- Many thanks to all the reviewers for their time and attention to our work!
- For Reviewer 1: We certainly agree that our techniques are modifications of prior ideas, but we feel that significant 2
- insight was required to develop and apply them in our particular manner. This is hard to prove as, once written down, 3
- the approach is quite simple (although this is of course actually a positive trait). A difficulty here is that one might be
- tempted to believe that at least our Theorem 6 can be easily obtained directly from prior results, and it is only after
- trying a bit (as we did for quite some time) that one concludes that things are not so easy. For some more evidence in
- this regard, and for your question about applying [17] in constrained settings, please see our response to Reviewer 3 on
- how the naive approach can fail. We'd also like to stress that obtaining Theorem 7 is perhaps a better exemplar since
- there isn't even an obvious-but-secretly-problematic approach until viewed under our lens.
- We also agree it would be better to be scale-free as well as parameter-free, but as you state this is not possible in general. 10
- In fact, it seems even the compromise of adding a penalty of $O(\|\mathring{w}\|^3 + \sqrt{T})$ cannot be achieved without sacrificing the 11
- second-order gradient statistics in the bounds [Mhammedi&Koolen 2020]. That said, we agree that finding what is 12
- achievable here is a good problem in particular we suspect this may be possible in the constrained setting subject to an 13
- additive penalty of O(GD), where G is the maximum Lipschitz constant and D is the diameter of the domain. 14
- For Reviewer 2: Regarding efficiency: The parameter-free scaling algorithm can run in O(d) time per update as it 15
- just needs the inner-product $\langle g_t, x_t \rangle$ to compute its loss. The FTRL algorithm requires the same matrix manipulations 16
- that a corresponding unconstrained algorithm would require to get the same regret bound, and so for the full-matrix 17
- algorithms here this involves a $O(d^2)$ rank-one update step, and the final combined algorithm requires a projection step 18
- that may depend on the domain. Concretely, the algorithm of Theorem 7 runs as fast as full-matrix AdaGrad. 19
- For Reviewer 3: We appreciate your comments, and the references you suggest are highly relevant in particular the 20
- recent FreeGrad algorithm of [Mhammedi&Koolen 2020] is a better comparison in the unconstrained case than the 21
- full-matrix algorithm of [17]. 22
- In regards to novelty, we must disagree here. It is certainly very reasonable to suspect that the unconstrained-to-23
- constrained technique suggested by [17] can be used to immediately convert an algorithm like full-matrix FreeGrad into 24
- a constrained algorithm we also thought this would work at first! However, it does not. As it turns out, the fact that 25
- this approach is not as easy as it seems was actually our original motivation for working on this problem! 26
- Using the constraint-set reduction of [17] in concert with an unconstrained algorithm like FreeGrad is problematic 27
- because the reduction changes the losses supplied to FreeGrad, which will in turn change its regret guarantee. This is 28
- because the regret bound of FreeGrad depends in a delicate manner on the values of the g_t . If the original losses are g_t , 29
- and the gradients supplied to FreeGrad are \tilde{g}_t , the final regret will be $\tilde{O}\left(\sqrt{\tilde{r}\sum_{t=1}^T\langle \tilde{g}_t,\mathring{w}\rangle^2}\right)$, where \tilde{r} is the rank of the \tilde{g}_t . It is not clear what the relationship is between this quantity and the desired bound $\tilde{O}\left(\sqrt{r\sum_{t=1}^T\langle g_t,\mathring{w}\rangle^2}\right)$. 30
- 31
- Here is a sketch of what one might try, and where it goes wrong. To start, we need to pick a norm to use with the 32
- 33
- constraint set reduction. The natural choice here is $\|\cdot\|_{G_T}$, so let us say we already know the matrix G_T ahead of time, and use this norm so that we have $\|\tilde{g}_t\|_{G_T^{-1}} \leq \|g_t\|_{G_T^{-1}}$. This is unrealistic, but even with this extra power it is not clear that things work: using the most obvious algebraic path of bounding $\sum_{t=1}^T \langle \mathring{w}, \tilde{g}_t \rangle^2 \leq \sum_{t=1}^T \|\mathring{w}\|_{G_T}^2 \|\tilde{g}_t\|_{G_T^{-1}}^2$ yields
- a bound like $\tilde{O}\left(\|\mathring{w}\|_{G_T}\sqrt{r\sum_{t=1}^T\|g_t\|_{G_T^{-1}}^2}\right)$. Now, the $\sum_{t=1}^T\|g_t\|_{G_T^{-1}}^2$ term may add an extra dependence on r that
- prevents us from achieving the desired bound. To make this work, we need to guarantee that the matrix $\sum_{t=1}^{T} g_t g_t^{\mathsf{T}}$
- induces the same norm up to an absolute constant as the matrix $\sum_{t=1}^{T} \tilde{g}_t \tilde{g}_t^{\mathsf{T}}$, and it is not clear that this will hold. We are aware that for the case of Metagrad-style bounds [van Erven&Koolen 2016], the work of [Mhammedi et. al 2019]
- 39
- invokes some clever algebra to show that the reduction works as-is, but their technique does not seem to apply to get the
- 40 bounds we are looking for. In contrast, our approach does not encounter these issues, and so we feel justified in saying 41
- that we are in fact the first to provide an algorithm achieving the desired full-matrix bound in the constrained setting. 42
- Moreover, even if there were some unknown algebraic trick that would make the prior reduction apply, our approach
- has obvious additional benefits: we can easily obtain the optimally-tuned full-matrix AdaGrad-style bound that is not 44
- clear how to obtain (even in the unconstrained case) using other techniques.
- We hope this addresses your concern.