
A Related work: Approximate CV methods

A growing body of recent work has focused on various methods for approximate CV (ACV). As
outlined in the introduction, these methods generally take one of two forms. The first is based
on taking a single Newton step on the leave-out objective starting from the full data fit, ⇥̂. This
approximation was first proposed by Obuchi and Kabashima [2016, 2018] for the special cases of
linear and logistic regression and first applied to more general models by Beirami et al. [2017]. While
this approximation is generally applicable to any CV scheme (e.g. beyond LOOCV) and any model
type (e.g. to structured models), it is only efficiently applicable to LOOCV for GLMs. In particular,
approximating each ⇥̂\o requires the computation and inversion of the leave-out objective’s D ⇥D
Hessian matrix. In the case of LOOCV GLMs, this computation can be performed quickly us-
ing standard rank-one matrix updates; however, in more general settings, no such convenience applies.

Various works detail the theoretical properties of the NS approximation. Beirami et al.
[2017], Rad and Maleki [2020] provide some of the first bounds on the quality of the NS
approximation, but under fairly strict assumptions. Beirami et al. [2017] assume boundedness of
both the parameter and data spaces, while Rad and Maleki [2020] require somewhat hard-to-check
assumptions about the regularity of each leave-out objective (although they successfully verify
their assumptions on a handful of problems). Koh et al. [2019] prove bounds on the accuracy of
the NS approximation with fairly standard assumptions (e.g. Lipschitz continuity of higher-order
derivatives of the objective function), but restricted to models using `2 regularization. Wilson et al.
[2020] also prove bounds on the accuracy of NS using slightly more complex assumptions but
avoiding the assumption of `2 regularization. More importantly, Wilson et al. [2020] also address the
issue of model selection, whereas all previous works had focused on the accuracy of NS for model
assessment (i.e. assessing the error of a single, fixed model). In particular, Wilson et al. [2020]
give assumptions under which the NS approximation is accurate when used for hyperparameter tuning.

Finally, we note that in its simplest form, the NS approximation requires second differentia-
bility of the model objective. Obuchi and Kabashima [2016, 2018], Rad and Maleki [2020],
Beirami et al. [2017], Stephenson and Broderick [2020] propose workarounds specific to models
using `1-regularization. More generally, Wang et al. [2018] provide a natural extension of the
NS approximation to models with either non-differentiable model losses or non-differentiable
regularizers.

Again, while these NS methods can be applied to the structured models of interest here,
the repeated computation and inversion of Hessian matrices brings their speed into question. To
avoid this issue, we instead focus on approximations based on the infinitestimal jackknife (IJ)
from the statistics literature [Jaeckel, 1972, Efron, 1981]. The IJ was recently conjectured as a
potential approximation to CV by Koh and Liang [2017] and then briefly compared against the
NS approximation for this purpose by Beirami et al. [2017]. The IJ was first studied in depth for
approximating CV in an empirical and theoretical study by Giordano et al. [2019]. The benefit of
the IJ in our application is that for any CV scheme5 and any (differentiable and i.i.d.) model, the IJ
requires only a single matrix inverse to approximate all CV folds. Koh et al. [2019] give further
bounds on the accuracy of the IJ approximation for models using `2 regularization. As in the case for
NS, Wilson et al. [2020] give bounds on the accuracy of IJ beyond `2 regularized models but with
slightly more involved assumptions; Wilson et al. [2020] also give bounds on the accuracy of IJ for
model selection.

Just as for the NS approximation, the IJ also requires second differentiability of the model
objective. Stephenson and Broderick [2020] deal with this issue by noting that the methods of Wang
et al. [2018] for applying the NS to non-differentiable objectives can be extended to cover the IJ as
well. We note that the use of the IJ for model selection for non-differentiable objectives seems to
be more complex than for the NS approximation. In particular, Stephenson and Broderick [2020,
Appendix G] show that the IJ approximation can have unexpected and undesirable behavior when

5The methods of Giordano et al. [2019] apply beyond CV to other “reweight and retrain” schemes such as
the bootstrap. The methods presented in our paper apply more generally as well, although we do not explore this
extension.

13

used for tuning the regularization parameter for `1 regularized models. Wilson et al. [2020] resolve
this issue by proposing a further modification to the IJ approximation based on proximal operators.

B Hidden Markov random fields

Here we show that HMMs are instances of (hidden) MRFs. Recall that a MRF models the joint
distribution,

� log p(x, z;⇥) = �

X

n2[N]

log p(xn, zn;⇥) = Z(⇥)+
NX

n=1

8
<

:

2

4
X

t2[T]

 t(xnt, znt;⇥)

3

5+

"
X

c2F

�c(znc;⇥)

#9=

; .

(8)

Hidden Markov models We recover hidden Markov models as described in Section 2 by setting
 t(xnt, znt;⇥) = logF (xnt | ✓znt), setting F to the set of all unary and pairwise indices, and
defining �t,t�1(znt, znt�1;⇥) = logCat(znt | Aznt�1), and �1(zn1) = logCat(zn1 | ⇡), and
�t(znt) = 0, for t 2 [T]� 1. The log normalization constant is Z(⇥) = 0.

