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Abstract

Contemporary machine learning applications often involve classification tasks with
many classes. Despite their extensive use, a precise understanding of the statistical
properties and behavior of classification algorithms is still missing, especially in
modern regimes where the number of classes is rather large. In this paper, we take a
step in this direction by providing the first asymptotically precise analysis of linear
multiclass classification. Our theoretical analysis allows us to precisely character-
ize how the test error varies over different training algorithms, data distributions,
problem dimensions as well as number of classes, inter/intra class correlations
and class priors. Specifically, our analysis reveals that the classification accuracy
is highly distribution-dependent with different algorithms achieving optimal per-
formance for different data distributions and/or training/features sizes. Unlike
linear regression/binary classification, the test error in multiclass classification
relies on intricate functions of the trained model (e.g., correlation between some of
the trained weights) whose asymptotic behavior is difficult to characterize. This
challenge is already present in simple classifiers, such as those minimizing a square
loss. Our novel theoretical techniques allow us to overcome some of these chal-
lenges. The insights gained may pave the way for a precise understanding of other
classification algorithms beyond those studied in this paper.

1 Introduction

Multiclass classification is fundamental to a large number of real-world machine learning applica-
tions that demand the ability to automatically distinguish between thousands of different classes.
Applications include essentially any problem with categorical outputs spanning natural language
processing [SVL14], where a seq2seq decoder has to choose the correct word token, reinforcement
learning [JGP16, MXSS20], where the agent has to choose the correct action, to recommendation
systems, where the model should recommend the correct movie out of many other options. For
instance, YouTube’s recommendation system is modeled as an extreme multiclass problem with more
than a million classes where each video corresponds to a viable class [CAS16].

The growing list of applications motivate an in-depth exploration of multiclass classification algo-
rithms. Despite their extensive use however, a precise understanding of the statistical properties and
behavior of classification algorithms is still missing with many open questions: What is the total
and per class test accuracy? How does this quantity depend on various problem parameters such as
data distributions, problem dimensions, etc.? What is the highest test accuracy achievable by any
algorithm? What is the best algorithm for each scenario? Which algorithm achieves the highest
accuracy on rare or minority classes? How does the answer to the above question change in modern
regimes where the number of classes is large?

Asymptotic analysis in modern high-dimensional regimes where the number of training data and
feature sizes grow in tandem with each other provides a promising setting for precisely quantifying the
accuracy of classification algorithms as a function of problem variables and resolving the questions
above. However, despite the rich literature on precise high-dimensional estimation and more recently
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binary classification, multiclass classification is an under-explored venue possibly due to the difficulty
of capturing the intricate dependencies between the classes even for relatively simple linear classifiers.

Contributions. We initiate a precise asymptotic study of linear multiclass classification in the
modern high-dimensional regime, where the sizes of the training data and of the feature vectors
grow large at a proportional rate. A key promise of such a precise analysis is that it allows us
to accurately compare between different classification algorithms and data models. Compared to
linear regression/binary classification, we identify the following crucial challenge: the test accuracy
in multiclass classification relies on intricate cross-correlations between the trained weights of
the classifier. This has two consequences that drive our analysis. First, in order to obtain sharp
asymptotics on the test error of any classifier, it is a prerequisite to precisely quantify the asymptotics
of these cross-correlations. Second, the test error does not depend on the correlations in closed-form
expressions. Thus, to compare between different classifiers, we need efficient numerical and analytic
means to evaluate the test error in terms of the correlation matrices. Interestingly, we show that
these challenges are already present in simple classifiers, such as minimizing the square loss, and in
stylized distributional settings, such as Gaussian features. Our contributions are as follows:

o We study two different data models: a Gaussian Mixtures Model (GMM) and a Multinomial Logit
Model (MLM) with Gaussian features. For each one of them, we provide a precise characterization of
total and class-wise test accuracy for three different training algorithms: (i) a least-squares (LS) based
classifier, (ii) a weighted least-squares (WLS) based classifier, and (iii) a simple per class averaging
(Avg) estimator. For the least-squares based classifiers, we develop a new technique to overcome the
technical challenge of characterizing the limiting behavior of the weights’ cross-correlations. For the
per class averaging classifier, we show that it is Bayes optimal for a GMM with equal priors.

