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Abstract

By transferring both features and gradients between different layers, shortcut
connections explored by ResNets allow us to effectively train very deep neural
networks up to hundreds of layers. However, the additional computation costs
induced by those shortcuts are often overlooked. For example, during online
inference, the shortcuts in ResNet-50 account for about 40 percent of the entire
memory usage on feature maps, because the features in the preceding layers cannot
be released until the subsequent calculation is completed. In this work, for the
first time, we consider training the CNN models with shortcuts and deploying
them without. In particular, we propose a novel joint-training framework to train
plain CNN by leveraging the gradients of the ResNet counterpart. During forward
step, the feature maps of the early stages of plain CNN are passed through later
stages of both itself and the ResNet counterpart to calculate the loss. During
backpropagation, gradients calculated from a mixture of these two parts are used to
update the plainCNN network to solve the gradient vanishing problem. Extensive
experiments on ImageNet/CIFAR10/CIFAR100 demonstrate that the plainCNN
network without shortcuts generated by our approach can achieve the same level
of accuracy as that of the ResNet baseline while achieving about 1.4x speed-up
and 1.25x memory reduction. We also verified the feature transferability of our
ImageNet pretrained plain-CNN network by fine-tuning it on MIT 67 and Caltech
101. Our results show that the performance of the plain-CNN is slightly higher than
that of its baseline ResNet-50 on these two datasets. The code will be available at
https://github.com/leoozy/JointRD_Neurips2020| and the MindSpore code will be
available at https://www.mindspore.cn/resources/hubl

1 Introduction

Very deep convolutional neural networks (CNNs) have been successfully applied in a large variety
of computer vision tasks in recent years [} [2]. Wherein, the residual modules, i.e., the shortcuts
have played a vital role in training very deep neural networks. Shortcuts can be effectively utilized
to alleviate the gradient vanishing problem, which is widely used in modern CNN architectures
including ResNet [3]], MobileNet [4], ResNeXt [5], EfficientNet [6]], etc. However, besides the
improvement in performance [7], there is an important disadvantage for shortcuts which is often
overlooked in existing works. Different from conventional neural architectures (e.g., VGGNet [8])),
the feature maps of intermediate layers in those networks using shortcuts cannot be released during
online inference. Since the shortcut operation merges features in layers with different depths, we need
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to retain their storage for the subsequent calculations. According to Arash et.al [9], for ResNet-152,
the shortcuts account for around 43 percent of the total feature map data that consumes much off-chip
memory traffic. They also reported a 24.8 percent reduction in energy consumption for ResNet-152
when the shortcut on-chip data is reused.
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Figure 1: Joint-training framework: early stages of plain-CNN is connected to later stages of ResNet.
CE loss represents for the cross-entropy loss, TF represents for teacher feature map and SF represents
for students feature maps.

To reduce the redundancy in pre-trained deep networks, a large number of model compression
and acceleration approaches have been investigated. Neural Architecture Search [10, [11} 12} [13]
14]] searches architectures that consume fewer resources with comparable performance. Model
pruning [15, 116} [17]] produces models smaller in size via removing the redundant weights or channel.
Quantization [[18} [19} 20} 21} 22| 23| 24] reduces the precision of the model weights, resulting
in smaller model size and faster computation. More deep learning training/inference frameworks
[25] are also proposed to optimize the deployment. Although the aforementioned methods have
made tremendous efforts for obtaining compact neural networks with reasonable accuracy drop, the
potential improvement in deployment efficiency offered by removing the shortcut has been largely
ignored. Thus, an algorithm for removing shortcuts without sacrifice accuracy during inference would
bring huge benefit. Ideally, this method should also be able to be used on top of other compression
methods such as model pruning.

In this paper, we propose to solve the problem mentioned above using the teacher-student paradigm.
Different from the current teacher-student framework, our method, for the first time, propose to pass
the gradients calculated from the teacher network to the student network. This can also be seen as
training the network by adding some auxiliary architecture to assist the convergence. While during
inference, the auxiliary part is abandoned. Specially, we develop a Joint-training framework based on
Residual Distillation (JointRD), as shown in Figure[T] In practice, the original ResNets are selected
as teacher networks, and the students are generated by directly removing shortcuts from the teachers.
Then, each of the stages in the plain student network is connected with both later stages of the teacher
and student networks. During the back-propagation, gradients are calculated and integrated from both
of these two parts. In the early training iterations, gradients from the teacher network play a larger
role, which will be gradually reduced until the convergence. By exploiting the proposed joint-training
framework, we can effectively integrate the benefit of shortcuts into the training of plain student
networks and obtain excellent portable networks without shortcuts.