C Leave structure out cross-validation (LSCV)

Algorithm 2 Structured approximate LSCV
Require: ⇥1,x,O

1: Marginalize over zn: log p(xn;⇥) = MARG(xn;⇥), 8n 2 [N]
2: Compute log p(x;⇥,w) =

P
n
wn log p(xn;⇥)

3: Compute H = @
2 log p(x;⇥,w)+log p(⇥)

@⇥@⇥>

����
⇥=⇥1,w=1N

4: Compute J = (Jdn) :=

✓
@
2 log p(x;⇥,w)+log p(⇥)

@⇥@wn

����
⇥=⇥1,w=1N

◆

5: for o 2 O, ⇥̂ACV(⇥1,x,o) := ⇥1 +
X

n2o

H�1Jn # Jn is nth column of J

6: return {⇥̂ACV(⇥1,x,o)}o2O

D Efficient weighted marginalization (WEIGHTEDMARG) for

chain-structured MRFs

For chain-structured pairwise MRFs with discrete structure, we can use a dynamic program to
efficiently marginalize out the structure. Assume that zt 8t 2 [T] can take one of K values. Define
↵1k = exp[w1 1(x1, z1 = k)], and then compute ↵tk recursively:

↵t,k =
KX

`=1

↵t�1,` exp


wt t(xt, zt = k;⇥) + �t,t�1(zt = k, zt�1 = `)

�
, (9)

if using weighting scheme (A) from Equation Eq. (4) or,

↵t,k =
KX

`=1

↵t�1,` exp


wt t(xt, zt = k;⇥) + wtwt�1�t,t�1(zt = k, zt�1 = `)

�
, (10)

if using weighting scheme (B) from Equation Eq. (5). Then, for either (A) or (B), we have
p(x;⇥,w) =

P
K

k=1 ↵Tk. When w = 1T we recover the empirical risk minimization solution.
As is the case for non-weighted models, this recursion implies that p(x;⇥,w) is computable in
O(TK2Q) time instead of the usual O(TKQ) time required by brute-force summation (recall Q
is the time required to evaluate one local potential). Likewise, we can also compute the deriva-
tives needed by Algorithm 1 in O(TK2Q) time either by manual implementation or automatic
differentiation tools [Bartholomew-Biggs et al., 2000].

14

E Equivalence of weighting (A) and (B) for leave-future-out for

chain-structured graphs

As noted in the main text, weighting schemes (A) and (B) are equivalent when the graph is chain
structured. Formally,
Proposition 3. Consider a chain-structured pairwise MRF with ordered indices t on the chain (such
as an HMM). Weighting styles (A) and (B) above are equivalent for leave-future-out CV. That is,
choose o = {T 0, . . . , T} for some T 0

2 [T �1] (i.e., indices that are in the “future” when interpreted
as time). Then set 8t 2 o, wt = 0 and 8t 2 [T]� o, wt = 1.

This result does not hold generally beyond chain-structured graphical models – consider a four-node
“ring” graph in which node t is connected to nodes t�1 and t+1 (mod 4) for t = 0, . . . , 3. Weighting
scheme (B) produces a distribution that is chain-structured over three nodes, whereas (A) produces a
distribution without such conditional independence properties. We now prove Proposition 3.

Proof. Recall that for a chain structured graph, we can write:

p(x, z) = p(x | z)p(z1)
TY

t=2

p(zt | zt�1).

Let o = {T 0, T 0 + 1, . . . , T} for some T 0 < T ; that is, we are interested in dropping out time steps
T 0, . . . , T . For weighting scheme (A) (Eq. (4)), we drop out only the observations, obtaining:

pA(x, z;wo) =

0

@
T

0
�1Y

t=1

p(xt | zt)

1

A p(z1)
TY

t=2

p(zt | zt�1).

When we sum out all z to compute the marginal pA(x;wo), we can first sum over zT , . . . , zT 0 . AsP
zt
p(zt | zt�1) = 1 for any value of zT�1, we obtain:

pA(x;wo) =
X

z1,...,zT 0�1

0

@
T

0
�1Y

t=1

p(xt | zt)

1

A p(z1)
T

0
�1Y

t=2

p(zt | zt�1),

which is exactly the formula for pB(x;wo), the marginal likelihood from following weighting scheme
(B) (Eq. (5)), in which we drop out both the xt and zt for t 62 o.

