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Abstract

Many modern data analyses benefit from explicitly modeling dependence struc-
ture in data – such as measurements across time or space, ordered words in a
sentence, or genes in a genome. A gold standard evaluation technique is structured
cross-validation (CV), which leaves out some data subset (such as data within a
time interval or data in a geographic region) in each fold. But CV here can be
prohibitively slow due to the need to re-run already-expensive learning algorithms
many times. Previous work has shown approximate cross-validation (ACV) meth-
ods provide a fast and provably accurate alternative in the setting of empirical risk
minimization. But this existing ACV work is restricted to simpler models by the
assumptions that (i) data across CV folds are independent and (ii) an exact initial
model fit is available. In structured data analyses, both these assumptions are often
untrue. In the present work, we address (i) by extending ACV to CV schemes
with dependence structure between the folds. To address (ii), we verify – both
theoretically and empirically – that ACV quality deteriorates smoothly with noise
in the initial fit. We demonstrate the accuracy and computational benefits of our
proposed methods on a diverse set of real-world applications.

1 Introduction

Models with complex dependency structures have become standard machine learning tools in analyses
of data from science, social science, and engineering fields. These models are used to characterize
disease progression [Sukkar et al., 2012, Wang et al., 2014, Sun et al., 2019], to track crime in
a city [Balocchi and Jensen, 2019, Balocchi et al., 2019], and to monitor and potentially manage
traffic flow [Ihler et al., 2006, Zheng and Liu, 2017] among many other applications. The potential
societal impact of these methods necessitates that they be used and evaluated with care. Indeed,
recent work [Musgrave et al., 2020] has emphasized that hyperparameter tuning and assessment with
cross-validation (CV) [Stone, 1974, Geisser, 1975] is crucial to trustworthy and meaningful analysis
of modern, complex machine learning methods.

While CV offers a conceptually simple and widely used tool for evaluation, it can be computationally
prohibitive in complex models. These models often already face severe computational demands to fit
just once, and CV requires multiple re-fits. To address this cost, recent authors [Beirami et al., 2017,
Rad and Maleki, 2020, Giordano et al., 2019] have proposed approximate CV (ACV) methods; their
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work demonstrates that ACV methods perform well in both theory and practice for a collection of
practical models. These methods take two principal forms: one approximation based on a Newton
step (NS) [Beirami et al., 2017, Rad and Maleki, 2020] and one based on the classical infinitesimal
jackknife (IJ) from statistics [Koh and Liang, 2017, Beirami et al., 2017, Giordano et al., 2019].
Though both ACV forms show promise, there remain major roadblocks to applying either NS or IJ to
models with dependency structure. First, all existing ACV theory and algorithms assume that data
dropped out by each CV fold are independent of the data in the other folds. But to evaluate time
series models, for instance, we often drop out data points in various segments of time. Or we might
drop out data within a geographic region to evaluate a spatiotemporal model. In all of these cases, the
independence assumption would not apply. Second, NS methods require recomputation and inversion
of a model’s Hessian matrix at each CV fold. In the complex models we consider here, this cost can
itself be prohibitive. Finally, existing theory for IJ methods requires an exact initial fit of the model –
and authors so far have taken great care to obtain such a fit [Giordano et al., 2019, Stephenson and
Broderick, 2020]. But practitioners learning in e.g. large sequences or graphs typically settle for an
approximate fit to limit computational cost.

In this paper, we address these concerns and thereby expand the reach of ACV to include more
sophisticated models with dependencies among data points and for which exact model fits are
infeasible. To avoid the cost of matrix recomputation and inversion across folds, we here focus on
the IJ, rather than the NS. In particular, in Section 3, we develop IJ approximations for dropping
out individual nodes in a dependence graph. Our methods allow us e.g. to leave out points within,
or at the end of, a time series – but our methods also apply to more general Markov random fields,
without a strict chain structure. In Section 4, we demonstrate that the IJ yields a useful ACV method
even without an exact initial model fit. In fact, we show that the quality of the IJ approximation
decays with the quality of the initial fit in a smooth and interpretable manner. Finally, we demonstrate
our method on a diverse set of real-world applications and models in Section 5 and Appendix M.
These include count data analysis with time-varying Poisson processes, named entity recognition
with neural conditional random fields, motion capture analysis with auto-regressive hidden Markov
models, and a spatial analysis of crime data with hidden Markov random fields.

