
A Further Preliminaries

For a sequence of vectors v1, . . . , v`, we let v1 v2 . . . v` “ v1 ˝ v2 ˝ ¨ ¨ ¨ ˝ v` “©`
i“1vi denote their

concatenation.

By the following observation, when proving a lower bound for a compression of size ΘpNγq, the
main task is to prove the upper bound n “ OpNγq; the lower bound n “ ΩpNγq can be ensured
mechanically.
Observation A.1. Let 0 ď γ ď 1. Given two N -dimensional vectors u, v of compressed size
OpNγq, we can compute two OpNq-dimensional vectors u1, v1 of compressed size ΘpNγq with the
same inner product.

Proof. Append 0N
γ

using ΘpNγq additional rules to the encodings of u and v.

The Strong kSUM Assumption To generalize the lower bound of Theorem 1.1 so that it works for
an arbitrary relationship between compressed and uncompressed sizes, we will use an assumption
about a generalized version of 3SUM.
Definition A.2 (The kSUM Problem). Given k sets A1, . . . , Ak of m integers in t1, . . . , Uu, decide
if there are k numbers a1 P A1, . . . , ak P Ak such that a1 ` ¨ ¨ ¨ ` ak´1 “ ak.

For all constant k ě 3 a simple meet-in-the-middle algorithm with hashing solves kSUM in
Opmrk{2sq time, and no faster algorithm by mε factors, for any ε ą 0, is known to date, unless
the universe size U is smaller than Opmrk{2s´εq. This is because Fast Fourier Transform gives an
Opm ` kU logUq time algorithm [27]. It is conjectured that substantially faster algorithms do not
exist (e.g. in [4, 2]).
The Strong kSUM Conjecture. For all constant k ě 3 it holds that: no algorithm can solve the
kSUM problem with U “ Opmrk{2sq in Opmrk{2s´εq time, where ε ą 0.

Observe that this assumption is about all k ě 3 and therefore implies the Strong 3SUM conjecture
as a special case. Intuitively, the reason this problem helps us give reductions where the vectors
are much more compressible is that, compared to 3SUM, as k grows the ratio between the time
complexity mk{2 and the input size m grows.

B Vector Inner Product

In this section, we prove the generalization of the lower bound of Theorem 1.1 to arbitrary relation-
ships between compressed and uncompressed sizes of the vectors.
Theorem B.1. Let 0 ă ε ă 1{3. Assuming the Strong kSUM conjecture for all constant k, the inner
product of two N -dimensional vectors that are grammar-compressed to size n “ ΘpNεq cannot be
computed in OpN1{3´δq time, where δ ą 0.

This result follows from the following stronger statement.
Theorem B.2. Let k ě 3. Assuming the Strong kSUM conjecture, the inner product of two N -
dimensional vectors that are grammar-compressed to size n “ ΘpN1{r 3k´4

2 sq cannot be computed
in OpN p1{3`γkq´δq time, where δ ą 0 and

γk :“

#

2
3pk´1q , if k is odd,

4
9k´12 , if k is even.

Observe that the above statement implies Theorem B.1: For any 0 ă ε ă 1{3, we choose
k sufficiently large such that 1{r 3k´4

2 s ă ε. Then using Observation A.1, we obtain that any
OpN1{3´δq-time algorithm for Vector Inner Product with compressed size n “ ΘpNεq would give
an OpN1{3`γk´δ

1

q-time algorithm for Vector Inner Product with compressed size OpN1{r 3k´4
2 sq “

OpNεq, where δ1 “ γk ` δ – this would refute the Strong kSUM conjecture by Theorem B.2.

Furthermore, observe that if we set k “ 3, we obtain a Ω̃pN2{3q lower bound for compressed size
n “ ΘpN1{3q under the Strong 3SUM conjecture.

1

In the remainder of this section, we give the proof of Theorem B.2. The central construction is
captured by the following lemma.