F Conditional random fields

Conditional random fields assume that the labels z are observed and model the conditional distribution
p(z | x;⇥). While more general dependencies between x and z are possible a commonly used
variant [Ma and Hovy, 2016, Lample et al., 2016] captures the conditional distribution of the joint
defined in Equation Eq. (8). Note,

log p(zn | xn;⇥) = log p(xn, zn;⇥)� log p(xn;⇥)

= �Z(⇥) +
X

t2[T]

 t(xnt, znt;⇥) +
X

c2F

�c(znc;⇥)

+ Z(⇥)�

Z

zn

X

t2[T]

 t(xnt, znt;⇥) +
X

c2F

�c(znc;⇥)dzn

(11)

Defining, Z(xn;⇥) = �
R
zn

P
t2[T] t(xnt, znt;⇥) +

P
c2F

�c(znc;⇥)dzn, then gives us the
following conditional distribution,

� log p(z | x;⇥) =
NX

n=1

8
<

:Z(xn;⇥) +
X

t2[T]

 t(xnt, znt;⇥) +
X

c2F

�c(znc;⇥)

9
=

; . (12)

Note that Z(xn;⇥) is an observation specific negative normalization constant.

15

G CV for conditional random fields

Analogously to the MRF case, we have two variants for CRFs — LSCV and LWCV. While LSCV
is frequently used in practice, for example, [DeCaprio et al., 2007], we are unaware of instances of
LWCV in the literature. Thus, while we derive approximations to both CV schemes, our CRF-based
experiments in Section 5 only use LSCV.

G.1 LSCV for CRFs

Leave structure out CV is analogous to the MRF case and is detailed in Algorithm 3, where
log p̃(zn,xn;⇥) :=

P
t2[T] t(xnt, znt;⇥) +

P
c2F

�c(znc;⇥). Since all input, label pairs
{xn, zn} are independent, log p(z | x;⇥,w) is just a weighted sum across n and the losses
� log p(zn | xn; ⇥̂(w{n})) and � log p(zn | xn; ⇥̂IJ(w{n})) do not depend on [N]� n.

Algorithm 3 Structured approximate cross-validation (LSCV) for CRFs
Require: ⇥1,x, z,O

1: Compute Z(xn;⇥) = �MARG(xn;⇥), 8n 2 [N]
2: Compute log p(z | x;⇥,w) =

P
n
wn

⇥
Z(xn;⇥) + log p̃(zn,xn;⇥)

⇤

3: Compute H = @
2 log p(z|x;⇥,w)+log p(⇥)

@⇥@⇥>

����
⇥=⇥1,w=1N

4: Compute matrix J := (Jdn) =

✓
@
2 log p(z|x;⇥,w)+log p(⇥)

@⇥@wn

����
⇥=⇥1,w=1N

◆

5: for o 2 O, ⇥̂ACV(⇥1,x, z,o) := ⇥1 +
X

n2o

H�1Jn # Jn is nth column of J

6: return {⇥̂ACV(⇥1,x, z,o)}o2O

G.2 LWCV for CRFs

Leave within structure out for CRFs again comes with a choice of weighting scheme. Given a single
input, label pair x, z, the zt are the outputs at location t, and the xt are the corresponding inputs. A
form of CV arises when we drop the outputs zt, for t 2 o. This gives us weighting scheme (C),

⇥̂(w) =argmin
⇥

Z(⇥,w,x)

+

2

4
X

t2[T]

wt t(xt, zt;⇥) + (1� wt)

Z

zt

 t(xt, zt;⇥) dzt

3

5

+

"
wt

X

c2F

�c(zc;⇥) + (1� wt)

Z

zt

X

c2F

�c(zc;⇥) dzt

#
� log p(⇥).

(13)

For linear chain structured CRFs with discrete outputs z a variant of the forward algorithm can be
used to efficiently compute Z(⇥,w,x) as well as the marginalizations over {zt | t 2 o} required by
Eq. (13). See Bellare and McCallum [2007], Tsuboi et al. [2008] for details. Algorithm 4 summarizes
the steps involved.

H Computational cost of one Newton-step-based ACV

Recall that we define M to be the cost of one marginalization over the latent structure z and noted
above that the cost of computing the Hessian via automatic differentiation is O(M). For the Newton
step (NS) approximation, recall that we need to compute a different Hessian for each fold o. While
this can be avoided using rank-one update rules in the case of leave-one-out CV for generalized linear
models, this is not the case for the CV schemes and models considered here. Thus, to use the Newton
step approximation here, we require O(M |O|) time to compute all needed Hessians. Compared to
the O(M) time spent computing Hessians by our algorithms, the Newton step is significantly more
expensive. For this reason, we do not consider Newton step based approximations here.