o We discuss efficient means of evaluating the test accuracy as a function of the weights’ cross-
correlations. This, together with the derived asymptotic formulae for the latter, lead to the first precise
high-dimensional characterization of how the total/class-wise accuracy varies for different algorithms,
data distributions, problem dimensions as well as number of classes, the inter/intra class correlations
and class priors. For special problem geometries, we derive precise conditions on the data distribution
and on the relative size of the training set over which each of the two studied algorithms dominates.

e We present and discuss numerical simulations that corroborate our theoretical findings. For
instance, with an eye towards making classification algorithms more fair/equitable, we use our precise
characterization of the class-wise accuracy to demonstrate how different algorithms behave in the
presence of rare/minority classes. We also empirically compare the algorithms studied in this paper
to other popular losses such as cross-entropy minimization. This allows us to better understand the
performance of various algorithms in modern regimes of large number of classes.

Related Work. There is a classical body of algorithmic work on multiclass classification, e.g., [CSO1,
LLW04, WWO98, BB99, DB94] and several empirical studies of their comparative performance
[RKO4, Fiir02, ASS00, PMO05]. A more recent extension of this line of work investigates the effect
of the loss function in deep neural networks [HYS16, GCOZ17, KS18, BEH20]. Algorithms for
extreme multiclass problems with huge number of classes has also been studied in several [CAL13,
YHR"16, DCO20, RCY"19, KMS15] works. On the theory front, numerous works have investigated
consistency [Zha04, LLWO04, TB07, PSGI13, PS16] and finite-sample behavior [KP*02, Gue02,
ASS00, LLY*18, CKMY 16, LDBK15, Maul6, LDZK19] of multiclass classification algorithms.
Our work differs from this literature in that we are interested in precise characterizations of the test
accuracy rather than order-wise bounds. Here we focus on linear classifiers, but we consider the
modern high-dimensional regime in which both the sample size and the features’ dimension are large.

Specifically, our theoretical approach to linear multiclass classification fits in the rapidly grow-
ing literature on sharp high-dimensional asymptotics of convex optimization-based estimators
[Don06, Sto09, OH10, CRPW12, ALMT13, DMM11, BM12, ALMT13, Stol3, OTH13, TOH15,
Kar13, EK18, DM16, ORS17, TXH18, TAH18, MM18, WWM19, CM19, HL.19, BKRS19, ASH19,
JSH20]. Most of this line of work studies linear models and regression problems. More recently
there has been a surge of interest in sharp analysis of a variety of methods tailored to binary classifi-
cation models [TAH15, Hual7, CS18, SC19, MLC19b, MLC19a, KA19, SAH19, TPT20b, DKT19,
MRSY 19, LS20, MKLZ20, Lol20, TPT20a]. Nevertheless, none of these prior works have yet con-
sidered multiclass classification settings. Our paper unveils the salient features of the multiclass
setting and shows that corresponding results from the binary setting do not directly apply here.
We emphasize that this is the case even for seemingly simple one-vs-all (OVA) classifiers, such as



minimizing the square-loss, that involve training a single binary classifier per class [RK04]. The
key technical tool behind our sharp analysis is the convex Gaussian min-max Theorem (CGMT)
[TOH15, Stol3]. However, a “naive" application of the CGMT on the original optimization of the
classifier does not allow us to compute all the necessary correleations between the classfier’s weights
to precisely capture the total/class-wise errors. Instead, our key idea is to formulate an artificial
optimization problem, which captures the missing correlations and at the same time conveniently
allows us to leverage the CGMT.