Lemma B.3. Given sets A1, . . . , Ak of integers in t1, . . . , Uu, we define

v1A1`¨¨¨`Ak´1
:“©pa1,...,ak´2qPA1ˆ¨¨¨ˆAk´2

in lexicographic order
0a1`¨¨¨`ak´2vAk´1

0pk´2qU´a1´¨¨¨´ak´2 ,

v1Ak :“ pvAk0pk´2qU qm
k´2

,

where vAk´1
, vAk P t0, 1u

U denote the characteristic vectors of the sets Ak´1, Ak. We have the
following properties:

1. The inner product of the mk´2pk ´ 1qU -dimensional vectors v1A1`¨¨¨`Ak´1
and v1Ak is

nonzero if and only if there is a tuple pa1, . . . , akq P A1ˆ¨ ¨ ¨ˆAk with a1`¨ ¨ ¨`ak´1 “ ak.

2. We can compute compressions of v1A1`¨¨¨`Ak´1
, v1Ak of size Opkm logUq “ Opm logUq

in time Opm logUq.

Proof. For 1., observe that by construction, v1A1`¨¨¨`Ak1
and v1Ak consist of mk´2

blocks, indexed by pa1, . . . , ak´2q P A1 ˆ ¨ ¨ ¨ ˆ Ak´2 and consisting of the sequence
0a1`¨¨¨`ak´2vAk´1

0pk´2qU´a1´¨¨¨´ak´2 and vAk0pk´2qU of length pk´ 1qU , respectively. In partic-
ular, in block pa1, . . . , ak´2q there is a common 1-entry t if and only if t “ pa1`a2`¨ ¨ ¨`ak´2q`a
for some a P Ak´1 and t “ a1 for some a1 P Ak. Thus, there exists a common 1-entry in
v1A1`¨¨¨`Ak´2

and v1Ak if and only if there are pa1, . . . , akq P A1ˆ¨ ¨ ¨ˆAk with a1`¨ ¨ ¨`ak´1 “ ak.

For 2., we first recall that as shown in the proof of Theorem 1.1, we can compute a compression
of the characteristic vectors vAk´1

and vAk of size Opm logUq in time Opm logUq. Thus, using
Proposition 2.1, we can compute a compression of v1Ak “ pvAk0pk´2qU qm

k´2

of size Opm logUq`

Oplogppk ´ 2qUqq ` Oplogmk´2q “ Opm logUq in time Opm logUq. To show the claim for
v1A1`¨¨¨`Ak´1

, we proceed inductively and construct the strings v1Ak´1
:“ vAk´1

and

v1Ai`¨¨¨`Ak´1
:“©pai,...,ak´2qPAiˆ¨¨¨ˆAk´2

in lexicographic order
0ai`¨¨¨`ak´2vAk´1

0pk´1´iqU´ai´¨¨¨´ak´2 ,

for i “ k ´ 2, . . . , 1. The central observation is that we can write Ai “ ta
piq
1 , . . . , a

piq
m u with

a
piq
1 ă a

piq
2 ă ¨ ¨ ¨ ă a

piq
m and obtain

v1Ai`¨¨¨`Ak´1
“©m

j“10a
piq
j v1Ai`1`¨¨¨`Ak´1

0U´a
piq
j .

Thus, given an SLP Gi`1 for v1Ai`1`¨¨¨`Ak´1
with starting symbol Si`1, we can give an SLP Gi for

v1Ai`¨¨¨`Ak´1
of size |Gi`1|`Opm logUq as follows: For each j “ 1, . . . ,m, we encode 0a

piq
j using

Oplog a
piq
j q “ OplogUq additional symbols, re-use Si`1 to generate v1Ai`1`¨¨¨`Ak´1

, and encode

0U´a
piq
j using OplogpU ´ a

piq
j qq “ OplogUq additional symbols. Observe that we can obtain this

compression in time Opm logUq.

Thus, starting from an SLP for v1Ak´1
, after k´2 steps we obtain an SLP G1 for v1A1`¨¨¨`Ak´1

of size
Opkm logUq “ Opm logUq. The running time of this construction isOpkm logUq “ Opm logUq,
concluding the proof.