We verify the effectiveness of the proposed joint-training framework on the Ima-
geNet/CIFAR10/CIFAR100 benchmark datasets. Experimental results show that the student network
can achieve comparable accuracy to that of the original ResNet with shortcuts for all these three
datasets. For example, the plain ResNet-50 trained using our method achieves a top-1 testing ac-
curacy of 76.08% on ImageNet, which is comparable to that of its baseline teacher network 76.11
%. To check the transferability of the ImageNet pre-trained plain-CNN model using our method,
we compare the fine-tuning results of the learned plain-CNN and the ResNet on MIT67 [26]] and
Caltech101 [27]. Without considering the randomness, the learned plain-CNN outperforms ResNet
on these two datasets.



Our method also performs significantly better than traditional teacher-student framework such as
logits-based knowledge distillation (KD) ([28]])(76.08% verses 71.47%) on ImageNet with ResNet-50.
Furthermore, we also valid the effectiveness when using the proposed method together with model
pruning ([[17]) and KD ([28]]). We show that our method can be used on top of either pruning or KD
instead of being a substitution of them. Specifically, after removing the shortcut, the network can
also benefit from pruning or KD as much as the original ResNet on CIFAR100 and ImageNet.

2 Related Works

Training plain-CNN models: There have been many efforts made to train plain-CNN models.
Zagoruyko et al. [29] proposed to use the Dirac delta initialization to preserve the identity of the
inputs in convolutional layers. We adopt this initialization method in our training framework, and in
the experiment part, we show that the proposed framework can significantly improve over the naive
use of this initialization method. Another attempt is to penalize the contribution of skip-connection
[30] and gradually remove the skip-connections during training. However, the accuracy attainable
with this method is significantly lower than the ResNets counterpart, which diminishes the benefit of
the shortcut removal.

Knowledge Distillation: Knowledge distillation (KD) is a method that distils knowledge from strong
teacher models to student models. Typically, there are two types of KD frameworks: one proposed
by Hinton et.al [28]] is to augment the training data by using the predicted logits/soft-label from the
teacher model; the other [31 32, 33]] adds the loss (i.e. MSE loss) term to punish the difference
between the intermediate features of the teacher models and the student models. Both of these two
KD methods try to teach the student what their final learning target is, but in our experiment, we find
that it is not always easy for the student to find the proper direction (gradient) by itself to reach this
target.

Different from the aforementioned knowledge distillation where losses are imposed to force the
student to learn similar outputs like the teacher, our framework allows the student (plain CNN) to use
the gradients from the teacher (ResNet). In other words, we not only guide the student by informing
them where their destination is but also provide them with step-by-step direction guidance for them
to find the way to reach the target. In our results section, we also valid that the proposed methods can
significantly outperform traditional KD for this task.

3 Residual Distillation for Learning Plain Networks

In this section, we would describe our joint training framework in detail. During training, we train the
plain-CNN model with the gradients from both itself and a ResNet model. While during inference,
we only use the plain-CNN model and the ResNet part is discarded.

3.1 Motivation

One of the motivations for including shortcuts ([3]]) in CNNs is to avoid the vanishing gradi-
ents problem and to reduce the optimization difficulty. In a recent study, [34] shows that with-
out the use of shortcuts in CNNs, the stochastic gradients produced by different mini-batches
sometimes are negatively correlated, which makes it difficult for the optimization algorithm to
converge. David Balduzzi [35] also found that the gradients of shallow layers of a 50-layer plain-
CNN are similar to white noises and adding the shortcuts can relieve this problem. Inspired by
these findings, we argue that plain-CNN models without shortcuts perform poorly because of the
poor optimization solution currently adopted instead of the limitations of their expressive power.