Notation. We use [k] to denote {1,...,k}. We use boldface lowercase letters x,y, , . . . to denote
vectors and boldface uppercase letters X, Y, M, ... for matrices. We write e, for the /-th standard
basis vector in R¥. We also write I &, Orx and 1, for the k x k identity and all-zeros matrices and the
k x 1 all-ones vectors. For a vector ¢ € R¥ we write arg max ¢ to denote the index of its largest entry,
Le., argmax ¢ = arg max ) ¢;. The superscript ¥ denotes pseudoinverse. We use Q(x) for the tail
of a standard Gaussian (Q-function). Finally, we reserve variables Gy, G, ..., G (Y (0,1) to
denote i.i.d. standard Gaussians.

2 Problem formulation

We focus on multiclass classification problems with k classes. Specifically, we assume the training
data consists of n feature/label pairs {(xz;,Y;)}, with x; € R representing the features and Y; €
{1,2,...,k} the associated labels representing one of k classes. It will be convenient to also model
the labels as one-hot encoded vectors y; € R* representing one of & classes with one-hot encoding,
i.e., y; = ey,. Therefore, when convenient we shall use {(x;,y;)}I, to represent the training data.
Throughout, we shalluse X = [1 @2 ... x,]eRP™ andY =[y1 ¥y ... Yn]eRP™,
to denote the matrix of features and their labels aggregated into a matrix, respectively. We shall
also use Yy € R™ to denote the /-th row of Y. In our analysis we focus on training linear classifiers.
Specifically, we use W = [wy;  wy - 'wk]T € RF*? and b € R to denote the weights and biases
of this linear model, respectively. The overall input-output relationship of the classifier in this case is
a function that maps an input vector & € R? into an output of size k via & — Wz + b € R¥, where a
training algorithm is used to train the corresponding weights W € R¥*? and biases b € R*. Next we
detail the data models and training algorithms that are formally studied in this paper. We end this
section by discussing how the test error can be calculated for the different data models.

2.1 Data Models

In our theoretical analysis we assume the training data {(x;, Y;)}1, (alternatively {(x;,y;)}},) are
generated i.i.d. according to («,Y)/(x,y). We consider two models for the distribution of (x,y)
which we detail next. In both models we shall use mean/regressor vectors { tts } ?:1 € R? and aggregate
them into columns of a matrix of the form M := [p1  po ... pg]e€ R%F In the first model,

these vectors represent the mean of the features conditioned on the class, i.e., pty = E [m\Y = E],
whereas in the second model these vectors can be viewed as regressor coefficients. We shall refer to
{pe} ’Z:l/M as “mean” vectors/matrix in both models. We denote the Grammian matrix of means as
Sppu=M T M . Furthermore, we shall use j1¢ := || ¢, to denote the norm of the mean vector ;.

Gaussian Mixture Model (GMM). In this model each example (x,Y") belongs to class ¢ € [k]
with probability 7y, i.e., P{Y = ¢} =m,. Weletw=[m 72 ... 7Tk]T € R denote the vector of
priors which of course obeys 7 > 0 and 177 = 1. Also, we model the class conditional density of an

example in class £ with an isotropic Gaussian centered at a mean vector gt,. In particular, we say that
a data point (x,Y") (or its one-hot encoded representation (x,y)) follows the GMM model when

P{Y =(}=m, and x=py +2z, z2~N(0,0%1,). 2.1

We note that for a training set summarized by the feature and label matrices X and Y with columns
generated i.i.d. according to the above distribution we have: X = MY + Z where Z ¢ R¥”" is a
Gaussian noise matrix with i.i.d. A'(0,0?) entries.

Multinomial Logit Model (MLM). In this model we assume that feature vectors « are distributed
i.i.d. N (0, I;) and that the conditional density of the class labels is given by the soft-max function.
Concretely, we say that a data point («,Y") (or its one-hot encoded representation (x, y)) follows
the multinomial logit model when

x~N(0,1,) and P{Y=(|x}= e““"w)/ > elkis@), (2.2)
Jjelk]
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2.2 Classification algorithms

As mentioned earlier, in this paper we focus on training linear classifiers of the form x — Wx + b
with W e R¥*? denoting the weights and b € R the offset values.