2 Structured models and cross-validation

2.1 Structured models

Throughout we consider two types of models: (1) hidden Markov random fields (MRFs) with
observations x and latent variables z and (2) conditional random fields (CRFs) with inputs (i.e.,
covariates) x and labels z, both observed. Our developments for hidden MRFs and CRFs are very
similar, but with slight differences. We detail MRFs in the main text; throughout, we will refer the
reader to the appendix for the CRF treatment. We first give an illustrative example of MRFs and then
the general formulation; a CRF overview appears in Appendix F.

Example: Hidden Markov Models (HMMs) capture sequences of observations such as words in a
sentence or longitudinally measured physiological signals. Consider an HMM with N (independent)
sequences, T time steps, and K states. We take each observation to have dimension R. So the tth
observed element in the nth sequence is xnt 2 RR, and the latent znt 2 [K] := {1, . . . ,K}. The
model is specified by (1) a distribution on the initial latent state p(zn1) = Cat(zn1 | ⇡), where Cat is
the categorical distribution and ⇡ 2 �K�1, the K � 1 simplex; (2) a K ⇥K transition matrix A with
columns Ak 2 �K�1 and p(znt | zn,t�1) = Cat(znt | Azn,t�1); and (3) emission distributions F
with parameters ✓k such that p(xnt | znt) = F (xnt | ✓znt). We collect all parameters of the model in
⇥ := {⇡, {Ak}

K

k=1, {✓k}
K

k=1}. We consider ⇥ as a vector of length D. We may have a prior p(⇥).

More generally, we consider (hidden) MRFs with N structured observations xn and latents zn,
independent across n 2 [N ]. We index single observations of dimension R (respectively, latents)
within the structure by t 2 [T ]: xnt 2 RR (respectively, znt). Our experiments will focus on bounded,
discrete znt (i.e., znt 2 [K]), but we use more inclusive notation (that might e.g. apply to continuous
latents) when possible. We consider models with parameters ⇥ 2 RD and a single emission factor
for each latent.

� log p(x, z;⇥) = Z(⇥) +
NX

n=1
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where znc := (znt)t2c for c ✓ [T ];  t is a log factor mapping (xnt, znt) to R; �c is a log factor
mapping collections of latents, indexed by c, to R; F collects the subsets indexing factors; and Z(⇥)
is a negative log normalizing constant. HMMs, as described above, are a special case; see Appendix B
for details. For any MRF, we can learn the parameters by marginalizing the latents and maximizing
the posterior, or equivalently the joint, in ⇥. Maximum likelihood estimation is the special case with
formal prior p(⇥) constant across ⇥.

⇥̂ := argmin
⇥

� log p(x;⇥)� log p(⇥) = argmin
⇥

� log

Z

z
p(x, z;⇥) dz� log p(⇥). (2)

2.2 Challenges of cross-validation and approximate cross-validation in structured models

In CV procedures, we iteratively leave out some data in order to diagnose variation in ⇥̂ under natural
data variability or to estimate the predictive accuracy of our model. We consider two types of CV of
interest in structured models; we make these formulations precise later. (1) We say that we consider
leave-within-structure-out CV (LWCV) when we remove some data points xnt within a structure
and learn on the remaining data points. For instance, we might try to predict crime in certain census
tracts based on observations in other tracts. Often in this case N = 1 [Celeux and Durand, 2008],
[Hyndman and Athanasopoulos, 2018, Chapter 3.4], and we assume LWCV has N = 1 for notational
simplicity in what follows. (2) We say that we consider leave-structure-out CV (LSCV) when we
leave out entire xn for either a single n or a collection of n. For instance, with a state-space model of
gene expression, we might predict some individuals’ gene expression profiles given other individuals’
profiles. In this case, N � 1 [Rangel et al., 2004, DeCaprio et al., 2007]. In either (1) or (2), the
goal of CV is to consider multiple folds, or subsets of data, left out to assess variability and improve
estimation of held-out error. But every fold incurs the cost of the learning procedure in Eq. (2).
Indeed, practitioners have explicitly noted the high cost of using multiple folds and have resorted to
using only a few, large folds [Celeux and Durand, 2008], leading to biased or noisy estimates of the
out-of-sample variability.

