- We thank all the reviewers for their constructive comments. We address the main points of the reviews in the following.
- 2 We will also address other comments in the revised version. We abbreviate Thompson sampling and partial monitoring
- 3 to TS and PM, respectively.

4 To Reviewers #1, #2, and #3 (on Generalization to Sub-Gaussian Noise)

- 5 The restriction to the Gaussian noise comes from the essential difficulty of the problem-dependent analysis of TS,
- 6 where lower bounds for some probabilities are needed whereas the sub-Gaussian assumption is suited for obtaining
- 7 upper bounds. In fact, to the best of our knowledge, the problem-dependent regret analysis for TS on the sub-Gaussian
- 8 case has never been investigated even for the multi-armed bandit setting, which is quite simple compared to that of
- 9 PM. In the literature, the noise distribution is restricted to distributions with explicitly given forms, e.g., Bernoulli,
- Gaussian, or more generally a one-dimensional canonical exponential family (Kaufmann et al., 2012; Agrawal and
- Goyal, 2013a, Korda et al., 2013). Their analysis relies on the specific characteristic of the distribution to bound the
- problem-dependent regret. We will add this discussion in the revised version.
- (Korda et al., 2013) Thompson Sampling for 1-Dimensional Exponential Family Bandits, In NeurIPS2013.

14 To Reviewer #2

- 15 > "Why not make the entire focus of the paper the setting where theoretical results can be obtained?"
- 16 The linear PM has been mainly considered from the theoretical viewpoint and experiments have not been conducted.
- 17 Therefore, we conducted experiments on the discrete setting for fair comparison with existing work.
- > "In line 216 it is unclear whether the algorithm is different from the family of TS used in practical settings"
- 19 Their algorithm considers the posterior distribution for regret (not pseudo-regret), and an action is chosen according to
- 20 the posterior probability that each arm minimizes the *cumulative* regret (thus the time horizon also needs to be known),
- 21 whereas the typical TS considers the pseudo-regret at each round. We will make it more clear in the revised version.
- > "The experimental section ... incompleteness by not acknowledging this approach (= Mario sampling)."
- Thank you for pointing out the lack of reference to the important work. Mario sampling is the algorithm for locally
- observable games and not applicable to hard games, like dp-hard. On the other hand for locally observable games,
- Mario sampling coincides with TS (except for the above difference between pseudo-regret and regret with known time horizon) when any pair of actions is a neighbor. We confirmed that some dp-easy games satisfy this property,
- 27 and conjecture that it generally holds for dp-easy. Therefore, the performance is essentially the same between TSPM
- (R=1) and Mario sampling, though general analysis on the difference is an important future direction.
- > "In the comments on the upper bound it would be useful to have some sense of the magnitude of the $z_{j,k}$ terms."
- Intuitively, the norm of $z_{j,k}$ indicates the difficulty of the problem. Whereas we can estimate $(S_j p, S_k p)$ with noise
- through taking actions j and k, the actual interest is the gap of the losses $p^{\top}(L_i L_k) = (S_i p, S_k p)^{\top} z_{i,k}$. Thus,
- if $||z_{i,k}||$ is large, the gap estimation becomes difficult since the noise is enhanced through $z_{i,k}$. We will add this
- discussion in the revised version.

To Reviewer #3 and Reviewer #4 (on the Number of Rejected Times in Accept-Reject Sampling)

- In the accept-reject sampling, it is desirable that the frequency of rejection (a) does not increase as the time-step t and (b) does not increase so much with the number of outcomes. From the experimental results, we can see that the
- property (a) is indeed satisfied. For the property (b), it is true that the frequency of rejection becomes large when exact
- sampling (R = 1) is conducted, as pointed by R3. Still, we can substantially improve this frequency by setting R to be a
- small value or zero, which still keeps regret tremendously better than that of BPM with almost the same time-efficiency
- as BPM-TS. This result exhibits a clear speed-performance trade-off. We will make it more clear in the revised version.

To Reviewer #4

- > "... The paper includes experiments, but they are limited in scale. The lack of contextual feature modeling ... "
- 43 The scale of the experiment is determined based on standard literature (Bartók et al., 2012; Komiyama et al., 2015).
- The analysis of the contextual and the non-contextual settings is essentially different, because achievable regrets and appropriate algorithms can be different between them.
- > "Experiments setup. Needs to remind reader what is N and M. (I guess number of arms?) How can they be different?"
- Thank you for the suggestion. In the revised version, we will explicitly describe that "price" and "evaluation value" correspond to the action and the outcome, respectively.
- > "There is a general lack of discussions of the results how different conditions impact the cumulative regrets."
- 50 The discussion on the performance comparison of methods and the rejection sampling is given in Line 297–306. In
- addition to that, we can say that the proposed methods outperform BPM-TS more significantly for a larger number of
- outcomes. This can be seen from the discussion in Appendix D, and we will make it more clear in the revised version.