Least-squares (LS). In this approach we train a linear classifier x — W x + b via a least-squares fit

WX +b17 - Y.

to the training data: (W, b) := argminw p 5= Y1y [Wa; + b -y, sz =L

Class averaging (Avg). This approach uses the following weight and offset values W = %YX T
and b := %Yl. Let ny be the number of training data from class ¢ then, equivalently, @, =

o (n%] Yy, mi) and by = . Therefore, this classifier picks weights according to the empirical

mean of features of each class multiplied by the relative frequency of that class and the offset value
as the fraction of data points from that class. We note that this algorithm has the same classification
performance as the outcome of the ridge-regularized least-squares with infinite regularization.

Weighted Least-squares (WLS). This is a variation of the Least-squares approach where we fit a
weighted least squares loss of the form (W,B) = argminw p ﬁ || (WX +b17 - Y) DH?D . Here,
D ¢ R™" is a diagonal matrix with the ith diagonal entry equal to D;; = w, when the i-th data point
is from class £ (i.e. Y; = £) and wy > 0, £ € [k] denote the weights. Aggregating the weights into a
vector of the form w = w1 ws ... wi]” €R¥ we can rewrite D in the form D = diag (YTw).
In this approach the loss associated to data points to class ¢ is weighted by a factor w?. For instance,
if the class priors are known, a natural choice might be wy = 1/,/7;. Such a weighted approach

allows the classification algorithm to focus on rare/minority classes which are not well represented in
the training data.

Cross-entropy (CE). In this approach the best weight/offset values are determined by fitting a
Tk elPemidtby

cross entropy loss (W, D) := arg minyy p % i 1og( ) Theoretical analysis for CE

(Wy, ,&;)+by.
e 7 i
is substantially more involved and we defer it to future work. Nevertheless, we compare with this
classifier in our numerical simulations.

2.3 Class-wise and total test classification error

Let W, b denote the parameters of a trained classifier. Now consider a fresh data sample (z,Y)
generated according to the same distribution as the training data. Once, we have learned the parameters

W,E of the classifier, the class Y predicted by the classifier is made by a winner takes it all strategy,

as follows, Y = arg IMAaX (] (@), x) +Ej. Therefore, the classification error condition on the the
true label being ¢, which we shall refer to as the class-wise test error, is equal to

P.:=P{Y # Y|V =c} = P{(@,,z) + b. < max (@;,z) +b;}. (2.3)

]#C

Correspondingly, the fotal classification error is given by

=P{V+Y)- P{arggxel[ak)]({('lﬁj,m) +h) # Y}} - P{(@y, ) + by < max (@) +B;}). 24

For both the GMM and MLM, the classification error depends on the vector of intercepts b e R¥ and
the following key “correlation” matrices: X, o := WWT and Ywu=WM.

GMM. In model (2.1), the test error probability is explicitly given by
P.=P { arg max (crg +b+ Zw}uey) + Y}7 where g ~ N (0,2 1), (2.5)
and Y is independent of g with probability mass function P{Y = ¢} = m,, L€ [k].

MLM. In model (2.2), the test error probability is explicitly given by

- 3 3
P.=P{argmax (g+b)+Y(h);, where [g] ~N{0, [ e w’u] ; 26
{argmax (g+b) # Y (h)} AR NS S ) (2.6)

and P{Y'(h) = (} = ™ [¥ ;i ™, Le[k].



Calculating the class-wise/total misclassifcation errors. The identities (2.5) and (2.6) (see Section
D.1 for a proof) as well as similar ones for the class-wise test error demonstrate that the total/class-
wise errors only depend on the correlation matrices X, o, and X, ,,, the offset values b and the the
class conditional means. For instance, as we show in the supplementary for GMM the class-wise
errors are given by