A number of researchers have addressed the prohibitive cost of CV with approximate CV (ACV)
procedures for simpler models [Beirami et al., 2017, Rad and Maleki, 2020, Giordano et al., 2019].
Existing work focuses on the following learning problem with weights w 2 RJ :

⇥̂(w) = argmin
⇥

X

j2[J]

wjfj(⇥) + �R(⇥), (3)

where 8j 2 [J ], fj , R : RD
! R and � 2 R+. When the weight vector w equals the all-ones vector

1J , we recover a regularized empirical loss minimization problem. By considering all weight vectors
with one weight equal to zero, we recover the folds of leave-one-out CV; other forms of CV can be
similarly recovered. The notation ⇥̂(w) emphasizes that the learned parameter values depend on the
weights.

To see if this framework applies to LWCV or LSCV, we can interpret fj as a negative log likelihood
(up to normalization) for the jth data point and �R as a negative log prior. Then the likelihood corre-
sponding to the objective of Eq. (3) factorizes as p(x | ⇥) =

Q
j2J

p(xj | ⇥) /
Q

j2J
exp(�ft(⇥)).

This factorization amounts to an independence assumption across the {xj}j2[J]. In the case of LWCV,
with N = 1, j must serve the role of t, and J = T . But the xt are not independent, so we cannot
apply existing ACV methods. In the LSCV case, N � 1, and j in Eq. (3) can be seen as serving the
role of n, with J = N . Since the xn are independent, Eq. (3) can express LSCV folds.

Previous ACV work provides two primary options for the LSCV case. We give a brief review here,
but see Appendix A for a more detailed review. One option is based on taking a single Newton step
on the LSCV objective starting from ⇥̂(1T ) [Beirami et al., 2017, Rad and Maleki, 2020]. Except in
special cases – such as leave-one-out CV for generalized linear models – this Newton-step approach
requires both computing and inverting a new Hessian matrix for each fold, often a prohibitive expense;
see Appendix H for a discussion. An alternative method [Koh and Liang, 2017, Beirami et al., 2017,
Giordano et al., 2019] based on the infinitesimal jackknife (IJ) from statistics [Jaeckel, 1972, Efron,
1981] constructs a Taylor expansion of ⇥̂(w) around w = 1T . For any model of the form in
Eq. (3), the IJ requires just a single Hessian matrix computation and inversion. Therefore, we focus
on the IJ for LSCV and use the IJ for inspiration when developing LWCV below. However, all
existing IJ theory and empirics require access to an exact minimum for ⇥̂(1J). Indeed, previous

3



authors [Giordano et al., 2019, Stephenson and Broderick, 2020] have taken great care to find an
exact minimum of Eq. (3). Unfortunately, for most complex, structured models with large datasets,
finding an exact minimum requires an impractical amount of computation. Others [Bürkner et al.,
2020] have developed ACV methods for Bayesian time series models and for Bayesian models
without dependence structures [Vehtari et al., 2017]. Our development here focuses on empirical risk
minimization and is not restricted to temporal models.

In the following, we extend the reach of ACV beyond LSCV and address the issue of inexact
optimization. In Section 3, we adapt the IJ framework to the LWCV problem for structured models.
In Section 4, we show theoretically that both our new IJ approximation for LWCV and the existing IJ
approximation applied to LSCV are not overly dependent on having an exact optimum. We support
both of these results with practical experiments in Section 5.