Let A1, . . . , Ak Ď t1, . . . , Uu be a Strong kSUM instance, i.e., U “ Opmrk{2sq. The reduction
given in Lemma B.3 gives two vectors v, v1 of dimension mk´2 ¨ pk ´ 1qU such that their inner
product allows us to decide the kSUM instance. Furthermore, the vectors have a compressed size of
Opm logUq.

We slightly adapt v, v1 by appending 0’s to increase the dimension slightly to N “ mk´2 ¨ pk ´

1qU logrp3k´4q{2s U (this does not change their inner product). We verify the following facts: (1)
an OpN1{3`γk´δq-time Vector Inner Product algorithm for some δ ą 0 refutes the Strong kSUM

2

conjecture and (2) n “ OpN1{r 3k´4
2 sq. Using Observation A.1, this concludes the proof of Theo-

rem B.2.

For (1), consider first the case that k is odd. Then U “ Opmpk`1q{2q and N “

Opmk´2UpolylogUq “ Opm3pk´1q{2polylogmq. Observe that

N1{3`γk´δ “ Opm
3pk´1q

2 ¨p 13`
2

3pk´1q´δqpolylogmq

“ Opm
k´1
2 `1´

3pk´1q
2 δq “ Opmr k2 s´δ1q,

for any 0 ă δ1 ă 3pk ´ 1qδ{2.

Similarly, for even k, we have U “ Opmk{2q and N “ Opmk´2UpolylogUq “

Opmp3k´4q{2polylogmq. Using 1{3` γk “ 1{3` 4{p9k ´ 12q “ k{p3k ´ 4q, we obtain that

N1{3`γk´δ “ Opm
3k´4

2 ¨p k
3k´4´δqpolylogmq “ Opm

k
2´δ

1

q,

for any 0 ă δ1 ă p3k ´ 4qδ{2. Thus, in both cases, an OpN1{3`γk´δq-time Vector Inner Prod-
uct algorithm refutes the Strong kSUM conjecture by solving the given kSUM instance in time
Opmrk{2s´δ1q with δ1 ą 0.

Finally, for (2), note that N “ Opmk´2U logrp3k´4q{2s Uq “ Opmrp3k´4q{2s logrp3k´4q{2s mq. Thus
n “ Opm logmq “ OpN1{rp3k´4q{2sq, as desired.

C Matrix-Vector Product

In this section we provide the full proof of Theorem 1.2. We first prove a self-reduction for 3SUM
as a central tool (using standard techniques), and then proceed to give the final reduction.

C.1 Proof of the Self-Reduction

Let us restate Lemma 4.1.
Lemma C.1 (Self-Reduction for 3SUM). Let 1 ď s “ spmq ď m and ε ą 0 be arbitrary. If
there is an algorithm that, given a target t and L “ Oppm{sq2q sets A`, B`, C` of s integers in
t1, . . . , Ops3 log2 squ, determines for all 1 ď ` ď L whether there are a P A`, b P B`, c P C` with
a` b` c “ t in total time Opm2´εq, then the 3SUM conjecture is false.

In the remainder of this section, we give the proof.

LetA,B,C be sets ofm integers in t1, . . . , Uu. We use a couple of results from earlier work that are
stated for the following 3SUM formulation: given three setsA1, B1, C 1 ofm integers in t´U, . . . , Uu
with U “ Opm3 log2mq, we are asked to determine whether there are a P A1, b P B1, c P C 1 such
that a` b` c “ 0. We first reduce our formulation to this formulation by setting A1 :“ A,B1 :“ B,
and C 1 :“ ´C “ t´c | c P Cu. We can now use the following known self-reduction for 3SUM.
Lemma C.2 (Reformulated from [62, Theorem 13]). Let s :“ spmq with 1 ď s ď m. Given
three sets A1, B1, C 1 of m integers in t´U, . . . , Uu, we can compute, in time Opm2{sq, a list of
L “ Oppm{sq2q 3SUM instances, i.e., sets A1`, B

1
`, C

1
` with 1 ď ` ď L, such that there is an

a P A1, b P B1, c P C 1 with a` b` c “ 0 if and only if there is an instance 1 ď ` ď L and a triple
a P A1`, b P B

1
`, c P C

1
` with a` b` c “ 0. Furthermore, each A1`, B

1
`, C

1
` is a subset of s integers of

A1, B1, C 1, respectively.