Pye=1-P{SY22>¢.}, 2.7

where z is a Gaussian random vector distributed as A'(0, 0%I},_1), S, € RF=D*(*=1) i5 3 symmetric
matrix such that its 4, j element is given by [S.];; := (@W. — W;, W. — W,) and &, € RF-1 a vector

with entries [t.]; := (@W; — W, pe) + (R - b.). Similarly, based on (2.7) the total classification
error in GMM is equal to P, = Zéf:l T Pee =1 - Zf:l e P {Scl/2 z > tc}. As also detailed in
the supplementary, the class-wise/total test errors for MLM similarly depends on quantities of the
form P{Az >t} with z a standard Gaussian random vector, A and ¢ depending only on correlation
matrices, conditional means and classifier offset-values; see Section D.3. There are a variety of
algorithmic approaches to calculate P{Az > ¢t} once A and ¢ are known based on Monte Carlo
methods. Analytic bounds on this quantity have also been studied in the literature, e.g., [HHO3, SL80];
see more details in Section D.

2.4 High-dimensional regime

This paper derives sharp asymptotic formulae for the class-wise and total classification error of
averaging and (weighted) LS algorithms for GMM and MLM. We defer all our proofs to the appendix.
All our results hold in the following high-dimensional regime with finite k.

Assumption 1 We focus on a double asymptotic regime where n,d — oo at a fixed ratio vy = d/n > 0.

For the (weighted) least-squares classifier, we focus here in the overdetermined regime v < 1.
However, our approach is also directly applicable to regularized (or min-norm) LS/WLS in the
overparameterized regime vy > 1.

For a sequence of random variables &), 4 that converges in probability to some constant c in the
. . . P . L
limit above, we simply write &}, 4 — c. For a random vector/matrix v,, 4/V,, q and a deterministic

. . P P .
vector/matrix ¢/C, the expressions v,, 4 — c and V,, 4 — C are to be understood entry-wise.

3 Results for Gaussian Mixture Model

In this section we discuss the asymptotics of the intercepts/correlation matrices for the averaging and
the LS classifiers for the GMM. The derived formulas can be directly plugged in (2.5) and (2.7) to
obtain asymptotics for the total and class-wise test error, respectively. We end this section by also
characterizing the Bayes optimal estimator in this model when priors are balanced 7y = 1/k, ¢ € [k].
Additional results on the performance of Weighted LS are deferred to the appendix.

3.1 Class averaging classifier

Proposition 3.1 Consider data generated according to GMM in an asymptotic regime with any ~y > 0.
For the averaging estimator discussed in Section 2.2, the following high-dimensional limits hold

’l;iwr, Swp i>diag(71') D Y (3.1a)
w,w L, yo? - diag(m) + diag(m) - £, . - diag(m) . (3.1b)

The above result allows us to precisely characterize the behavior of the averaging estimator in the
high-dimensional regime. Let us consider a few special cases.

Two classes. Consider the special case with two classes with class priors 7, = 1 -9 =: 7. In this case
we can compute the class-wise misclassification probabilities P.j; and P, explicitly. Specifically

using (3.1), we have Sy = w1 — (1 — ) pa Hi+’yc72 and tq = (1-27)+(1-m) (1, poo)—7 |1 HZ .



7THM1”?2—(1—77)(H1,l-¢2)+277—1
VIrpi-(=-m)pz |7, +702
of equal priors ™ = m; = w9 = 1/2, antipodal and equal energy of the means, i.e., 1 = —p2 and

Substituting the latter two in (2.7) we arrive at Py L, Q(

) - In the case

pt:= |pall,, = |p2l,,. we can use the above to conclude that P,j; = Pys = 5 P = 2Q( u2}+irr2 )-
This formula recovers the result of [MKILZ20] for this special case. Also, as mentioned in [MKLZ20],
the formula matches the Bayes optimal error computed in [LM19] for Gaussian mean vectors. This
shows that the class averaging method is Bayes optimal in this very simple setting. In Section 3.3,
we generalize this result to multiple classes: we show that the average estimator is (asymptotically)

Bayes optimal for balanced classes and equal-energy Gaussian means for any k > 2.

