A Further Preliminaries

For a sequence of vectors vy, ...,vp, weletvive ... vy =v10V30 -0V = szlvi denote their
concatenation.

By the following observation, when proving a lower bound for a compression of size ©(N7), the
main task is to prove the upper bound n = O(N7); the lower bound n = Q(N7) can be ensured
mechanically.

Observation A.1. Let 0 < v < 1. Given two N-dimensional vectors u,v of compressed size
O(N7), we can compute two O(N)-dimensional vectors u', v’ of compressed size ©(N7) with the
same inner product.

Proof. Append 0V using ©(N7) additional rules to the encodings of u and v. O

The Strong kSUM Assumption To generalize the lower bound of Theorem[I.1]so that it works for
an arbitrary relationship between compressed and uncompressed sizes, we will use an assumption
about a generalized version of 3SUM.

Definition A.2 (The kXSUM Problem). Given k sets Ay, ..., Ar of mintegers in {1,...,U}, decide
if there are k numbers a1 € Ay, ... ,a € Ay suchthatay + -+ - + ax_1 = ag.

For all constant £k > 3 a simple meet-in-the-middle algorithm with hashing solves £SUM in
O(m[k/ 2]) time, and no faster algorithm by m® factors, for any € > 0, is known to date, unless
the universe size U is smaller than O(m/*/21=¢). This is because Fast Fourier Transform gives an
O(m + kU log U) time algorithm [27]]. It is conjectured that substantially faster algorithms do not
exist (e.g. in [4} 2]]).

The Strong kSUM Conjecture. For all constant k& > 3 it holds that: no algorithm can solve the
ESUM problem with U = O(m/!*/?1) in O(m[*/?1-¢) time, where ¢ > 0.

Observe that this assumption is about all £ > 3 and therefore implies the Strong 3SUM conjecture
as a special case. Intuitively, the reason this problem helps us give reductions where the vectors
are much more compressible is that, compared to 3SUM, as k grows the ratio between the time
complexity m*/2 and the input size m grows.

B Vector Inner Product

In this section, we prove the generalization of the lower bound of Theorem[I.T]to arbitrary relation-
ships between compressed and uncompressed sizes of the vectors.

Theorem B.1. Let 0 < ¢ < 1/3. Assuming the Strong kSUM conjecture for all constant k, the inner
product of two N -dimensional vectors that are grammar-compressed to size n = ©(N¢) cannot be

computed in O(N'/3=9) time, where § > 0.

This result follows from the following stronger statement.
Theorem B.2. Let k > 3. Assuming the Strong kSUM conjecture, the inner product of two N-

dimensional vectors that are grammar-compressed to size n = ©(N /I35
in O(N(/3+7%)=9) time, where § > 0 and

2 ifkisodd,
T = {S(k—l)

9ki12’ if k is even.

) cannot be computed

Observe that the above statement implies Theorem For any 0 < ¢ < 1/3, we choose
k sufficiently large such that 1/ [3’“2—_4] < ¢. Then using Observation we obtain that any

O(N'/3-9)-time algorithm for Vector Inner Product with compressed size n = ©(N¢) would give
3k—4-|
2

an O(N'Y/ 3+W_‘Sl)—time algorithm for Vector Inner Product with compressed size O(N'/!
O(N¥?), where §' = 7, + & — this would refute the Strong kSUM conjecture by Theorem[B.2]

Furthermore, observe that if we set & = 3, we obtain a Q(N 2/3) lower bound for compressed size
n = ©(N'/3) under the Strong 3SUM conjecture.

In the remainder of this section, we give the proof of Theorem [B.2] The central construction is
captured by the following lemma.

Lemma B.3. Given sets Ay, ..., Ay of integers in {1,... U}, we define

ai+-tag— k—=2)U—a1——ap_
0® k—2 0() 1 k=2

/ .-
VA 4ot Ay = O(alanwak—Q)(’:Al XX A2 VAj-1

in lexicographic order

k—2
/Uiqk‘, = (UAkO(k_2)U)m)

where v, _,,v4, € {0, 1}U denote the characteristic vectors of the sets Ap_1, Ax. We have the
following properties:

1. The inner product of the m*~2(k — 1)U-dimensional vectors Uf41+"‘+Ak:—1 and v;‘k is
nonzero if and only if there is a tuple (a1, . .. ,ay) € Ay x- - -x A witha1+- - -+ag_1 = ag.