3 Cross-validation and approximate cross-validation in structured models

We first specify a weighting scheme, analogous to Eq. (3), to describe LWCV in structured models;
then we develop an ACV method using this scheme. Recall that CV in independent models takes
various forms such as leave-k-out and k-fold CV. Similarly, we consider the possibility of leaving
out3 multiple arbitrary sets of data indices o 2 O, where each o ✓ [T ]. We have two options for how
to leave data out in hidden MRFs; see Appendix G for CRFs. (A) For each data index t left out, we
leave out the data point xt but we retain the latent zt. For instance, in a time series, if data is missing
in the middle of the series, we still know the time relation between the surrounding points, and would
leave in the latent to maintain this relation. (B) For each data index t left out, we leave out the data
point xt and the latent zt. For instance, consider data in the future of a time series or pixels beyond
the edge of a picture. We typically would not include the possibility of all possible adjacent latents in
such a structure, so leaving out zt as well is more natural. In either case, analogous to Eq. (3), ⇥̂(w)
is a function of w computed by minimizing the negative log joint � log p(x;⇥,w)� log p(⇥), now
with w dependence, in ⇥. For case (A), we adapt Eq. (1) (with N = 1) and Eq. (2) with a weight wt

for each xt term:

⇥̂(w) = argmin
⇥

Z(⇥,w) +

Z

z

2

4
X

t2[T ]

wt t(xt, zt;⇥)

3

5+

"
X

c2F

�c(zc;⇥)

#
dz� log p(⇥). (4)

Note that the negative log normalizing constant Z(⇥,w) may now depend on w as well. For case
(B), we adapt Eq. (1) and Eq. (2) with a weight wt for each term with xt or zt:

⇥̂(w) = argmin
⇥

Z(⇥,w)+

Z

z

2

4
X

t2[T ]

wt t(xt, zt;⇥)

3

5+
"
X

c2F

 
Y

t2c

wt

!
�c(zc;⇥)

#
dz�log p(⇥).

(5)
In both cases, the choice w = 1T recovers the original learning problem. Likewise, setting w = wo,
where wo is a vector of ones with wt = 0 if t 2 o, drops out the data points in o (and latents in case
(B)). We show in Appendix E that these two schemes are equivalent in the case of chain-structured
graphs when o = {T 0, T 0 + 1, . . . , T} but also that they are not equivalent in general. We thus
consider both schemes going forward.

The expressions above allow a unifying viewpoint on LWCV but still require re-solving ⇥̂(wo) for
each new CV fold o. To avoid this expense, we propose to use an IJ approach. In particular, as
discussed by Giordano et al. [2019], the intuition of the IJ is to notice that, subject to regularity
conditions, a small change in w induces a small change in ⇥̂(w). So we propose to approximate
⇥̂(wo) with ⇥̂IJ(wo), a first-order Taylor series expansion of ⇥̂(w) as a function of w around
w = 1T . We follow Giordano et al. [2019] to derive this expansion in Appendix J. Our IJ based
approximation is applicable when the following conditions hold,
Assumption 1. The model is fit via optimization (e.g. MAP or MLE).
Assumption 2. The model objective is twice differentiable and the Hessian matrix is invertible at the
initial model fit ⇥̂.

3Note that the weight formulation could be extended to even more general reweightings in the spirit of the
bootstrap. Exploring the bootstrap for structured models is outside the scope of the present paper.
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Assumption 3. The model fits across CV folds, ⇥̂\o, can be written as optima of the same weighted
objective for all folds o (e.g. as in Eqs. (4) and (5)).

We summarize our method and define ⇥̂ACV, with three arguments, in Algorithm 1; we define
⇥̂IJ(wo) := ⇥̂ACV(⇥̂(1T ),x,o).

Algorithm 1 Approximate leave-within-structure-out cross-validation for all folds o 2 O

Require: ⇥1,x,O
1: Define weighted marginalization over z: log p(x;⇥,w) = WEIGHTEDMARG(x,⇥,w).

2: Compute H = @
2 log p(x;⇥,w)+log p(⇥)

@⇥@⇥>

����
⇥=⇥1,w=1T

3: Compute matrix J = (Jdt) :=

 
@
2 log p(x;⇥,w)+log p(⇥)

@⇥d@wt

����
⇥=⇥1,w=1T

!

