of w?41

A: Yes Q: Why not list also a comparison of the cost (objective value)? A: For lack of space it is in supplemental42

material, Table 7, L.939 Q: L 301 and 326: which of the baseline algorithms? A: We will clarify better, in L.301 we43

are evaluating SODA16 while in L.326 we are comparing with the offline K-Means++ baseline. Q: L 325: W grows44

in table 2 A: We apologize. This is visible in the supplemental material Table 5, L.923.45

Reviewer 4: Concerning the settings where the improvement from k3 to k is significant, we would like to stress that46

in many industrial applications on large scale datasets the number of clusters can be quite large. We provided some47

examples in the introduction. Empirically we observe that that our speedups over the prior SODA16 work are an order48

of magnitude even for k as low as 4 in the COVERTYPE dataset. Moreover, our algorithm is significantly simpler49

than the previous one. Q: 1. Lines 60-71 We will discuss the running time in the related work. Q: what m and M50

are in Lemma 3.1. We will clarify that they are the lower and upper bound on the cost of the optimum as defined in51

the preliminaries. Q: Line 186: "Note that when M and ...". Did you mean M/m instead of M? Correct, our bound52

depends on M/m being polynomial in w.53