2. We can compute compressions of V'y . 4, ,V, of size O(kmlogU) = O(mlogU)

k

in time O(mlogU).
Proof. For 1., observe that by construction, vf41+,,,+Ak1 and v/, consist of mF~?
blocks, indexed by (ai,...,ag—2) € Ay X -+ X Ax_o and consisting of the sequence
Ot Fak-zy, Qk=2U—ar——ar—2 and 4, 0(F=2)V of length (k — 1)U, respectively. In partic-
ular, in block (a1, . .., ag_o) there is a common 1-entry ¢ if and only if t = (a1 +as+---+ax—_2)+a
for some a € Ar_y and t = a for some @' € Aj. Thus, there exists a common 1-entry in
vf41+__,+Ak72 and vgk if and only if there are (a1, ...,ax) € Ay X---x A withay +- - -+ag_1 = ak.

For 2., we first recall that as shown in the proof of Theorem [I.1} we can compute a compression
of the characteristic vectors v4, _, and vy, of size O(mlogU) in time O(mlogU). Thus, using

Proposition we can compute a compression of vy, = (v,%O(’“*z)U)mk_2 of size O(mlogU) +
O(log((k — 2)U)) + O(logm*~2) = O(mlogU) in time O(mlogU). To show the claim for

f . . . !/ .
U, 4.y A,_,» We proceed inductively and construct the strings vy, | = wva, , and

, L a;+-tag_2 (k—1-i)U—a;——ax—2
VAi4+dAp_y = O(a1yv---aak—2)€AiX"'XA’%‘*QO ' UAk*lO Z ’

in lexicographic order

fori = k — 2,...,1. The central observation is that we can write 4; = {agi), A a%)} with
al! <al) <. < af) and obtain
() ()
/ _ m a; / U—a;
’UAi‘F"'-'rAkfl - j:].o 7 ’UAi+1+"'+Ak—10 T

Thus, given an SLP G, for v;xiHJr_._JrAk_l with starting symbol .S; 1, we can give an SLP G; for
(@)
Vs tya,_, ofsize |Gir1[+O(mlogU) as follows: Foreach j = 1,...,m, we encode 0% using

O(log a;i)) = O(logU) additional symbols, re-use S;;1 to generate vy, ..., 4, , and encode
('i

oU=e” using O(log(U — ay’))) = O(log U) additional symbols. Observe that we can obtain this
compression in time O(m log U).

Thus, starting from an SLP for U/Ak,l’ after k — 2 steps we obtain an SLP G; for vf41+_,,+Ak71 of size
O(kmlogU) = O(mlogU). The running time of this construction is O (kmlogU) = O(mlogU),
concluding the proof. O

Let Ay,..., Ay < {1,...,U} be a Strong kSUM instance, i.e., U = O(m!*/?!). The reduction
given in Lemma gives two vectors v, v’ of dimension m*=2 - (k — 1)U such that their inner
product allows us to decide the KSUM instance. Furthermore, the vectors have a compressed size of

O(mlogU).

We slightly adapt v, v’ by appending 0’s to increase the dimension slightly to N = m*F=2 . (k —
1)U log[(gk%)/ Ay (this does not change their inner product). We verify the following facts: (1)
an O(N 1 3+7:=09)_time Vector Inner Product algorithm for some § > 0 refutes the Strong kXSUM

3k—4

conjecture and (2) n = O(NYI7="1). Using Observation this concludes the proof of Theo-
rem[B.2]

For (1), consider first the case that k is odd. Then U = O(m**tY/2) and N =
O(m*=2UpolylogU) = O(m>*=1/2polylogm). Observe that

NB+m=8 _ O(mw'(%ﬁ_‘”polylogm)
O T L ol
forany 0 < ¢’ < 3(k —1)d/2.