Proof sketch. We give the high-level arguments (for details, see the proof of Theorem 13
in [62]). For a set S, let minS and maxS denote the smallest and largest element
in S, respectively. We sort A1, B1, C 1 and split each array into rm{ss consecutive parts
A11, . . . , A

1
rm{ss

, B11, . . . , B
1
rm{ss

, C 11, . . . , C
1
rm{ss

, each of at most s elements, such that maxA1i ă

minA1i`1,maxB1i ă minB1i`1 and maxC 1i ă minC 1i`1 for all i. Instead of searching for a 3SUM
triple a P A1i, b P B

1
j , c P C

1
k for each 1 ď i, j, k ď rm{ss (i.e., Θppm{sq3q subproblems with s

elements each), one observes that most subproblems can be trivially solved: We say that a subprob-
lem pi, j, kq is trivial, if minAi ` minBj ` minCk ą 0 or maxAi ` maxBj ` maxCk ă 0;

3

these subproblems cannot contain a solution. The key insight is that there are at most Oppm{sq2q
non-trivial subproblems (which follows since the domination partial ordering on t1, . . . , uu3 has at
most Opu2q incomparable elements); these can be determined in time Oppm{sq2q. Thus, it suffices
to list all Oppm{sq2q non-trivial subproblems with s integers in each set in time Opm2{sq.

The resulting instances A1`, B
1
`, C

1
` consist of integers in t´U, . . . , Uu with large universe size U “

Opm3 log2mq. We reduce the universe size to Ops3 log2 sq using a folklore technique (a slightly
stronger result with U “ Ops3q can be achieved using the techniques of [15]). To prepare notation,
for any set S, we let S mod p :“ ts mod p | s P Su.

Lemma C.3 (Adaptation of [5, Lemma B.1]). There is some α such that U 1 :“ αs3 log s logU
satisfies the following property: Let A,B,C be sets of s integers in t´U, . . . , Uu such that no
a P A, b P B, c P C satisfies a ` b ` c “ 0. Let p be a prime chosen uniformly at random from
t2, . . . , U 1u. Then the probability that there are ap P A mod p, bp P B mod p, cp P C mod p with
ap ` bp ` cp ” 0 pmod pq is at most 1{2.

Proof. Let a P A, b P B, c P C be arbitrary. Since a`b`c ‰ 0, note that pa mod pq`pb mod pq`
pc mod pq ” 0 pmod pq if and only if p divides a`b`c. Since a`b`c P t´3U, . . . , 3Uu, a`b`c
has at most log2p3Uq prime factors. Let P denote the number of prime numbers in t2, . . . , U 1u; by
the prime number theorem we can choose α large enough such that P ě 2s3 log2p3Uq. Thus, the
probability that p was chosen among these at most log2p3Uq prime factors is at most log2p3Uq{P ď
1{p2s3q. Thus, by a union bound over all s3 triples a P A, b P B, c P C, the probability that there
are ap P A mod p, bp P B mod p, cp P C mod p with a` b` c ” 0 pmod pq is at most 1{2.

Note that ifA,B,C contain a triple a, b, cwith a`b`c “ 0, then alsoA mod p,B mod p, C mod p
contain a triple ap, bp, cp with ap ` bp ` cp ” 0 pmod pq for any p.