16

Algorithm 4 Approximate leave-within-structure-out cross-validation for CRFs
Require: ⇥1,x, z,O

1: Compute unweighted marginalization over z, Z(x;⇥) = �MARG(xn;⇥), 8n 2 [N]
2: Compute weighted marginalization over z: Z(x;⇥,w) = WEIGHTEDMARG(x,⇥,w).
3: Compute log p(z | x;⇥) = Z(x;⇥,w) + Z(xn;⇥)

4: Compute H = @
2 log p(x;⇥,w)+log p(⇥)

@⇥@⇥>

����
⇥=⇥1,w=1T

5: Compute matrix J := (Jdt) =

✓
@
2 log p(x;⇥,w)+log p(⇥)

@⇥@wt

����
⇥=⇥1,w=1T

◆

6: for o 2 O, do: ⇥̂ACV(⇥1,x,o) := ⇥1 +
X

t2o

H�1Jt # Jt is tth column of J

7: return {⇥̂ACV(⇥1,x,o)}o2O

I Comparison of approximations afforded by one Newton-step-based and IJ

based ACV

We revisit the LWCV experiments in time varying Poisson processes described in Section 5. We
agian focus on the Tsub = 10,000 subset of observations, plotted in the top panel of Fig. 1. In Fig. 4
we compare estimates provided by ACV based on one NS to those provided by IJ based ACV. The
left plot depicts i.i.d LWCV and the right depicts contiguous LWCV when m = 10% of the subset
is held out. Similar results hold for m = 2% and m = 5%. For each of |O| = 10 folds and for
each point xt left out in each fold, we plot a red dot with the NS bases approximate fold loss as its
horizontal coordinate and our IJ based approximation as its vertical coordinate. We can see that every
point lies close to the dashed black x = y line; that is, the quality of the two approximations largely
agree across the thousands of points in each plot.

Figure 4: Comparison of NS and IJ approximate LWCV for time-varying Poisson processes. Scatter
plots comparing NS based ACV loss (horizontal axis) at each point in each fold (red dots) to IJ based
ACV loss (vertical axis). Black dashed line shows perfect agreement. Left plot containts i.i.d. LWCV
results and the right plot contains contiguous LWCV results.

J Derivation of IJ approximations

In all cases considered here (i.e., the “exchangeable” leave-one-out CV considered by previous work
or the more structured variants for chain-structured or general graph structured models) can be derived

17

similarly. In particular, once we have derived the relevant weighted optimization problem for each
case, the derivation of the IJ approximation is the same. Let the relevant weighted optimization
problem be defined for w 2 RT :

⇥̂(w) := argmin
⇥2RD

F (⇥, w),

where F is some objective function with F (·,1T) corresponding to the “full-data” fit (i.e., without
leaving out any data). We now follow the derivation of the IJ in Giordano et al. [2019]. The condition
that ⇥̂(1T) is an exact optimum is:

@F

@⇥

���
⇥̂(1T),1T

= 0.

If we take a derivative with respect to wt:

@2F

@⇥@⇥T

���
⇥̂(1T),1T

d⇥

dwt

���
⇥̂(1T),1T

+
@2F

@⇥@wt

���
⇥̂(1T),1T

dwt

dwt

���
⇥̂(1T),1T

= 0.

Noting that dwt/dwt = 1 and solving for d⇥/dwt:

d⇥

dwt

���
⇥̂(1T),1N

= �

✓
@2F

@⇥@⇥T

���
⇥̂(1T),1T

◆�1
@2F

@⇥@wt

(14)

Thus we can form a first order Taylor series of ⇥̂(w) in w around w = 1N to approximate:

⇥̂IJ(w) ⇡ ⇥̂(1T)�
TX

t=1

✓
@2F

@⇥@⇥T

���
⇥̂(1T),1T

◆�1
@2F

@⇥@wt

(1� wt).

Specializing this last equation to the various F and weight vectors w of interest derives each of our
ACV algorithms.

K Inexact optimization

We prove here a slightly more general version of Proposition 2 that covers both LWCV and LSCV, as
well as arbitrary loss functions `. To encompass both in the same framework, let wn 2 RT be weight
vectors for each structured object n = 1, . . . , N . Our weighted objective will be:

⇥̂(w) = argmin
⇥2RD

NX

n=1

log p(Dn;⇥,wn) + p(⇥),

where D = {D1, . . . ,DN} denotes the collection of all observed structures; i.e., each Dn may be
a sequence of observations xn for a HMM or observed outputs and inputs xn, zn for a CRF. Let
⇥̂(1NT) be the solution to this problem with wnt = 1 for all n and t. We assume that we are
interested in estimating the exact out-of-sample loss for some generic loss ` by using exact CV,
LCV := (1/|O|)

P
o `(Do,D�o, ⇥̂(wo)); e.g., we may have `(Do,D�o, ⇥̂(wo)) = � log p(xo |

x[T]�o; ⇥̂(wo)) in the case of a HMM with N = 1. Notice here that o ⇢ [N]⇥[T] indexes arbitrarily
across structures. We can now state a modified version of Assumption 4.
Assumption 5. Let B ⇢ RD be a ball centered on ⇥̂(1NT) and containing ⇥(S). Then the objectiveP

n
log p(xn;⇥,1T) + p(⇥) is strongly convex with parameter �min on B. Additionally, on B, the

derivatives gnt(⇥) := @2 log p(xn;⇥,wn)/@⇥@wnt are Lipschitz continuous with constant Lg for
all n, t and the inverse Hessian of the objective is Lipschitz with parameter LHinv. Finally, on B,
`(Do,D�o,⇥) is a Lipschitz function of ⇥ with parameter L` for all o.