Similarly, for even k, we have U = O(m*?) and N = O(m* 2UpolylogU) =

O(mB*=H2polylogm). Using 1/3 + v = 1/3 + 4/(9%k — 12) = k/(3k — 4), we obtain that
N/B+7=0 O(mM'(ﬁf‘g)polylogm) = O(m%_‘;/),

for any 0 < &' < (3k — 4)5/2. Thus, in both cases, an O(N'/3+7%=9)_time Vector Inner Prod-

uct algorithm refutes the Strong kSUM conjecture by solving the given kSUM instance in time

O(mI*/21-9") with §" > 0.

Finally, for (2), note that N = O(m*2U log! ®*=/21 () = O (m[Bk=4/21 1ogl k=121 1)) Thys
n = O(mlogm) = O(NVIBk=1/21) a5 desired.

C Matrix-Vector Product

In this section we provide the full proof of Theorem[I.2] We first prove a self-reduction for 3SUM
as a central tool (using standard techniques), and then proceed to give the final reduction.

C.1 Proof of the Self-Reduction

Let us restate Lemma[4.1]

Lemma C.1 (Self-Reduction for 3SUM). Let 1 < s = s(m) < m and € > 0 be arbitrary. If
there is an algorithm that, given a target t and L = O((m/s)?) sets Ay, By, Cy of s integers in
{1,...,0(s*log? 5)}, determines for all 1 < ¢ < L whether there are a € Ay, b € By,c € Cy with
a+ b+ c = tintotal time O(m?~€), then the 3SUM conjecture is false.

In the remainder of this section, we give the proof.

Let A, B, C be sets of m integersin {1, ..., U}. We use a couple of results from earlier work that are
stated for the following 3SUM formulation: given three sets A’, B’, C’ of m integersin {—U, ..., U}
with U = O(m?log® m), we are asked to determine whether there are a € A’,b € B’, ¢ € C’ such
that a + b + ¢ = 0. We first reduce our formulation to this formulation by setting A’ := A, B’ :== B,
and C" .= —C = {—c| ¢ € C'}. We can now use the following known self-reduction for 3SUM.

Lemma C.2 (Reformulated from [62, Theorem 13]). Let s = s(m) with 1 < s < m. Given
three sets A', B',C" of m integers in {—U,..., U}, we can compute, in time O(m?/s), a list of
L = O((m/s)?) 3SUM instances, i.e., sets A}, B),C, with 1 < { < L, such that there is an
ac€ A',be B',ce C' witha + b+ c = 0ifand only if there is an instance 1 < { < L and a triple
a€ A),be Bj,ce Cywitha+ b+ c= 0. Furthermore, each A}, B}, C} is a subset of s integers of
A’ B',C’, respectively.

Proof sketch. We give the high-level arguments (for details, see the proof of Theorem 13
in [62]). For a set S, let minS and maxS denote the smallest and largest element
in S, respectively. We sort A’, B’,C’ and split each array into [m/s] consecutive parts
A, A’[m/s]7 Bi,..., Bfm/s],C’{, ce Cfm/s], each of at most s elements, such that max A} <
min A} |, max B; < min B;,; and max Cj < min Cj, for all i. Instead of searching for a 3SUM
triple a € Aj,b € Bj,c € Cj foreach 1 < i,j,k < [m/s] (i.e., O((m/s)?) subproblems with s
elements each), one observes that most subproblems can be trivially solved: We say that a subprob-
lem (3, j, k) is trivial, if min A; + min B; + min C}, > 0 or max A, + max B; + maxCj, < 0;

these subproblems cannot contain a solution. The key insight is that there are at most O((m/s)?)
non-trivial subproblems (which follows since the domination partial ordering on {1, ..., u}? has at
most O(u?) incomparable elements); these can be determined in time O((m/s)?). Thus, it suffices
to list all O((m/s)?) non-trivial subproblems with s integers in each set in time O(m?/s). O

The resulting instances A}, By, C; consist of integers in {—U, ..., U} with large universe size U =
O(m®log® m). We reduce the universe size to O(s>log® s) using a folklore technique (a slightly
stronger result with U = O(s?) can be achieved using the techniques of [13])). To prepare notation,
for any set S, we let S mod p := {s mod p | s € S}.

