
We thank the reviewers for their valuable time and insightful feedback. We begin by addressing two important points1

raised by multiple reviewers, and address the remaining comments of each reviewer in turn.2

Intuition for the SGM bias Reviewers 1 and 5 ask for clarification and intuition for why mini-batch gradient estimates3

are biased for the true objective gradients but unbiased for the surrogate objective gradients. In a nutshell, the bias exists4

because expectation and minimization do not commute, and the true and surrogate objectives differ exactly by their5

order: see lines 681–682 in the supplementary material. On the other hand, the mini-batch loss estimate is unbiased for6

the surrogate loss by definition, and since∇ and E do commute, we have that the mini-batch gradient is unbiased for the7

surrogate gradient. To see why the objective gradient is also similarly biased, consider the constructions in Proposition8

4 (which lower bounds the bias) except with `(x; s) = x · s. Then, the objective gradient at x > 0 is proportional to the9

loss must therefore be biased. We will discuss this in detail in the revised paper.10
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Comparison to other methods Reviewers 1, 2 and 5 ask for empirical comparison of11

the proposed mini-batch method with Dual SGM as well as the primal dual approaches12

of [15] and [43]. We agree that such comparisons are important, and we will add them to13

the revised manuscript. We include here preliminary results comparing our method with14

dual SGM for CVaR and χ2 penalty on the digits experiment. Our theory predicts that the15

advantage of mini-batch over dual SGM increases as the uncertainty set grows (i.e., as α16

and λ decrease). Consequently, we vary the uncertainty set size (re-tuning the learning rates17

in a grid each time) and see results consistent with our prediction. For the revised paper18

we will also perform ImageNet experiments and comparison with [15] and [43]. We note19

that, consistently with the bound in Table 1, Namkoong and Duchi [43, Figure 1] observe20

that stochastic primal-dual performs on par or worse than the full-batch method; it should21

therefore be considerably slower than mini-batch SGM.22

Reviewer 1 Thank you for the detailed comments and particularly the helpful questions23

and suggestions. We are glad you found our problem interesting and potentially impactful.24

Below we address the additional comments and questions given in point 8 of the review; we25

will make sure to include all clarifications in the revised paper as well. (2) By error floor,26

we refer to the suboptimality of the solution mini-batch SGM with batch size n finds when it has converged. That is,27

the error floor is L(x̄;P0)− infx∈X L(x;P0),where x̄ = arg minx∈X L(x;n). (3) In this context S = {1, ..., N} and28

we refer to evaluating the loss over the entire dataset (see also Appendix A.2). (4,8) Thank you for pointing out these29

typos. (6) The runtimes presented in Table 1 correspond to the multilevel Monte Carlo guarantees in Section 4, and as30

such they require no assumptions on ν, β and α. (9) Using LCVaR instead of Lkl-CVaR saved us tuning a parameter (the31

regularization strength), and still performed well compared to the full-batch method. A well-tuned smoothing parameter32

might obtain better results, though preliminary experiments did not show a major difference.33

Reviewer 2 Thank you for the kind review and important questions. For intuition why it is possible to solve DRO34

problems with complexity independent of the training set size N is that the objective L(·;P0) is a statistic which one35

can estimate and optimize using a sufficiently large sample from P0 ([19] proves this rigorously). This holds true even36

when N = ∞ (so P0 has infinite support), and we therefore expect to have guarantees independent of N . The key37

challenge in obtaining our N -independent rates is that the standard analysis of SGM does not apply, because of the38

bias described above. We propose two ways to circumvent this issue. First, in Section 3 we characterize the surrogate39

objective for which an unbiased estimate is easy to write down. There, the key points are to bound the bias (Proposition40

1) and the variance (Proposition 2). Second, in Section 4 we use multilevel Monte Carlo to formulate a sophisticated41

unbiased estimator of the objective (more precisely, one with arbitrarily low bias). There, the key point is bounding the42

second moment (Proposition 3). We will further highlight these points in the revision.43

Reviewer 3 Thank you for the thoughtful suggestions; we are glad you found our paper interesting and well-written.44

Replacing AGD with SGD would unfortunately not allow us to obtain the guarantees in Theorem 1. To see this, note45

that the O(1/T ) in the SGD rate is proportional to the objective smoothness, which for us is Θ(ε−1). Therefore, to46

make the error ε we would have to take T of the order ε−2, harming our convergence guarantee. (Note also that the47

common O(T−1/2) in both rates is proportional to the variance, which we make small by choosing a large batch size48

and appealing to Proposition 2). Regarding the suggestion to subsume the bounded loss assumption, note that if we49

only assume that X is bounded and `(x; s) is Lipschitz in x, it does not give us bounded loss (consider `(x; s) = x+ s50

when S = R). We can, however, assume that `(x0; s) ∈ [−GR,GR] for all s ∈ S and some x0 ∈ X , which combined51

with boundedness and Lipschitz assumptions would imply a bound on the loss; we will comment on this in the revision.52

Reviewer 5 Thank you for the helpful review and for highlighting important content and presentation issues. We53

discuss test-time robustness in our experiments in Appendix F.6.1, and note that prior work report significance robustness54

gains from the DRO objectives that we study [19, 31, 51, 68]. We hope that by providing efficient methods for DRO at55

scale, our paper will enable new demonstrations of the benefits of DRO.56