We now prove our more general version Proposition 2.
Proposition 4. Take Assumption 5. Then the approximation error of LIJ(⇥(S)) is bounded by:

|LIJ(⇥
(S))� LCV)|  C"⇥ + "IJ, (15)

where C is given by

L` +

L`Lg

�min
+

L`LHinv

|O|

X

o

�����
X

t2o

gnt(⇥̂(1NT))

�����
2

!
.

18

Proof. By the triangle inequality:
|LIJ(⇥

(S))� LCV| 

|LIJ(⇥
(S))� LIJ(⇥̂(1NT))|

+ |LIJ(⇥̂(1NT))� LCV|.

The second term is just the constant "IJ. Now we just need to bound the first term using our Lipschitz
assumptions. We have, by the triangle inequality

|LIJ(⇥̂(1NT))� LIJ(⇥
(S))|


1

|O|

X

o

�����`

Do,D�o, ⇥̂(1NT) +H�1(⇥̂(1NT))

X

t2o

gnt(⇥̂(1NT))

!

�`

Do,D�o,⇥

(S) +H�1(⇥(S))
X

t2o

gnt(⇥
(S))

!����� .

Continuing to apply the triangle inequality and our Lipschitz assumptions:


L`

|O|

X

o

 ���⇥̂(1NT)�⇥(S)
���
2
+

�����H
�1(⇥̂(1NT))

X

t2o

gnt(⇥̂(1NT))�H�1(⇥(S))
X

t2o

gnt(⇥
(S))

�����
2

!

 L`"⇥ +
L`

|O|

X

o

�����H
�1(⇥(S))

X

t2o

⇣
gnt(⇥̂(1NT))� gnt(⇥

(S))
⌘�����

2

+
L`

|O|

X

o

�����

⇣
H�1(⇥̂(1NT))�H�1(⇥(S))

⌘X

t2o

gnt(⇥̂(1NT))

�����
2



L` +

L`Lg

�min
+

L`LHinv

|O|

X

o

�����
X

t2o

gnt(⇥̂(1NT))

�����
2

!
"⇥.

Defining the term in the parenthesis as C finishes the proof.

As noted after the statement of Proposition 2 in the main text, (1/|O|)
P

o2O

���
P

t2o gnt(⇥̂(1NT))
���
2

may depend on T , N or O, but we expect it to converge to a constant given reasonable distributional
assumptions on the data. To build intuition, we consider the case of leave-one-out CV for generalized
linear models, where we observe a dataset of size N > 1 and have T = 1. In particular, we have
log(xn, yn;⇥) = f(xT

n
⇥, yn), where xn 2 RD are the covariates and yn 2 R are the responses. In

this case, gnt = D(1)
n xn, where D(1)

n = df(z)/dz
���
z=x

T
n ⇥̂(1T)

. Then, given reasonable distributional

assumptions on the covariates and some sort of control over the derivatives D(1)
n , we might suspect that

(1/N)
P

n
|D(1)

n | kxnk2 will converge to a constant. As an example, we consider logistic regression
with sub-Gaussian data, for which we can actually prove high-probability bounds on this sum.
Definition 1. [e.g., Vershynin [2018]] For cx > 0, a random variable V is cx-sub-Gaussian if

E
⇥
exp

�
V 2/c2

x

�⇤
 2.

Proposition 5. For logistic regression, assume that the components of the covariates xnd are i.i.d.
from a zero-mean cx-sub-Gaussian distribution for d = 1, . . . , D. Then we have that, for any t � 0:

Pr

"
|
1

N

NX

n=1

���rf(⇥̂(1T), xn)
���
2
�

p

D| � t

#
 exp


�C

Nt2

c2
x

�
, (16)

where C > 0 is some global constant, independent of N,D, and cx.

Proof. First, we can use the fact that
���rf(⇥̂(1T), xn)

���
2
 kxnk2, as for logistic regression,

|D(1)
n |  1. Next, we can use the fact that kxnk2�

p
D is a zero-mean sub-Gaussian random variable

by Theorem 3.1.1 of Vershynin [2018]. We can then apply Hoeffding’s inequality [Vershynin, 2018,
Theorem 2.6.3] to complete the proof.

19

L Experimental details

We provide further experimental details in this section.