Lemma C.3 (Adaptation of [5, Lemma B.1]). There is some o such that U' = «s®log slog U
satisfies the following property: Let A, B,C' be sets of s integers in {—U,...,U} such that no
a € Ab e B,ce C satisfies a + b+ ¢ = 0. Let p be a prime chosen uniformly at random from
{2,...,U’}. Then the probability that there are a,, € A mod p,b, € B mod p, ¢, € C mod p with
ap + by + ¢, =0 (mod p) is at most 1/2.

Proof. Leta € A,be B, ce C be arbitrary. Since a+ b+ ¢ # 0, note that (¢ mod p) + (b mod p) +
(¢ mod p) =0 (mod p) if and only if p divides a+b+c. Since a+b+ce {—3U,...,3U},a+b+c
has at most log, (3U) prime factors. Let P denote the number of prime numbers in {2,...,U’}; by
the prime number theorem we can choose « large enough such that P > 2s®log,(3U). Thus, the
probability that p was chosen among these at most log, (3U) prime factors is at most log, (3U) /P <
1/(2s%). Thus, by a union bound over all s* triples a € A,b € B, c € C, the probability that there
are a, € Amod p,b, € Bmod p,c, € C mod pwitha +b+c=0 (mod p)isatmost1/2. [

Note that if A, B, C contain a triple a, b, ¢ with a+b+c = 0, then also A mod p, B mod p,C' mod p
contain a triple ay, by, ¢, with a, + b, + ¢, = 0 (mod p) for any p.

We can finally prove Lemma [C.I} Assume that there is an algorlthm A that given a target ¢ and
L = O((m/s)?) instances Ay, By, Cy,1 < ¢ < L of s integers in {1,...,U’}, determines for all

< ¢ < L whether there are a € Ay,b € By,c€ Cywitha +b+c = t in total time O(m?~¢)
with e > 0. Observe that since A runs in time O(m?~¢), we must have s = ((m?), since otherwise

already the size of the input to .A of ©(1m?/s) would be w(m?>%). Thus, we have U’ = O(s> log® s).

For r = 1,...,vlogm many repetitions, we do the following: We choose a random prime p, €
[2, U] and obtain ¢ instances in {0, ...,p, — 1} g {0,...,U} by taking the sets modulo p,, i.e.,

A(T) A), mod p,, B (T) = Bj mod p,, and C M = = C} mod p,. Observe that we may determine
whether there is some a € Aé), be B(T) ce C(T witha+b+ ¢ =0 (mod p,) by testing for each
t € {0, p,, 2p,-}, whether there a € A§),b € B(T) cEe C(dwitha + b+ ¢ = t. Thus, to do this, and
additionally ensure that each integer is in {1,...,U’}, we add 1 to each integer in Ay), Bé), C’l@

and for each \ € {0,1,2}, call A on the sets Agr), By), C,ST), 1 < ¢ < L with common target
ty =3+ A\py.

Observe that after these 3 logm calls to A, we know foreach1 < / < Land1 < r < ylogm
whether there are a € A),b € B),c € C, witha + b+ ¢ =0 (mod p,). We declare our original
3SUM instance A, B,C to be a YES instance if and only if there is some ¢ such that for all r
we have found a witness a € Aj,b € Bj,c € C), witha + b+ ¢ = 0 (mod p,). Note that
if A, B,C is a YES instance, we always return YES by Lemma [C.2] Otherwise, if A, B,C' is a
NO instance, consider a fixed ¢. By Lemmas [C.2] and [C.3] the probability that for all 7, we find
a € Ag,b € Bj,ce C)witha+b+c =0 (mod p,) is bounded by 2771°8™ = m~=7. Thus,
by a union bound over all ¢, the probability that we incorrectly return YES in th1s case is at most
Lm™ = O((m/s)*m™") = O(m?~7). We can make this error probability polynomially small by
choosing v > 2.