Orthogonal means, equal priors and equal energy. Next we focus on a special case with orthogo-
nal means (u;, ;) =0, i # j € [k] of equal energy pi? := |, ||§2 and of equal priors 7; = 7 = 1/ for

) . . . e P
i € [k]. In this case, the class-wise miss-classification error converges to P, — 1 - P{Si/ 22> t},

2
where S, = m(mp? +vo?)(Ix_q + lk_ll;f_l) and t = —7p?1,_;. Defining UAvg = ”7, /m ,
after some algebraic manipulations the total classification error of the averaging estimator in this case

is given by P = Pe Avg Zop {Go +maxex-1] Gj 2 uAvg}, where G, ..., Gr-1 gl N(0,1).

3.2 Least-squares classifier

This section focuses on characterizing the intercepts and correlation matrices for the least-squares
classifier. To present our results, we assume that the Grammian matrix has eigenvalue decomposition

Suu=M"M=vvT 2> 0, VeRPT 1<k, (3.2)
with ¥ a diagonal positive-definite matrix and V' an orthonormal matrix obeying VIV = I,..

Theorem 3.2 Consider data generated according to GMM in an asymptotic regime with v < 1. In
addition to (3.2), define the following two positive (semi)-definite matrices: P := diag(m) — wm’ >
Opxsc and A := 021, + VI PVY > 0,,. Then, for the least-squares linear classifier (W,B) the
following limits are true asymptotically

b L r-PvsA'sVTr, B,,— PVZAT'EVT, (3.3a)

P Y -1 -1 Y T
Yww > — _PrPVEA (A T 1 )mvTP. 3.3b
e Ut ( (1-7)o? /) (330

The above result allows us to precisely characterize the behavior of the least-squares classifier
in the high-dimensional regime. In Section H.2, we specialize (3.3) to the case of orthogonal
means. Compared to the weight vectors @;, 4 € [k] of the class averaging classifier that are also
(asymptotically) orthogonal when means are orthogonal, this is not the case for LS. We show next
that these spurious correlations only hurt the classification error when classes are balanced.

Proposition 3.3 Consider the case of orthogonal, equal energy-means %, ,, = ulIy, balanced priors

m = 1]k, i € [k] and v < 1. Setting urg := %Mﬁ, it holds that P, 15 LN P{Go +

maxex-1] Gj 2 uLs}. Specifically, since urs = Uavg\/1—7 < Uavg the averaging estimator
strictly outperforms LS for all 0 < v < 1 and k > 2 in this setting.

3.3 Bayes estimator for the balanced Gaussian Mixture Model

To check how far the above algorithms are from the lowest misclassification error achievable by
any algorithm in this section, we consider a Bayesian setting with Gaussian mean vectors and
we derive the Bayes-optimal risk for the case of equal priors. Recall that the Bayes estimator

Y = argmaxyes P{Y = £| X,Y,x} minimizes the risk P, = P{Y # Y} =Ex y oy [1[Y # V]].

Proposition 3.4 Consider p; i N(O,%Id) and m; = 1/k for all i € [k]. Set upayes ‘=

2
B 1 .
e T Then, the Bayes risk converges to P {Go +maxyer-1] G > uBayes}.



Under Gaussian prior, the means are asymptotically orthogonal and equal-energy. As shown earlier,

in this setting, P¢ Avg i P {GO +maXpe[x-1) Gy > uAvg}. But, uavg = UBayes- Thus, the averaging
method is (asymptotically) Bayes optimal for equal-norm, orthogonal means and balanced classes.
An analogous result was’ derived in [LM 19, MKLZ20], but only for binary classification.

4 Results for Multinomial Logit Model

In this section we discuss the asymptotics of the intercepts/correlation matrices for MLM. We present
results for arbitrary mean-vectors as well as special cases where the means are mutually orthogonal.
Recall the eigenvalue decomposition of the Grammian X, ,, = VX2V 7T in (3.2). In order to state

. . . . . aqe . " 2
our results, it is convenient to introduce the following probability vectors in R¥ and R*":
eVZ‘.g

(evzg) (evzg)T
w:=E [71%16‘/29

2

(1§ ev>9)

Note that 7r and IT are the first and second moments of the soft-max mapping of V3g ~ N (0,3, ,,).
eT

In fact, for the MLM in (2.2) it holds that P{Y = ¢} = E[P{Y = £|@}] = E[ $rvmn ] = 70, £ € [K]
k

since M Tz is distributed as V' Xg. Thus, 7 is the vector of class priors (which explains the slight
abuse of notation here in relation to our notation for the class priors of the GMM).