L.1 Time varying Poisson processes

We briefly summarize the time-varying Poisson process model from Ihler et al. [2006] here. Our data
is a time series of loop sensor data collected every five minutes over a span of 25 weeks from a section
of a freeway near a baseball stadium in Los Angeles. In all, there are 50,400 measurements of the
number of cars on that span of the freeway. Ihler et al. analyze the resulting time series of counts x to
detect the presence or absence of an event at the stadium. Following their model, we use a background
Poisson process with a time varying rate parameter �t to model non-event counts, xbt ⇠ Poisson(�t).
To model the daily variation apparent in the data, we define �t , �o�dt , where dt takes one of
seven values, each corresponding to one day of the week and [�1/7, . . . , �7/7] ⇠ Dir(1, . . . , 1). We
use binary latent variables zt indicate the presence or absence of an event and assume a first order
Markovian dependence, zt | zt�1 ⇠ Azt�1. Next, zt = 0 indicates a non-event at time step t and
the observed counts are generated as xt = xbt . An event at time step t corresponds to zt = 1 and
xt = xbt +xet , and xet ⇠ NegBinomial(xet | a, b/(1+b)), where xet are unobserved excess counts
resulting from the event. We place Gamma priors on �0, a, b and Beta priors on A00 and A11, and
learn the MAP estimates of the parameters ⇥ = {�0, �1, . . . , �7, a, b, A} while marginalizing xet

and z1, . . . , zT . We refer the interested reader to Ihler et al. [2006] for further details about the model
and data.

Contiguous LWCV. In contiguous LWCV we leave out contiguous blocks from a time series. To
drop m% of the data, we sample an index t uniformly at random from [bmT/100c+ 1, . . . , T] and
set o = {t� bmT/100c, . . . t}.

Numerical values from Fig. 1 In Table 1 we present an evaluation of the LWCV approximation
quality for time-varying Poisson processes. The results presented are a numerical summary of the
results visually illustrated in Fig. 1. Table 2 presents the wall clock time numbers plotted in the lower

2 % 5% 10 %
i.i.d 0.005± 0.009 0.006± 0.01 0.006± 0.005
contiguous 0.003± 0.003 0.007± 0.02 0.007± 0.006

Table 1: Evaluation of approximate LWCV for time-varying Poisson processes. Mean ACV relative
error, |acv � cv|/cv and two standard deviations, over ten folds with T = 10000. The numbers
summarize the scatter plots in the lower left six panels of Fig. 1. The column headers indicate the
percentage of data in the held out fold.

right panels of Fig. 1.

i.i.d contiguous
T ACV ACV (NS) Exact CV ACV ACV (NS) Exact CV

5000 1.1 mins 10.5 hours 61.1 hours 1.3 mins 10.5 hours 61.3 hours
10000 2.2 mins 19.9 hours 185.8 hours 2.4 mins 19.9 hours 182.4 hours
50000 11.0 mins 98.6 hours 682.2 hours 10.6 mins 99.1 hours 683.9 hours

Table 2: Wall clock time from the two lower right panels in Fig. 1 at T = 50000 and with m% = 10%
of the data in the held out fold.

L.2 Neural CRF

We employed a bi-directional LSTM model with a CRF output layer. We used a concatenation of a
300 dimensional Glove word embeddings [Pennington et al., 2014] and a character CNN [Ma and
Hovy, 2016] based character representation. We employed variational dropout with a dropout rate of
0.25. The architecture is detailed below.

20

Figure 5: (Left panel) Error in our approximation relative to exact CV averaged across folds, as
a function of wall clock time. (Right panel) Error in our approximation relative to exact CV and
averaged across folds, as a function of log gradient norm in the optimization procedure.

LSTMCRFVD(
(dropout): Dropout(p=0.25, inplace=False)
(char_feats_layer): CharCNN(

(char_embedding): CharEmbedding(
(embedding): Embedding(96, 50, padding_idx=0)
(embedding_dropout): Dropout(p=0.25, inplace=False)

)
(cnn): Conv1d(50, 30, kernel_size=(3,), stride=(1,), padding=(2,))

)
(word_embedding): Embedding(2196016, 300)
(rnn): StackedBidirectionalLstm(

(forward_layer_0): AugmentedLstm(
(input_linearity): Linear(in_features=330, out_features=200, bias=False)
(state_linearity): Linear(in_features=50, out_features=200, bias=True)

)
(backward_layer_0): AugmentedLstm(

(input_linearity): Linear(in_features=330, out_features=200, bias=False)
(state_linearity): Linear(in_features=50, out_features=200, bias=True)

)
(forward_layer_1): AugmentedLstm(

(input_linearity): Linear(in_features=100, out_features=200, bias=False)
(state_linearity): Linear(in_features=50, out_features=200, bias=True)

)
(backward_layer_1): AugmentedLstm(

(input_linearity): Linear(in_features=100, out_features=200, bias=False)
(state_linearity): Linear(in_features=50, out_features=200, bias=True)

)
(layer_dropout): InputVariationalDropout(p=0.25, inplace=False)

)
(rnn_to_crf): Linear(in_features=100, out_features=9, bias=True)
(crf): ConditionalRandomField()

)

Training We used Adam for optimization. Following the recommendation of Reimers and
Gurevych [2017] we used mini-batches of size 31 Reimers and Gurevych [2017]. We employed early
stopping by monitoring the loss on the validation set. Freezing all but the CRF layers we further
fine-tuned only the CRF layer for an additional 60 epochs. In Fig. 5 we plot the mean absolute
approximation error in the held out probability under exact CV and our approximation across all 500
folds as a function of (wall clock) time taken by the optimization procedure.