Observe that the running time of the above process is O(log m) times the running time of .4 (note
that the running time used for Lemma is linear in its output size, which is the input size of
A and thus dominated by the running tlme of A). Thus, we can solve any 3SUM instance in time
O(m?~¢ log m), which would refute the 3SUM conjecture. This concludes the proof of Lemma-

C.2 Main Reduction for Matrix-Vector Multiplication

We now turn to the proof of Theorem|[I.2]

Proof. Let s be a parameter to be chosen later. By Lemmal4.1] it suffices to solve L = O((m/s)?)
3SUM instances Ay, By, Cy consisting of s integers in {1,...,U},U = O(s®log?® s) with common
target 1 < ¢t < 3U in time O(m?~¢) for some € > 0 to contradict the 3SUM conjecture.

We construct an (L x 3s2U) matrix M and v € {0,1}3<°U as follows. Intuitively, each row M,
and the vector v are partitioned into s blocks of size 3U. Each block is indexed by (i,5) with

1,7 € {1,...,s} in lexicographic order and the block of M, corresponding to (i, j) encodes the
characteristic vector of the set a; +b; + C; = {a; +b; + ¢ | ce Cp} < {1,...,3U}, where q; is the
i-th integer in A, and b; is the j-th integer in B,. Correspondingly, every block (¢, j) in v encodes
the characteristic vector of the singleton set {t} < {1,...,3U}. Thus, there is a position in block
(¢,7) in which both M, and v have a 1 if and only if there is a ¢ € Cy such that a; + b; + ¢ = t.
Formally, for any 1 < ¢ < L, we write A, = {a¥,...,a’}, By = {b{,... b’} and define
MZ — Oa1+b1vc OSUfalfag Oai+bj ve 03U7ai7bj OaSerSvc 03U7a57b57
:) e , . ,
Yal 4ot oy Yattpbrcy Val 4vlyC,
voo= 0t=1103U - 0t~ 11030~ . 0t~ 1103V

where vo, € {0,1}Y denotes the characteristic vector of Cy. By this structure, it is clear that
Myv = 1if and only if there are a € Ay, b€ By,ce Cywitha +b+ ¢ =t.

We will show that each row M, can be compressed to size O(slog s) (as opposed to its RLE of
length O(s%log s)). We thus will set N = [352U log® s] = ©(s® log® s), and append 0N =35V 1o
each row M, and v, so that we obtain an L x N matrix M’ and N-dimensional vector v/ whose
product M’v’ can be used to solve all instances Ay, By, Cp in linear time. Observe that each row has
a compression of size O(N'/®) = O(slog s), as desired. Since L = O((m/s)?) and N > s°, we
can set s = O(m?7) such that L < N (we can indeed make L = N by introducing zero rows, if
necessary). Thus, an O(Nn?~¢)-time algorithm for multiplying M’ and v’ would solve all L 3SUM
instances in time

O(Nn?>7¢) = O((m/s)*(slog s)?~°) = O((m?/s)polylogs) = O(mQ*%Epolylogm),
which would refute the 3SUM conjecture.

Analogous to the proof of Theorems|1.1{and we can compute a compression of size ©(slog s)
in time O(slog s). Indeed, for each My, this already follows from Lemma B.3|when setting A; :=
Ay, Ay = By, A3 = C,, which shows how to compress the string U’Al+A2+A3 = M, to size
O(slogU) = O(slogs) in time O(slogU) = O(slog s). For v, we simply apply Proposition [2.1]
to the straightforward compression of 0°~1103V~* to size O(log U), which leads to a compression
of v of size O(log U + log s) = O(log s). Using Observation we can make all encodings have
size O(slog s), which concludes the proof. O

D Matrix-Matrix Product

In this section, we give the full proof of Theorem 5.1]

Proof of Theorem[5.1] Let £ € N. We first define the matrices A’, B’ where A’ is a (2° x 2¢) matrix
with rows indexed by strings € {0, 1}* in lexicographic order, and B’ is a (2¢ x 2(2¢)) matrix with
columns indexed by (y, k) € {0,1}* x {1,...,2¢} in lexicographic order. For arbitrary z € {0, 1},
let diag(z) denote the ¢ x ¢ diagonal matrix with z on the diagonal. We define

D , _ (_diag(1) | 0
Ay = (| 1°), By), w20 = (0 |diag(y) /-

Let ' = A’B’ be the (2¢ x 2¢(2¢)) product matrix of A’ and B’, with rows and columns indexed by
{0,1}* and {0, 1}*x {1, ..., 2¢}, respectively. Observe that by definition, (Cay1)s > Cay20) =
(z | y) for any =,y € {0,1}%. In particular, when we view C’ as a 22¢(2¢)-length string, it contains

all strings in {0, 1}%¢ as substrings, thus by Lemma any row-wise compression is of size at least
22¢/(20).