4: for o 2 O, do: ⇥̂ACV(⇥1,x,o) := ⇥1 +
X

t2o

H�1Jt # Jt is the tth column of J

5: return {⇥̂ACV(⇥1,x,o)}o2O

First, note that the proposed procedure applies to either weighting style (A) or (B) above; they each
determine a different log p(x,⇥;w) in Algorithm 1. We provide analogous LSCV algorithms for
MRFs and CRFs in Algorithms 2 and 3 (Appendices C and G). Next, we compare the cost of our
proposed ACV methods to exact CV. In what follows, we consider the initial learning problem ⇥̂(1T )
a fixed cost and focus on runtime after that computation. We consider running CV for all folds o 2 O

in the typical case where the number of data points left out of each fold, |o|, is constant.
Proposition 1. Let M be the cost of a marginalization, i.e., running WEIGHTEDMARG; let N � 1
be the number of independent structures; and let S be the maximum number of steps used to fit the
parameter in our optimization procedure. The cost of any one of our ACV algorithms (Algorithms 1,
2 and 3) is in O(MN +D3 +D2

|o| |O|). Exact CV is in O(MNS|O|).

Proof. For each of the |O| folds of CV and each of the N structures, we compute the marginalization
(cost M ) at each of the S steps of the optimization procedure. In our ACV algorithms, we compute H
and J with automatic differentiation tools [Baydin et al., 2018]. The results of Bartholomew-Biggs
et al. [2000] demonstrate that H and J each require the same computation (up to a constant) as
WEIGHTEDMARG. So, across N , we incur cost MN . We then incur a O(D3) cost to invert4 H . The
remaining cost is from the for loop.

In structured problems, we generally expect M to be large; see Appendix D for a discussion of the
costs, including in the special case of chain-structured MRFs and CRFs. And for reliable CV, we
want |O| to be large. So we see that our ACV algorithms reap a savings by, roughly, breaking up the
product of these terms into a sum and avoiding the further S multiplier.

4 IJ behavior under inexact optimization

By envisioning the IJ as a Taylor series approximation around ⇥̂(1T ), the approximations for LWCV
(Algorithm 1) and LSCV (Algorithms 2 and 3 in the appendix) assume we have access to the exact
optimum ⇥̂(1T ). In practice, though, especially in complex problems, computational considerations
often require using an inexact optimum. More precisely, any optimization algorithm returns a
sequence of parameter values (⇥(s))S

s=1. Ideally the values ⇥(S) will approach the optimum ⇥̂(1T )
as S ! 1. But we often choose S such that ⇥(S) is much farther from ⇥̂(1T ) than machine
precision. In practice, then, we input ⇥(S) (rather than ⇥̂(1T )) to Algorithm 1. We now check that
the error induced by this substitution is acceptably low.

We focus here on a particular use of CV: estimating out-of-sample loss. For simplicity, we discuss
the N = 1 case here; see Appendix K for the very similar N � 1 case. For each fold o 2 O,

4In practice, for numerical stability, we compute a Cholesky factorization of H .

5



we compute ⇥̂(wo) from the points kept in and then calculate the loss (in our experiments here,
negative log likelihood) on the left-out points. I.e. the CV estimate of the out-of-sample loss
is LCV := (1/|O|)

P
o2O

� log p(xo | x[T ]�o; ⇥̂(wo)), where � log p may come from either
weighting scheme (A) or (B). See Appendix K for an extension to CV computed with a generic loss
`. We approximate LCV using some ⇥ as input to Algorithm 1; we denote this approximation by
LIJ(⇥) := (1/|O|)

P
o2O

� log p(xo | x[T ]�o; ⇥̂ACV(⇥,x,o)).

Below, we will bound the error in our approximation: |LCV � LIJ(⇥(S))|. There are two sources
of error. (1) The difference in loss between exact CV and the exact IJ approximation, "IJ in Eq. (6).
(2) The difference in the parameter value, "⇥ in Eq. (6), which will control the difference between
LIJ(⇥̂(1T )) and LIJ(⇥(S)).

