
We thank the reviewers for their helpful comments. First, we briefly recap our contributions. We provide the first1

computationally efficient and accurate method for approximate cross-validation (ACV) in the following setting:2

structured models fit with MLE or MAP, where the task is a structured prediction. In so doing, we show (theoretically3

and empirically) that IJ-style ACV ideas can be applied at an inexact (MLE or MAP) optimum; the latter is a new4

result even for traditional ACV. By contrast, previous IJ approximations (e.g. Giordano et al. [2019]) do not apply to5

structured prediction and also assume an exact optimum; Newton-step (NS) methods (e.g. Rad and Maleki [2020]) could6

be applied to structured prediction, but we show (lines 118–121, Appendix G) they are not computationally efficient;7

and Bürkner et al. [2020] focus on leave-future-out for time series (but not other forms of structured prediction) within8

a fully Bayesian (rather than MLE or MAP) framework.9

Novelty: (A) R2 is concerned that we are applying a “general framework for ACV from a previous paper.” But note that10

Giordano et al. [2019], Beirami et al. [2017], Koh & Liang [2017], Koh et al. [2019], Stephenson & Broderick [2020],11

and Wilson et al. [2020] all work in the framework of Eq. (1) of Giordano et al. [2019], whose additive form does not12

allow for the structured tasks we consider here. Observe that Bürkner et al. [2020] extend Bayesian ACV methods to13

leave-future-out CV for time series models; that work demonstrates the non-trivial nature of extensions to structured14

tasks. (B) R2 also describes our new theoretical error bounds as applying to HMMs and CRFs. But note that our error15

bound (Prop. 2) applies much more broadly — both to all of the structured tasks we consider here, including more16

general MRFs — as well the Giordano et al. [2019] framework with inexact optima (a result which was not previously17

established but is more practically relevant than results requiring exact optima). (C) R2 is concerned that our methods18

apply only to models with latent processes. While we believe models with latent structure represent a widely used and19

interesting class of models, we note that we do present methodology (Sections E, F, and Algorithm 4) and experiments20

(Section 5, lines 265–291) for CRFs, which contain no latent variables. And our inexact optimum theory applies beyond21

structured models.22

Additional experiments: R2 asks for comparisons against pre-existing IJ or NS ACV methods. Unfortunately, there23

are no existing IJ methods that apply to the tasks we consider. To the best of our knowledge, NS has not previously24

been applied to these problems, but we do consider it. In lines 118–121 and Appendix G, we discuss the computational25

challenges of NS methods, which arise from computing and inverting a new Hessian for each CV fold. E.g., for the26

time-varying Poisson process problem (T = 50,400), IJ computation across all 1,000 folds took about 12 minutes. By27

contrast, the NS approximation here would take roughly 113 hours. On sufficiently small datasets, though, the NS and28

our IJ can be much closer in performance. We will include NS timing across datasets, and discussion, in a revision of29

our main text.30

Assumptions: We fully agree with R1 that our assumptions could be stated more clearly. We will collect them in the31

text, and we note them here for clarity. We require (1) a model fit via optimization, (2) twice differentiability of the32

model objective and invertibility of the Hessian matrix at the initial model fit Θ̂, and (3) the ability to write the model33

fits across CV folds, Θ̂\o, as optima of the same weighted objective for all folds o. These conditions are satisfied34

by a broad class of empirical/regularized risk minimization problems, including widely used probabilistic models of35

structured data fit via MLE or MAP. We further clarify that any optimization method (stochastic or exact; with or36

without early stopping; etc.) may be used to obtain the initial fit Θ̂ for input to Algorithm 1. When computing the37

actual derivatives in Algorithm 1, we assume that the gradients are computed exactly at Θ̂. Computing these gradients38

involves a single pass through the dataset before approximating CV for all folds.39

Structured tasks: R1 notes that we need to clarify that our novelty here is for the combination of structured models40

paired with structured tasks. We completely agree and will be sure to make this point very early in a revised manuscript.41

Number of folds: R4 is concerned that 500 folds in our neural CRF experiment is “too large to use in practice.” Fig. 142

of Rad and Maleki [2020] show leave-one-out CV (with hundreds of folds) substantially outperforming {3, 5, 10}-fold43

CV at estimating out-of-sample error. A goal of modern ACV methods is to allow a larger number of folds, and44

therefore more accurate final estimate overall, in practice.45

Quantitative results: R4 is concerned that our paper “lacks quantitative results.” We interpret this concern to mean46

that the reviewer would like to see approximation error and timing reported in numbers, in addition to being plotted in47

the figures we have included in our submission. We will be sure to include both numbers and figures in a revision.48

Inexact initial fit: R4 is would like us to clarify how our method provides a solution to the inexact initial fit problem.49

We prove (Section 4) that the IJ approximation error increases smoothly with the error in the initial fit. Proposition 250

explicitly bounds the approximation error and suggests that we can use “good enough” initial fits without substantively51

sacrificing ACV accuracy. Our neural CRF experiments in Section 5 provide empirical confirmation.52
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