]eRk and H::E[ ]eRka, where g ~ N (0,1,.). (4.1)

4.1 Class averaging classifier

Proposition 4.1 Consider data generated according to MLM in an asymptotic regime with any v > 0.
For the averaging classifier; the following high-dimensional limits hold

bLn, S (diag(m)-TI) -3, , . (4.2a)
S —> 7 - diag(w) + (diag(m) - TI) - X, ,, (diag(w) - TI) . (4.2b)

Using Gaussian decomposition in (2.6) and checking from (4.2) that X, ,, — ZJM,’MZ)T »7 i

B,
~ - diag() the test error obtains the following explicit form:
P Ave — P{argmax {\/7 - diag(v/7) - g+ (diag(n) -TI)- VE - g+7} = V(g)}, (4.3)

where G~ N'(0,1;), g ~ N'(0, 1) and P{Y (g) = ¢} = ¢ VD95 1,1¢% VD9 ce[k].

4.2 Least-squares classifier

This section focuses on characterizing the intercepts and correlation matrices for the least-squares
classifier. We also use the result to characterize conditions under which LS outperforms averaging.

Theorem 4.2 Consider data generated according to MLM in an asymptotic regime with 0 < v < 1.
Recall the notation in (4.1). For the LS classifier, the following high-dimensional limits hold.

[ T, Zwpu 2, (diag(m) -1II) -3, 4, (4.4a)
1-2

Y w £, T v (diag(w) - 71'71'T) + T 7. (diag(w) -1II) - X, ,, - (diag(w) - II) . (4.4b)
vy -

It is interesting to observe that (4.4a) is identical to (4.2a). However, the cross-correlations in 3., ,
differ. We prove below that this leads to an improved performance of the LS classifier for large
sample sizes. First, Theorem 4.2 can be used to check that

Yoww — Dw,pu

P . . .
“7“257“ — % (dlag(r) -l — (diag(w) - ) X, ,, (diag(7) - H)) .

Thus, the only change in the test-error formula compared to (4.3) is the term «y - diag(7) substituted
by the matrix above.



Proposition 4.3 Assume orthogonal, equal-energy means X, ,, = p* Iy, k > 2. Let vy, = ( k‘ik)z ( 1-
[ 020G

2
m] ) € (0,1). Then, with probability 1 as n — 00, P. 15 < Pe avg <= 7 < 7s.

5 Numerical Results

This section validates our theory via numerical experiments and provides further insights on multiclass
classification. See also Section A for more extensive experiments. We study the class-wise/total test
misclassification error in both GMM and MLM for different sample sizes, number of classes and
class priors. In line with Section 2.2 we consider four algorithms: (i) Averaging (Avg), (ii) LS, (iii)
Weighted LS (WLS) with the ith class weighted by wf = 1/my, (iv) Cross-Entropy (CE).