We can finally prove Lemma C.1: Assume that there is an algorithm A that given a target t and
L “ Oppm{sq2q instances A`, B`, C`, 1 ď ` ď L of s integers in t1, . . . , U 1u, determines for all
1 ď ` ď L whether there are a P A`, b P B`, c P C` with a ` b ` c “ t in total time Opm2´εq

with ε ą 0. Observe that sinceA runs in time Opm2´εq, we must have s “ Ωpmεq, since otherwise
already the size of the input toA of Θpm2{sqwould be ωpm2´εq. Thus, we haveU 1 “ Ops3 log2 sq.

For r “ 1, . . . , γ logm many repetitions, we do the following: We choose a random prime pr P
r2, U 1s and obtain ` instances in t0, . . . , pr ´ 1u Ď t0, . . . , Uu by taking the sets modulo pr, i.e.,
A
prq
` :“ A1` mod pr, B

prq
` :“ B1` mod pr, and Cprq` “ C 1` mod pr. Observe that we may determine

whether there is some a P Aprq` , b P B
prq
` , c P C

prq
` with a` b` c ” 0 pmod prq by testing for each

t P t0, pr, 2pru, whether there a P Aprq` , b P B
prq
` , c P C

prq
` with a` b` c “ t. Thus, to do this, and

additionally ensure that each integer is in t1, . . . , U 1u, we add 1 to each integer in Aprq` , B
prq
` , C

prq
`

and for each λ P t0, 1, 2u, call A on the sets Aprq` , B
prq
` , C

prq
` , 1 ď ` ď L with common target

tλ :“ 3` λpr.

Observe that after these 3γ logm calls to A, we know for each 1 ď ` ď L and 1 ď r ď γ logm
whether there are a P A1`, b P B

1
`, c P C

1
` with a ` b ` c ” 0 pmod prq. We declare our original

3SUM instance A,B,C to be a YES instance if and only if there is some ` such that for all r
we have found a witness a P A1`, b P B1`, c P C 1` with a ` b ` c ” 0 pmod prq. Note that
if A,B,C is a YES instance, we always return YES by Lemma C.2. Otherwise, if A,B,C is a
NO instance, consider a fixed `. By Lemmas C.2 and C.3, the probability that for all r, we find
a P A1`, b P B

1
`, c P C

1
` with a ` b ` c ” 0 pmod prq is bounded by 2´γ logm “ m´γ . Thus,

by a union bound over all `, the probability that we incorrectly return YES in this case is at most
Lm´γ “ Oppm{sq2m´γq “ Opm2´γq. We can make this error probability polynomially small by
choosing γ ą 2.

Observe that the running time of the above process is Oplogmq times the running time of A (note
that the running time used for Lemma C.2 is linear in its output size, which is the input size of
A and thus dominated by the running time of A). Thus, we can solve any 3SUM instance in time
Opm2´ε logmq, which would refute the 3SUM conjecture. This concludes the proof of Lemma C.1.

4

C.2 Main Reduction for Matrix-Vector Multiplication

We now turn to the proof of Theorem 1.2.

Proof. Let s be a parameter to be chosen later. By Lemma 4.1, it suffices to solve L “ Oppm{sq2q
3SUM instances A`, B`, C` consisting of s integers in t1, . . . , Uu, U “ Ops3 log2 sq with common
target 1 ď t ď 3U in time Opm2´εq for some ε ą 0 to contradict the 3SUM conjecture.

We construct an pL ˆ 3s2Uq matrix M and v P t0, 1u3s
2U as follows. Intuitively, each row M`

and the vector v are partitioned into s2 blocks of size 3U . Each block is indexed by pi, jq with
i, j P t1, . . . , su in lexicographic order and the block of M` corresponding to pi, jq encodes the
characteristic vector of the set ai` bj `C` “ tai` bj ` c | c P C`u Ď t1, . . . , 3Uu, where ai is the
i-th integer in A` and bj is the j-th integer in B`. Correspondingly, every block pi, jq in v encodes
the characteristic vector of the singleton set ttu Ď t1, . . . , 3Uu. Thus, there is a position in block
pi, jq in which both M` and v have a 1 if and only if there is a c P C` such that ai ` bj ` c “ t.