21

L.3 Philadelphia crime experiment

Our crime data comes from opendataphilly.org, where the Philadelphia Police Department
publicly releases the time, type, and location of every reported time. For each census tract, we have a
latent label zt 2 {�1, 1}, and model the number of reported crimes xt with a simple Poisson mixture
model: xt|zt ⇠ Poisson(�zt) where ��1,�1 > 0 are the unknown mean levels of crime in low- and
high-crime areas, respectively. Since we might expect adjacent census tracts to be in the same latent
state, we model the zt’s with an MRF so that

log p(x, z;⇥) =
X

t

[��zt + xt log �zt � log(xt!)] + �
X

t

X

t02�(t)

1{zt = zt0}� logZ(�)

where ⇥ = {��1,�1}, �(t) is the collection of census tracts that are spatially adjacent to census tract
t and logZ(�) is the log normalizer for the latent field p(z).The potential 1{zt = zt0} expresses
prior belief that adjacent census tracts should be in the same latent class. The connection strength
� is treated as a hyper-parameter. For each � fixed, ⇥ is estimated using expectation maximization
Dempster et al. [1977] on

P
z log p(x, z;⇥). M-step computation is analytical, given the posteriors

p(zt|x;⇥). Exact E-step computation is reasonably efficient through smart variable elimination
[Koller and Friedman, 2009, Chapter 9]: the number of states is small and common heuristics to find
good elimination orderings, such as MinFill, worked well. This efficient variable elimination order is
also used to implement the WEIGHTEDMARG routine of 1.

M Additional experiments

We present additional experimental validation in support of the ACV methods in this section.

M.1 Motion capture analysis

Data. We analyze motion capture recordings from the CMU MoCap database
(http://mocap.cs.cmu.edu), which consists of several recordings of subjects performing a
shared set of activities. We focus on the 124 sequences from the “Physical activities and Sports”
category that has been previously been studied [Fox et al., 2009, Hughes et al., 2012, Fox et al.,
2014] in the context of unsupervised discovery of shared activities from the observed sequences. At
each time step we retain twelve measurements deemed informative for describing the activities of
interest, as recommended by Fox et al.. Auto-regressive hidden Markov models have been shown
effective for this task, motivating their use in this section.

Accurate LSCV— auto-regressive HMMs We confirm here that ACV is accurate and computa-
tionally efficient for structured models in the case studied by previous work: LSCV with exact model
fits. We present comparisons between embarrassingly parallel exact CV and LSCV with parallelized
Hessian computation (“Approx. Parallel”, i.e., we parallelize the Hessian computation over different
structures n), alleviating the primary computational bottleneck for ACV. We model the collection
of MoCAP sequences via a K-state HMM with an order-p auto-regressive (AR(p)) observation
model. We also consider variants where each state’s auto-regressive model is parameterized via a
neural network. Figure 6 visualizes a MoCAP sequence where we have retained only the 12 relevant
dimensions. For this experiment, we retain up to 100(= T) measurements per sequence. We employ
the following auto-regressive observation model,

p(xnt | xnt�1, . . . , xnt�p, znt) = N (xnt |

pX

m=1

Bzntxnt�m + bznt ,�
2I),

Bk ⇠ Matrix-Norm(I, I, I), bk ⇠ N (0, I) 8k 2 {1, . . . ,K},

(17)

where p is the order of the auto-regression. Neural auto-regressive observation models are defined as,

p(xnt | xnt�1, . . . , xnt�p, znt) = N (xnt | B
1
znt

h(
pX

m=1

B0
znt

xnt�m + b0
znt

) + b1
znt

,�2I),

✓k ⇠ N (0,�I), 8k 2 {1, . . . ,K},

(18)

where ✓k = {B0
k
, b0

k
, B1

k
, b1

k
}, and h denotes a tanh non-linearity, and B0

k
, B0

k
2 R12⇥12 and

b0
k
, b1

k
2 R, i.e., a 12-12-12 fully connected network.

22

opendataphilly.org

Figure 6: Motion capture analysis through auto-regressive HMMs. (Top) A twelve dimensional
MoCap sequence that serves as the observed data and the number of parameters D for different
models under consideration. The high dimensionality of the models make alternate ACV methods
based on a single Newton step infeasible.(Middle) Scatter plots comparing leave one out loss, where
x-axis is � ln p(xn | ⇥(w{n})) and y-axis is � ln p(xn | ⇥̂IJ(w{n})) for different auto-regressive
orders under exact and IJ approximated leave one out cross validation. Points along the diagonal
indicate accurate IJ approximations. (Bottom) Timing and held out negative log probability across
different models. For IJ and Exact the error bars represent two jackknife standard error. The IJ
approximations are significantly faster but closely approximate exact leave one out loss across models
and track well with test loss computed on the held out 20% of the dataset.

