
A Proofs of Theoretical Results

A.1 Proof of Lemma 1

The first result we give shows the relation between the unbiased, and conventional (sample biased)
objective.
Lemma 1. For any embedding f and finite N , we have
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where a ^ b denotes the minimum of two real numbers a and b.

Proof. We use the notation h(x, x̄) = expf(x)
>f(x̄) for the critic. We will use Theorem 3 to prove

this lemma. Setting ⌧+ = 0, Theorem 3 states that
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Equipped with this inequality, the biased objective can be decomposed into the sum of the debiased
objective and a second term as follows:
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a  b and a, b, c � 0. Combining these two cases, we conclude that
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where we replaced the dummy variable x� in the numerator by x+.

A.2 Proof of Lemma 2

The next result is a consequence of the dominated convergence theorem.
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Lemma 2. For fixed Q and N ! 1, it holds that
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Proof. Since the contrastive loss is bounded, applying the Dominated Convergence Theorem com-
pletes the proof:
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which completes the proof.

A.3 Proof of Theorem 3

In order to prove Theorem 3, which shows that the empirical estimate of the asymptotic debiased
objective is a good estimate, we first seek a bound on the tail probability that the difference between
the integrands of the asymptotic and non-asymptotic objective functions i slarge. That is, we wish to
bound the probability that the following quantity is greater than ":
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where we again write h(x, x̄) = expf(x)
>f(x̄). Note that implicitly, � depends on x, x+ and the

collections {ui}
N
i=1 and {vi}Mi=1. We achieve control over the tail via the following lemma.
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We delay the proof until after we prove Theorem 3, which we are ready to prove with this fact in
hand.
Theorem 3. For any embedding f and finite N and M , we have
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Proof. By Jensen’s inequality, we may push the absolute value inside the expectation to see that
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13



To do this we write the expectation of � for fixed x, x+ as the integral of its tail probability,
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The outer expectation disappears since the tail probably bound of Theorem A.2 holds uniformly for
all fixed x, x+. Both integrals can be computed analytically using the classical identity
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We still owe the reader a proof of Lemma A.2, which we give now.

Proof of Lemma A.2. We first decompose the probability as
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where the final equality holds simply because |X| � " if and only if X � " or �X � ". The first
term can be bounded as
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The first inequality follows by applying the fact that log x  x� 1 for x > 0. The second inequality
holds since 1

Qh(x, x+) + Ex�⇠p�
x
h(x, x�) � 1/e. Next, we move on to bounding the second term,
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which proceeds similarly, using the same two bounds.
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Combining equation (14) and equation (15), we have
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We then proceed to bound the right hand tail probability. We are bounding the tail of a difference
of the form |max(a, b)� c| where c � b. Notice that |max(a, b)� c|  |a� c|. If a > b then this
relation is obvious, while if a  b we have |max(a, b) � c| = |b � c| = c � b  c � a  |a � c|.
Using this elementary observation, we can decompose the random variable whose tail we wish to
control as follows:
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Hoeffding’s inequality states that if X,X1, . . . , XN are i.i.d random variables bounded in the range
[a, b], then
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A.4 Proof of Lemma 4

Lemma 4. For any embedding f , whenever N � K � 1 we have
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A.5 Proof of Theorem 5

We wish to derive a data dependent bound on the downstream supervised generalization error of the
debiased contrastive objective. Recall that a sample (x, x+, {ui}
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In our context, we have k = N + M and R = e. So, it remains to obtain constants ⌘ and
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To bound the Lipschitz constant we view ` as a composition `({ai}Ni=1, {bi}
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⌘

g({ai}
N
i=1, {bi}

M
i=1) =

1

⌧�
1

N

NX

i=1

ai � ⌧+
1

M

MX

i=1

bi.

If z < e�1 then @z�(z) = 0, while if z � e�1 then @z�(z) =
N

1+Nz 
N

1+Ne�1  e. We therefore
conclude that � is e-Lipschitz. Meanwhile, @aig = 1

⌧�N and @big = ⌧+

M . The Lipschitz constant of
g is bounded by the Forbenius norm of the Jacobian of g, which equals

vuut
NX

i=1

1

(⌧�N)2
+

MX

j=1

(⌧+)2

M2
=

s
1

(⌧�)2N
+

(⌧+)2

M
.

Now we have control on the bound on ` and its Lipschitz constant, we are ready to prove Theorem 5
by combining several of our previous results with Lemma A.3.

Theorem 5. With probability at least 1� �, for all f 2 F and N � K � 1,

LSup(f̂)  Lµ
Sup(f)  LN,M

Debiased(f) +O

0

B@
1

⌧�

r
1

N
+

⌧+

⌧�

r
1

M
+

�RS(F)

T
+B

s
log 1

�

T

1

CA

where � =
q

1
⌧�2 (MN + 1) + ⌧+2(N

M + 1) and B = logN
�

1
⌧� + ⌧+

�
.

Proof. By Lemma 4 and Theorem 3 we have

Lsup(f̂)  eLN
Unbiased(f̂)  LN,M

Debiased(f̂) +
e3/2

⌧�

r
⇡

2N
+

e3/2⌧+

⌧�

r
⇡

2M
.

Combining Lemma A.3 and Lemma A.4, with probability at least 1� �, for all f 2 F , we have

LN,M
Debiased(f̂)  LN,M

Debiased(f) +O

0

B@
�RS(F)

T
+B

s
log 1

�

T

1

CA ,

where � = ⌘
p
k =

q
1

⌧�2 (MN + 1) + ⌧+2(N
M + 1) and B = logN

�
1
⌧� + ⌧+

�
.