Formally, for any 1 ď ` ď L, we write A` “ ta`1, . . . , a
`
su, B` “ tb

`
1, . . . , b

`
su and define

M` :“ 0a1`b1vC`0
3U´a1´a2

looooooooooomooooooooooon

v
a`1`b

`
1`C`

. . . 0ai`bjvC`0
3U´ai´bj

looooooooooomooooooooooon

v
a`
i
`b`
j
`C`

. . . 0as`bsvC`0
3U´as´bs

looooooooooomooooooooooon

v
a`s`b

`
s`C`

,

v :“ 0t´1103U´t . . . 0t´1103U´t . . . 0t´1103U´t,

where vC` P t0, 1u
U denotes the characteristic vector of C`. By this structure, it is clear that

M`v ě 1 if and only if there are a P A`, b P B`, c P C` with a` b` c “ t.

We will show that each row M` can be compressed to size Θps log sq (as opposed to its RLE of
length Θps3 log sq). We thus will set N “ r3s2U log3 ss “ Θps5 log5 sq, and append 0N´3s2U to
each row M` and v, so that we obtain an L ˆ N matrix M 1 and N -dimensional vector v1 whose
product M 1v1 can be used to solve all instances A`, B`, C` in linear time. Observe that each row has
a compression of size ΘpN1{5q “ Θps log sq, as desired. Since L “ Oppm{sq2q and N ě s5, we
can set s “ Θpm2{7q such that L ď N (we can indeed make L “ N by introducing zero rows, if
necessary). Thus, an OpNn2´εq-time algorithm for multiplying M 1 and v1 would solve all L 3SUM
instances in time

OpNn2´εq “ Oppm{sq2ps log sq2´εq “ Oppm2{sεqpolylogsq “ Opm2´ 2
7 εpolylogmq,

which would refute the 3SUM conjecture.

Analogous to the proof of Theorems 1.1 and B.2, we can compute a compression of size Θps log sq
in time Ops log sq. Indeed, for each M`, this already follows from Lemma B.3 when setting A1 :“
A`, A2 :“ B`, A3 :“ C`, which shows how to compress the string v1A1`A2`A3

“ M` to size
Ops logUq “ Ops log sq in time Ops logUq “ Ops log sq. For v, we simply apply Proposition 2.1
to the straightforward compression of 0t´1103U´t to size OplogUq, which leads to a compression
of v of size OplogU ` log sq “ Oplog sq. Using Observation A.1, we can make all encodings have
size Θps log sq, which concludes the proof.

D Matrix-Matrix Product

In this section, we give the full proof of Theorem 5.1.

Proof of Theorem 5.1. Let ` P N. We first define the matrices A1, B1 where A1 is a p2` ˆ 2`q matrix
with rows indexed by strings x P t0, 1u` in lexicographic order, andB1 is a p2`ˆ2`p2`qqmatrix with
columns indexed by py, kq P t0, 1u` ˆ t1, . . . , 2`u in lexicographic order. For arbitrary z P t0, 1u`,
let diagpzq denote the `ˆ ` diagonal matrix with z on the diagonal. We define

A1x :“ px | 1`q, B1py,1q,...,py,2`q :“

ˆ

diagp1`q 0
0 diagpyq

˙

.

5

Let C 1 “ A1B1 be the p2`ˆ2`p2`qq product matrix ofA1 andB1, with rows and columns indexed by
t0, 1u` and t0, 1u`ˆt1, . . . , 2`u, respectively. Observe that by definition, pCx,py,1q, . . . , Cx,py,2`qq “
px | yq for any x, y P t0, 1u`. In particular, when we view C 1 as a 22`p2`q-length string, it contains
all strings in t0, 1u2` as substrings, thus by Lemma 5.2, any row-wise compression is of size at least
22`{p2`q.

To also ensure column-wise incompressibility, we slightly extend the construction by analogous
transposed constructions: We let N :“ 2`p2` ` 1q and define the final pN ˆ Nq matrices A,B as
follows:

A :“

ˆ

A1 0 0
0 B1T 0

˙

, B :“

¨

˝

B1 0
0 A1T

0 0

˛

‚.