To also ensure column-wise incompressibility, we slightly extend the construction by analogous
transposed constructions: We let N := 2¢(2¢ 4 1) and define the final (N x N) matrices A, B as
follows:

B0

!

A—<Ig BQ 0)7 B:: O 7‘4/
0 0

AB| 0

0 | (4B
(in the A’B’ part) and as substrings of the columns (in the (A’B’)T part), any strong compression
of C'is of size at least 22¢/(2¢) = Q(N/log® N), proving the third part of the claim.

For the first two parts, it remains to show that A and B can be well compressed: For the convenient
compression, we observe that any row in A is either of the form (21 | 02¢ | 0N %), which has a
RLE of length at most |z1¢|+O(log N) = O(log N), or it is of the form (0%¢ | 0°"1a 0%~ | OV %)
for some o € {0,1},¢ € {1, ..., 2¢}, which also has a RLE of length at most O(log N). Thus, each
of the N rows of A can be compressed to size O(log N), as desired. By a symmetric statement, also
each column of B has a RLE of size O(log N).

Finally, for the strong compression, we show that we compress A7 when viewed as a string, i.e.,
we compress the concatenation of the columns of A. The main insight is the following: Imagine a
binary ¢-bit counter. Using grammar compression, we can compress the sequence of values of any
fixed bit while the counter counts from 0 to 2¢ — 1 in size O(¢). Formally, let G, G1 be grammar
compressions of strings sg,s1. For any 1 < 4 < ¢, we can encode (352713?71)2%1 using only O(¥)
additional non-terminals in the canonical way. Specifically, using O(f — i) new symbols, we may
encode 532715%271; let S denote the corresponding non-terminal. We then encode 52 using O(4)
additional new symbols. In total, we only need O((¢—i)+1) = O(¢) additional symbols, as desired.

Since C' := AB = ()) contains all length-(2¢) strings as substrings of the rows

We apply the above idea to encode the concatenation all columns of A as follows: Consider column i.

e For 1 < i </, then by the chosen lexicographic order of the row indices x € {0, 1}¢ of A7,
note that the i-th column of A is of the form (02 '12°")2"" | 0N=2". Using the above

analysis, we can compress it to size O(¢) + O(log N) = O(log N).

o If/ +1 < i < 2/, the i-th column is of the form 12° | 0N=2" which we can compress to
size O(log ¢ + log N) = O(log N).

o If 2/ +1 < i < 3¢, write 1 = 2¢ + ¢’ and observe that the ¢-th column of A is of the form
02" | (0¥ —110¢=%")2". Using O(¢) non-terminals to encode 07 110/, it is immediate that
we can compress the complete column using O(¢) additional non-terminals, i.e., yielding
atotal of O(¢) = O(log N).

o If 30+ 1 < i < 44, write 1 = 3¢ + ¢/ and observe that by the chosen lexicographic order of
the column indices (y, k) € {0, 1}¢ x {1,...,2¢} of B’, the i-th column of A is of the form
02 | (s27 6272 where s, == 0" 1al’~". We can give trivial grammars of size
O(¥) for sg, s1. Then, by the above analysis, we only need O(¢) additional non-terminals
for the counter-like part. In total, we only need O(¢) = O(log N) non-terminals to encode
the ¢-th column.

e Finally, observe that the remaining columns ¢ = 4¢ + 1,..., N consist of (N — 4()N
zeroes, which we can encode together using only O(log N) non-terminals.

In summary, we can encode the first 4¢ columns using O(log N) non-terminals each, and only
O(log N) non-terminals for the remaining columns, so we can fully compress the concatenation of

A’s columns to size O(log® N), as claimed. O

	Further Preliminaries
	Vector Inner Product
	Matrix-Vector Product
	Proof of the Self-Reduction
	Main Reduction for Matrix-Vector Multiplication

	Matrix-Matrix Product