"IJ := |LCV � LIJ(⇥̂(1T ))|, "⇥ := k⇥(S)
� ⇥̂(1T )k2 (6)

Our bound below will depend on these constants. We observe that empirics, as well as theory based
on the Taylor series expansion underlying the IJ, have established that "IJ is small in various models;
we expect the same to hold here. Also, "⇥ should be small for large enough S according to the
guarantees of standard optimization algorithms. We now state some additional regularity assumptions
before our main result.
Assumption 4. Take any ball B ⇢ RD centered on ⇥̂(1T ) and containing ⇥(S). We assume the
objective � log p(x;⇥,1T )� p(⇥) is strongly convex with parameter �min on B. Additionally, on
B, we assume the derivatives gt(⇥) := @2 log p(x;⇥,w)/@⇥@wt are Lipschitz continuous with
constant Lg for all t, and the inverse Hessian of the objective is Lipschitz with parameter LHinv.
Finally, on B, take log p(x;⇥,wo) to be a Lipschitz function of ⇥ with parameter Lp for all wo.

We make a few remarks on the restrictiveness of these assumptions. First, while few structured
models have objectives that are even convex (e.g., the label switching problem for HMMs guarantees
non-convexity), we expect most objectives to be locally convex around an exact minimum ⇥̂(1T );
Assumption 4 requires that the objective in fact be strongly locally convex. Next, while the Lipschitz
assumption on the gt may be hard to interpret in general, we note that it takes on a particularly simple
form in the setup of Eq. (3), where we have gt = rft. Finally, we note that the condition that the
inverse Hessian is Lipschitz is not much of an additional restriction. E.g., if rp(⇥) is also Lipschitz
continuous, then the entire objective has a Lipschitz gradient, and so its Hessian is bounded. As it
is also bounded below by strong convexity, we find that the inverse Hessian is bounded above and
below, and thus is Lipschitz continuous. We now state our main result.
Proposition 2. The approximation error of LIJ(⇥(S)) satisfies the following bound:

|LIJ(⇥
(S))� LCV|  C"✓ + "IJ, (7)

where C := Lp +
LpLg

�min
+

LpLHinv

|O|

X

o2O

�����
X

t2o

rgt(⇥̂(1T ))

�����
2

.

See Appendix K for a proof. Note that, while C may depend on T or O, we expect it to approach
a constant as T ! 1 under mild distributional assumptions on kgtk2; see Appendix K. We finally
note that although the results of this section are motivated by structured models, they apply to, and
are novel for, the simpler models considered in previous work on ACV methods.

5 Experiments

We demonstrate the effectiveness of our proposed ACV methods on a diverse set of real-world
examples where data exhibit temporal and spatial dependence: namely, temporal count modeling,
named entity recognition, and spatial modeling of crime data. Additional experiments validating the
accuracy and computational benefits afforded by LSCV are available in Appendix M.1, where we
explore auto-regressive HMMs for motion capture analysis – with N = 124, T up to 100, and D up
to 11,712.

Approximate leave-within-sequence-out CV: Time-varying Poisson processes. We begin by ex-
amining approximate LWCV (Algorithm 1) for maximum a posteriori (MAP) estimation. We consider
a time-varying Poisson process model used by [Ihler et al., 2006] for detecting events in temporal
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count data. We analyze loop sensor data collected every five minutes over a span of 25 weeks from a
section of a freeway near a baseball stadium in Los Angeles. For this problem, there is one observed
sequence (N = 1) with T = 50,400 total observations. There are D = 11 parameters. Full model
details are in Appendix L.1.

To choose the folds in both exact CV and our ACV method, we consider two schemes, both following
style (A) in Eq. (4); i.e., we omit observations (but not latents) in the folds. First, we follow the
recommendation of Celeux and Durand [2008]; namely, we form each fold by selecting m% of
measurements to omit (i.e., to form o) uniformly at random and independently across folds. We call
this scheme i.i.d. LWCV. Second, we consider a variant where we omit m% of observations in a
contiguous block. We call this scheme contiguous LWCV; see Appendix L.1.