A.6 Derivation of Equation (4)

In Section 4, we mentioned that the obvious way to approximate the unbiased objective is to replace
p�x with p�x (x

0) = (p(x0) � ⌧+p+x (x
0))/⌧� and then use the empirical counterparts for p and p+x ,

and that this yields an objective that is a sum of N + 1 expectations. To give the derivation of this
claim, let

`(x, x+, {x�
i }

N
i=1, f) = � log

ef(x)
T f(x+)

ef(x)T f(x+) +
PN

i=1 e
f(x)T f(x�

i )
.

1Note the definition of g is slightly modified in this context.
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We plug in the decomposition as follows:

E x⇠p,x+⇠p+
x

{x�
i }N

i=1⇠p�
x

[`(x, x+, {x�
i }

N
i=1, f)]

=

Z
p(x)p+x (x

+)
NY

i=1

p�x (x
�
i )`(x, x

+, {x�
i }

N
i=1, f)dxdx+

NY

i=1

dx�
i

=

Z
p(x)p+x (x

+)
NY

i=1

p(x�
i )� ⌧+p+x (x

�
i )

⌧�
`(x, x+, {x�

i }
N
i=1, f)dxdx+

NY

i=1

dx�
i

=
1

(⌧�)N

Z
p(x)p+x (x

+)
NY

i=1

⇣
p(x�

i )� ⌧+p+x (x
�
i )
⌘
`(x, x+, {x�

i }
N
i=1, f)dxdx+

NY

i=1

dx�
i .

By the Binomial Theorem, the product inside the integral can be separated into N + 1 groups
corresponding to how many x�

i are sampled from p.

(1)
NY

i=1

p(x�
i )

(2)
✓
N

1

◆
(�⌧+)p+x (x

�
1 )

NY

i=2

p(x�
i )

(3)
✓
N

2

◆ 2Y

j=1

(�⌧+)p+x (x
�
j )

NY

i=3

p(x�
i )

· · ·

(k + 1)
✓
N

k

◆ kY

j=1

(�⌧+)p+x (x
�
j )

NY

i=k+1

p(x�
i )

· · ·

(N + 1)
NY

i=1

(�⌧+)p+x (x
�
i )

In particular, the objective becomes

1

(⌧�)N

NX

k=0

✓
N

k

◆
(�⌧+)kE x⇠p,x+⇠p+

x

{x�
i }k

i=1⇠p+
x

{x�
i }N

i=k+1⇠p

"
� log

ef(x)
T f(x+)

ef(x)T f(x+) +
PN

i=1 e
f(x)T f(x�

i )

#
,

where {x�
i }

j
i=k = ; if k > j. Note that this is exactly the Inclusion–exclusion principle. The

numerical value of this objective is extremely small when N is large. We tried various approaches to
optimize this objective, but none of them worked.

B Experimental Details

CIFAR10 and STL10 We adopt PyTorch to implement SimCLR [2] with ResNet-50 [17] as the
encoder architecture and use the Adam optimizer [23] with learning rate 0.001 and weight decay
1e� 6. We set the temperature t to 0.5 and the dimension of the latent vector to 128. All the models
are trained for 400 epochs. The data augmentation uses the following PyTorch code:

The models are evaluated by training a linear classifier with cross entropy loss after fixing the learned
embedding. We again use the Adam optimizer with learning rate 0.001 and weight decay 1e� 6.

Imagenet-100 We adopt the official code2 for contrastive multiview coding (CMC) [40]. To
implement the debiased objective, we only modify the “NCE/NCECriterion.py” file and adopt the rest

2https://github.com/HobbitLong/CMC/
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1 train_transform = transforms.Compose ([

2 transforms.RandomResizedCrop (32),

3 transforms.RandomHorizontalFlip(p=0.5) ,

4 transforms.RandomApply ([ transforms.ColorJitter (0.4, 0.4, 0.4, 0.1)], p

=0.8) ,

5 transforms.RandomGrayscale(p=0.2),

6 GaussianBlur(kernel_size=int (0.1 * 32)),

7 transforms.ToTensor (),

8 transforms.Normalize ([0.4914 , 0.4822 , 0.4465] , [0.2023 , 0.1994 , 0.2010])

])

Figure 6: PyTorch code for SimCLR data augmentation.

of the code without change. The temperature of CMC is set to 0.07, which often makes the estimator
1
⌧�

⇣
1
N

PN
i=1 e

f(x)T f(ui) � ⌧+ 1
M

PM
i=1 e

f(x)T f(vi)
⌘

less than e�1/t. To retain the learning signal,

whenever the estimator is less than e�1/t, we optimize the biased loss instead. This improves the
convergence and stability of our method.

Sentence Embedding We adopt the official code3 for quick-thought (QT) vectors [28]. To imple-
ment the debiased objective, we only modify the “src/s2v-model.py” file and adopt the rest of the code
without changes. Since the official BookCorpus [25] dataset is missing, we use the inofficial version4

for the experiments. The feature vector of QT is not normalized, therefore, we simply constrain the
estimator described in equation (7) to be greater than zero.

Reinforcement Learning We adopt the official code5 of Contrastive unsupervised representations
for reinforcement learning (CURL) [37]. To implement the debiased objective, we only modify the
“curl-sac.py” file and adopt the rest of the code without changes. We again constrain the estimator
described in equation (7) to be greater than zero since the feature vector of CURL is not normalized.

3https://github.com/lajanugen/S2V
4https://github.com/soskek/bookcorpus
5https://github.com/MishaLaskin/curl
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