Since C :“ AB “

ˆ

A1B1 0
0 pA1B1qT

˙

contains all length-p2`q strings as substrings of the rows

(in the A1B1 part) and as substrings of the columns (in the pA1B1qT part), any strong compression
of C is of size at least 22`{p2`q “ ΩpN{ log2Nq, proving the third part of the claim.

For the first two parts, it remains to show that A and B can be well compressed: For the convenient
compression, we observe that any row in A is either of the form px1` | 02` | 0N´4`q, which has a
RLE of length at most |x1`|`OplogNq “ OplogNq, or it is of the form p02` | 0i´1α02`´i | 0N´4`q

for some α P t0, 1u, i P t1, ..., 2`u, which also has a RLE of length at most OplogNq. Thus, each
of the N rows of A can be compressed to size OplogNq, as desired. By a symmetric statement, also
each column of B has a RLE of size OplogNq.

Finally, for the strong compression, we show that we compress AT when viewed as a string, i.e.,
we compress the concatenation of the columns of A. The main insight is the following: Imagine a
binary `-bit counter. Using grammar compression, we can compress the sequence of values of any
fixed bit while the counter counts from 0 to 2` ´ 1 in size Op`q. Formally, let G0, G1 be grammar
compressions of strings s0,s1. For any 1 ď i ď `, we can encode ps2

`´i

0 s2
`´i

1 q2
i´1

using only Op`q
additional non-terminals in the canonical way. Specifically, using Op` ´ iq new symbols, we may
encode s2

`´i

0 s2
`´i

1 ; let S̃ denote the corresponding non-terminal. We then encode S̃2i´1

using Opiq
additional new symbols. In total, we only needOpp`´iq`iq “ Op`q additional symbols, as desired.

We apply the above idea to encode the concatenation all columns ofA as follows: Consider column i.

• For 1 ď i ď `, then by the chosen lexicographic order of the row indices x P t0, 1u` of A1,
note that the i-th column of A is of the form p02

`´i

12
`´i

q2
i´1

| 0N´2` . Using the above
analysis, we can compress it to size Op`q `OplogNq “ OplogNq.

• If ` ` 1 ď i ď 2`, the i-th column is of the form 12
`

| 0N´2` , which we can compress to
size Oplog `` logNq “ OplogNq.

• If 2` ` 1 ď i ď 3`, write i “ 2` ` i1 and observe that the i-th column of A is of the form
02
`

| p0i
1
´110`´i

1

q2
`

. UsingOp`q non-terminals to encode 0i
1
´110`´i

1

, it is immediate that
we can compress the complete column using Op`q additional non-terminals, i.e., yielding
a total of Op`q “ OplogNq.

• If 3`` 1 ď i ď 4`, write i “ 3`` i1 and observe that by the chosen lexicographic order of
the column indices py, kq P t0, 1u`ˆt1, . . . , 2`u of B1, the i-th column of A is of the form
02
`

| ps2
`´i1

0 s2
`´i1

1 q2
i1´1

where sα :“ 0i
1
´1α1`´i

1

. We can give trivial grammars of size
Op`q for s0, s1. Then, by the above analysis, we only need Op`q additional non-terminals
for the counter-like part. In total, we only need Op`q “ OplogNq non-terminals to encode
the i-th column.

• Finally, observe that the remaining columns i “ 4` ` 1, . . . , N consist of pN ´ 4`qN
zeroes, which we can encode together using only OplogNq non-terminals.

6

In summary, we can encode the first 4` columns using OplogNq non-terminals each, and only
OplogNq non-terminals for the remaining columns, so we can fully compress the concatenation of
A’s columns to size Oplog2Nq, as claimed.

7

	Further Preliminaries
	Vector Inner Product
	Matrix-Vector Product
	Proof of the Self-Reduction
	Main Reduction for Matrix-Vector Multiplication

	Matrix-Matrix Product