In evaluating the accuracy of our approximation, we focus on a subset of Tsub = 10,000 observations,
plotted in the top panel of Fig. 1. The six panels in the lower left of Fig. 1 compare our ACV estimates
to exact CV. Columns range over left-out percentages m = 2, 5, 10 (all on the data subset); rows
depict i.i.d. LWCV (upper) and contiguous CV (lower). For each of |O| = 10 folds and for each point
xt left out in each fold, we plot a red dot with the exact fold loss � log p(xt | x[T ]�o; ⇥̂(wo)) as its
horizontal coordinate and our approximation � log p(xt | x[T ]�o; ⇥̂IJ(wo)) as its vertical coordinate.
We can see that every point lies close to the dashed black x = y line; that is, the quality of our
approximation is uniformly high across the thousands of points in each plot.

In the two lower right panels of Fig. 1, we compare the speed of exact CV to our approximation and
the Newton step (NS) approximation [Beirami et al., 2017, Rad and Maleki, 2020] on two data subsets
(size 5,000 and 10,000) and the full data. No reported times include the initial ⇥̂(1T ) computation
since ⇥̂(1T ) represents the unavoidable cost of the data analysis itself. I.i.d. LWCV appears in the
upper plot, and contiguous LWCV appears in the lower. For our approximation, we use 1,000 folds.
Due to the prohibitive cost of both exact CV and NS, we run them for 10 folds and multiply by 100
to estimate runtime over 1,000 folds. We see that our approximation confers orders of magnitude in
time savings both over exact CV and approximations based on NS. In Appendix I, we show that the
approximations based on NS do not substantatively improve upon those provided by the significantly
cheaper IJ approximations.

Figure 1: Evaluation of approximate LWCV for time-varying Poisson processes. (Top panel) A
subset of the count series. (Lower left six panels) Scatter plots comparing exact CV loss (horizontal
axis) at each point in each fold (red dots) to our approximation of CV loss (vertical axis). Black
dashed line shows perfect agreement. Three columns for percent points left out; two rows for i.i.d.
LWCV (upper) and contiguous LWCV (lower). (Lower right two panels) Wall-clock time for exact
and approximate CV measured on a 2.5GHz quad core Intel i7 processor with 16GB of RAM; same
rows as left panels.
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Robustness to inexact optimization: Neural conditional random fields. Next, we examine the

Figure 2: Behavior of ACV at different epochs in stochastic optimization for a bilstm-crf. Scatter
plots comparing held out probabilities under CV (horizontal axis) at each point in each fold (red dots)
to our approximation of CV (vertical axis). Black dashed line shows perfect agreement.

effect of using an inexact optimum ⇥(S), instead of the exact initial optimum ⇥̂(1T ), as the input in
our approximations. We consider LSCV for a bidirectional LSTM CRF (bilstm-crf) [Huang et al.,
2015], which has been found [Lample et al., 2016, Ma and Hovy, 2016, Reimers and Gurevych,
2017] to perform well for named entity recognition. In this case, our problem is supervised; the
words in input sentences (xn) are annotated with entity labels (zn), such as organizations or locations.
We trained the bilstm-crf model on the CoNLL-2003 shared task benchmark [Sang and De Meulder,
2003] using the English subset of the data and the pre-defined train/validation/test splits containing
14,987(=N )/3,466/3,684 sentence annotation pairs. Here T is the number of words in a sentence; it
varies by sentence with a max of 113 and median of 9. The number of parameters D is 99. Following
standard practice, we optimize the full model using stochastic gradient methods and employ early
stopping by monitoring loss on the validation set. See Appendix L.2 for model architecture and
optimization details. In our experiments, we hold the other network layers (except for the CRF layer)
fixed, and report epochs for training on the CRF layer after full-model training; this procedure mimics
some transfer learning methods [Huh et al., 2016].