Figures 1 and 2 focus on GMM with k = 9 classes, d = 300 and ||p; |7, = 15. To model different class
prior probabilities, we use the distribution 71 = o = w3 = 0.5, 74 = 0.5, 715 = 0.5, 16 = 0.25, 77 =
0.25, g = 0.25, m9 = 1/21. We consider three scenarios: (a) orthogonal means, equal prior (7; = 1/9);
(b) orthogonal means, different prior; (c) correlated means with pairwise correlation coefficient equal
t0 0.5 (i.e., (i, 5}/ ([ p2illg, |1e50,,) = 0.5 for i # j) and different priors as discussed above. Figure
1 shows the test miss-classification errors as a function of «y := d/n. In all scenarios our theoretical
predictions are a near perfect match to the empirical performance. In scenario (a), class-wise
averaging achieves the lowest error as predicted by Proposition 3.4. However, in scenario (b) where
the means have different norms the averaging method has higher misclassification error compared
with CE, LS and WLS for large sample sizes (small y). We note that both LS and WLS achieve
lower errors compared with CE as the sample size grows. Scenario (c) is similar to (b). However, due
to class correlations, the errors are uniformly higher. Figure 2 shows the corresponding class-wise
miss-classification errors for the smallest «y in Figure 1 (v = 0.117). In scenario (a), errors are equal
which is expected given the equal class priors. In scenarios (b) and (c) however, due to different
priors, large classes 7,8,9 achieve best accuracy. The performance difference is most visible for the
averaging approach. LS mitigates this issue to some extent, while WLS creates the flattest class-wise
errors suggesting that it can reduce the miss-classification error on small/minority classes.

Figure 3 focuses on orthogonal classes with varying number of classes k& where ||p; H,?Z =15 and
d € {50,100,200} with kd/n = kv fixed at kv = 20/11. It plots the ratio of the empirical error
probability and our theoretical prediction as k grows until £ = d. Two observations are worth
mentioning here. (1) The accuracy of our predictions noticeably improves as the problem dimension
d,n grow as expected given the asymptotic nature of our analysis. Interestingly, the convergence
appears to be noticeably faster (as a function of d) for the LS rather than the Averaging classifier. (2)
Our theoretical results formally require that k is fixed while d (and n) grow large. Yet, the presented
experimental results suggest that they might also hold for large k£ under the shown scaling. This is a
fascinating research question that we believe is worth investigating further.

Figure 4 provides experiments on MLM with k = 9 orthogonal classes. Unlike GMM, CE achieves
the best performance in MLM. In Figure 4 (a), classes have same norms | ;| ¢, = 10, while in Figure
4 (b) we have quadrupled the norms of classes 7,8,9 and doubled the norms of classes 4,5,6. This
disparity between the norms seems to help improve the CE accuracy, but hurt LS/averaging accuracy
for small ~y. Finally, Figure 4 (c) shows the class-wise probability of error associated with (b) for
v =0.117 and demonstrates that LS outperforms averaging.

6 Future Directions

This work aims at initiating a precise asymptotic study of multiclass classifiers that provides a
promising setting for resolving a rich set of open questions regarding the (comparative) performance
of classification algorithms as a function of the involved problem variables. As mentioned, even
understanding the statistical performance of one-vs-all multiclass classifiers does not follow directly
from the existing literature on binary classifiers. Extending the results of this paper to the one-vs-
all logistic and SVM classifiers would allow for a principled comparison among these different
choices. A possibly more challenging, albeit mathematically intriguing and practically relevant
task, is characterizing the asymptotics of more complicated (non-separable) losses, such as the
cross-entropy loss. For this, even characterizing the asymptotic behavior of the correlations 3, ,,



requires new ideas. The previously mentioned study of “extreme multiclass classification" in which
the number of classes k is very large is another fascinating direction.
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Figure 1: GMM with k£ = 9,d = 300. (a) orthogonal, equal prior, (b) orthogonal,
different prior, (c) correlated, different prior.
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Broader Impact

In this paper we develop a precise and asymptotically exact understanding of the statistical behavior
of a variety of classification algorithms. In particular we precisely, characterize how the total and
class-wise accuracy varies under different training algorithms, data distributions, problem dimensions,
inter/intra class correlations and class priors. Despite being theoretical/foundational in nature it
has potential for broader practical impact. In particular, our precise characterization of class-wise
accuracy allows us to understand how different training algorithms impact accuracy of machine
learning algorithms on rare/minority classes. Such a precise understanding may help guide the
development of more fair/equitable algorithms. On the flip side, such insights may potentially also be
used nefariously enabling the marginalization of rare/minority classes by developing algorithms that
reduce their class-wise accuracy.
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