While past work has explored AR(0) and AR(1) observation models, a thorough exploration of the
effect of p has been lacking. ACV provides an effective tool for exploring such questions accurately
and inexpensively. We split the sequences into a 80/20% train and test split and perform LSCV on
the training data (N = 100) to compare AR(p) models with p ranging from zero through five and
the neural variant with p = 1 (NAR(1)), in terms of how well they describe the left out sequence.
Following Fox et al., we fix K = 16. Figure 6 summarizes our results. First, we see that the ACV loss
is quite close to the exact CV loss and that both track well with the held-out test loss. Furthermore,
consistent with previous studies, we find that using an AR(1) observation model is significantly better
than using an AR(0) or higher-order AR model. Interestingly, the out-of-sample loss for the AR(1)
model is comparable to neural variant, NAR(1).

In terms of computation, the ACV is significantly faster than exact CV. In fact, for the higher order
auto-regressive likelihoods and the neural variant, exact CV was too expensive to perform. Instead,
we report estimated time for running such experiments by multiplying the average time taken to run
three folds of LSCV with the number of training instances. For AR(0) and AR(1) we compare against
exact CV implemented via publicly available optimized Expectation Maximization code [Hughes
and Sudderth, 2014]. The higher order AR and the NAR(1) model, were fit by BFGS as implemented
in SCIPY.OPTIMIZE.MINIMIZE. We find that computing the embarrassingly parallel version provides
significant speedups over their serial counterparts.

23

Figure 7: Within sequence leave out experiments. We took the longest MoCAP sequence containing
1484 measurements and fit a five state HMM with Gaussian emissions. We find that even for the
MoCAP data IJ approximations to i.i.d. LWCV is very accurate. As the contiguous LWCV involves
making larger scale changes to the sequence, for instance at 10% we end up dropping chunks of 140
time steps from the sequences, resulting in larger changes to the parameters, IJ approximations are
relatively less accurate. (Top) Scatter plots comparing i.i.d LWCV loss � ln p(xt | x[T]�o;⇥(wo))

(horizontal axis) with � ln p(xt | x[T]�o; ⇥̂IJ(wo)) (vertical axis), for each point xt left out in each
fold, computed under exact CV for different omission rates m% = 2%, 5%, and 10% on M = 10
trials. (Bottom) Results for contiguous LWCV.

Accurate LWCV for MoCAP Next, we present LWCV results on a 1,484 measurement long
sequence extracted from the MoCAP dataset. We explore three variants of LWCV: i.i.d LWCV,
contiguous LWCV, and a special case of contiguous LWCV: leave-future-out CV. Figures 7 and 8
present these results. We find that the IJ approximations again provide accurate approximations to
exact CV. The performance deteriorates for contiguous LWCV when large chunks of the sequence
are left out. Since large changes to the sequence result in large changes to the fit parameters, a Taylor
series approximation about the original fit is less accurate. Also, for high dimensional models such as
NAR(1) IJ approximations tend to be less accurate [Stephenson and Broderick, 2020], explaining the
drop in LFOCV performance for the NAR(1) model.

24

Figure 8: Leave Future Out CV for MoCAP data on a single MoCAP sequence containing 1484
measurements. The scatter plots compare � ln p(xT 0 | x[T]�o;⇥(wo)) (horizontal axis)) with
� ln p(xT 0 | x[T]�o; ⇥̂IJ(wo)) (vertical axis), with o = {T 0, T 0 + 1, . . . T}, for some T 0

 T , for a
five state HMM with Gaussian emissions (left), order 1 auto-regressive emissions (middle), neural
auto-regressive emissions (right). The rightmost plot shows the number of parameters in each model.
We vary T 0 from 1337 to 1484 for Gaussian and AR(1) emissions. Since exact fits the NAR model
are more expensive we only vary T 0 between 1455 and 1484 for NAR(1). We find that ACV to be
accurate. The NAR model which is an instance of a higher dimensional optimization problem, leads
to approximations that are less accurate than the lower dimensional AR(0) and AR(1) cases.

25

	Introduction
	Structured models and cross-validation
	Structured models
	Challenges of cross-validation and approximate cross-validation in structured models

	Cross-validation and approximate cross-validation in structured models
	IJ behavior under inexact optimization
	Experiments
	Related work: Approximate CV methods
	Hidden Markov random fields
	Leave structure out cross-validation (LSCV)
	Efficient weighted marginalization (WeightedMarg) for chain-structured MRFs
	Equivalence of weighting (A) and (B) for leave-future-out for chain-structured graphs
	Conditional random fields
	CV for conditional random fields
	LSCV for CRFs
	LWCV for CRFs

	Computational cost of one Newton-step-based ACV
	Comparison of approximations afforded by one Newton-step-based and IJ based ACV
	Derivation of IJ approximations
	Inexact optimization
	Experimental details
	Time varying Poisson processes
	Neural CRF
	Philadelphia crime experiment

	Additional experiments
	Motion capture analysis