We consider 500 LSCV folds with one sentence (i.e., one n index) per fold; the 500 points are chosen
uniformly at random. The four panels in Fig. 2 show the behavior of our approximation (Algorithm 3
in Appendix G) at different training epochs during the optimization procedure. To ensure invertibility
of the Hessian when far from an optimum, we add a small (10�5) regularizer to the diagonal. At each
epoch, for each fold, we plot a red dot with the exact fold held out probability p(zn | xn; ⇥̂(w{n})

as its horizontal coordinate and our approximation p(zn | xn; ⇥̂IJ(w{n}) as the vertical coordinate.
Note that the LSCV loss has no dependence on other n due to the model independence across n; see
Appendix G. Even in early epochs with larger gradient norms, every point lies close to the dashed
black x = y line. Fig. 5 of Appendix L.2 further shows the mean absolute approximation error
between the exact CV held out probability and our approximation, across all 500 folds as a function
of log gradient norm and wall clock time. As expected, our approximation has higher quality at better
initial fits. Nonetheless, we see that decay in performance away from the exact optimum is gradual.

Beyond chain-structured graphs: Crime statistics in Philadelphia. The models in our experi-
ments above are all chain-structured. Next we consider our approximations to LWCV in a spatial
model with more complex dependencies. Balocchi and Jensen [2019], Balocchi et al. [2019] have
recently studied spatial models of crime in the city of Philadelphia. We here consider a (simpler)
hidden MRF model for exposition: a Poisson mixture with spatial dependencies, detailed in Ap-
pendix L.3. Here, there is a single structure observation (N = 1); there are T = 384 census tracts in
the city; and there are D = 2 parameters. The data is shown in the upper lefthand panel of Fig. 3.

We choose one point per fold in style (B) of LWCV here, for a total of 384 folds. We test our method
across four fixed values of a hyperparameter � that encourages adjacent tracts to be in the same latent
state. For each fold, we plot a red dot comparing the exact fold loss � log p(xt | x[T ]�{t}; ⇥̂(w{t}))

with our approximation � log p(xt | x[T ]�{t}; ⇥̂IJ(w{t})). The results are in the lower four panels
of Fig. 3, where we see uniformly small error across folds in our approximation. In the upper right
panel of Fig. 3, we see that our method is orders of magnitude faster than exact CV.
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Figure 3: Evaluation of LWCV for loopy Markov random field. (Top left) Census tracts data. (Upper
right) Wall-clock time of approximate CV and exact CV. (Lower) Scatter plots comparing CV loss
(horizontal axis) at each point in each fold (red dots) to our approximation of CV loss (vertical axis).
Black dashed line shows perfect agreement. Plots generated with different values of connectivity �.

Discussion. In this work, we have demonstrated how to extend approximate cross-validation (ACV)
techniques to CV tasks with non-trivial dependencies between folds. We have also demonstrated
that IJ approximations can retain their usefulness even when the initial data fit is inexact. While
our motivation in the latter case was formed by complex models of dependent structures, our results
are also applicable to, and novel for, the classic independence framework of ACV. An interesting
remaining challenge for future work is to address other sources of computational expense in structured
models. For instance, even after computing ⇥̂\o, inference can be expensive in very large graphical
models; it remains to be seen if reliable and fast approximations can be found for this operation as
well.

Broader Impact

Accurate evaluation enables more reliable machine learning methods and more trustworthy commu-
nication of their capabilities. To the extent that machine learning methods may be beneficial – in
that they may be used to facilitate medical diagnosis, assistive technology for individuals with motor
impairments, or understanding of helpful economic interventions – accurate evaluation ensures these
benefits are fully realized. To the extent that machine learning methods may be harmful – in that
they may used to facilitate the spread of false information or privacy erosion – accurate evaluation
should still make these methods more effective at their goals, even if societally undesirable. As in any
machine learning methodology, it is also important for the buyer to beware; while we have tried to
pick a broad array of experimental settings and to support our methods with theory, there may remain
cases of interest when our approximations fail without warning. In fact, we take care to note that
cross-validation and its points of failure are still not fully understood. All of our results are relative
to exact cross-validation – since it is taken as the de facto standard for evaluation in the machine
learning community (not without reason [Musgrave et al., 2020]). But when exact cross-validation
fails, we therefore expect our method to fail as well.
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