One possible solution is to provide the training  Typle 1: Max memory (KB) on the mobile NPU
process better gradients, by utilizing the gradi- Tnput size 756 384 512
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stages of itself and later stages of ResNets (as
shown in Figure I)).

To verify the potential latency/memory improvement of removing shortcuts, we tested the max
memory consumption and latency of plain-CNN 50 and ResNet50 on a mobile NPU. As results
shown in Table|l|and Table[2} we could obtain up to 30% speedup on latency and reduce around 19%
max memory consumption.

Table 2: Latency (ms) of 50-layer plain-CNN vs ResetNet50 evaluated on the mobile NPU

input size 224 1024 1536 2048

ResNet50 22.45+£0.34 346.96 £0.64 756.03£1.94 outof memory
plain-CNN 50 18.03£0.36 247.65+£1.52 519.01 £3.26 944.59 +4.27

Speedup 19.69% 28.62 % 31.35 % -

3.2 The Joint-training Architecture

As shown in Figure|l] the joint-training architecture has two networks: the top one is the ResNet
teacher network (network s) and the bottom one is the Plain-CNN student network (network s). The
plain-CNN model is constructed by removing all skip connections from a target ResNet, for example,
ResNet50. Therefore, in this training framework, the teacher model and the student model have
the same structure except for that the student has no shortcuts. These two models are divided into
N stages based on the location of the downsampling layers [3} 36, [37]. For example, a ResNet-
50 network [3]] is divided into four stages. In the following part, we would take the four-stages
ResNet50/Plain-CNNS5O0 as an example to illustrate the ideas.

During the forward step, there would be four forward paths passing through student network s,
teacher network ¢, and the mixture of them, network st. Define W and V' as the parameters for the
student and teacher network respectively, we have the four paths as:

1. Path 1: The input is passed through the first stage of plain-CNN and fed into the second
stage of ResNet (the green arrow in Figure[I), following by the third and fourth stages of
ResNet, to obtain feature map f_st!(W; V') and cross-entropy loss L_st!(W).

2. Path 2: The input is passed through the first and second stage of plain-CNN and feed into
the third stage of ResNet (the blue arrow in Figure[I)), following by the fourth stage of
ResNet, to obtain feature map f_st?(W; V') and cross-entropy loss L_st?(W).

3. Path 3: The input is passed through the first, second and third stage of plain-CNN and
feed into the fourth stage of ResNet (the red arrow in Figure [I)), to obtain feature map
f_st3(W; V) and cross-entropy loss L_st>(W).

4. Path 4: The input is passed through the whole plain-CNN network (network s) until the last
stage to obtain feature map f_st*(1W) and cross entropy loss L_s(W).

Here, f_st(-) represents for the student deep nested functions up to the last convolution layer of
the last stage, right before they are passed to the relu and pooling layer. Note that although we also
adopt regular KD [31},[32]] where intermediate features f_t(-) of teacher models are used to guide the
student model in this framework, a key difference is that we also pass the gradients of the teacher to
the student.

Student initialization: A common belief is that shortcuts in ResNets have two functions, the first is
to allow the gradients to flow backward easily and the second is to preserve the features extracted
from previous layers. The first function is transferred to plain-CNN by using the joint-training, the
initialization method we adopt here handles the second one. ResNets uses an explicit expression to
preserve the previous features by using F'(x) 4+ . With millions and billions of parameters, it should
be possible for the plain-CNN to preserve this in an implicit way such as learning a function such
that G(z) = F(x) + x. We found that this can be achieved by adopting Dirac delta initialization,
proposed by Zagoruyko et al. [29] to preserve the identity of the inputs in convolutional layers.

With the Dirac delta initialization, the weights for the convolution operation can be written as:
Wi=a -Wo+p-1 (1)



where « and 3 are learnable parameters, and would be excluded from the weight decay term.

Teacher initialization: We use a pre-trained ResNet model to be the initialization of the teacher
model and this model will not be updated during the training process.

Final Layer KD Although using the KD loss alone would end up with very poor performance on
some datasets such as CIFAR100, we found that including it in the joint-training framework would
stabilize the training process and improve the final performance of the plain-CNN model. Especially,
we minimize the mean square error (MSE) between the final layer output of the teacher model f(-)
and that of the student models f#,(-),i = 1,--- , N, with the feature maps from the student models
transformed by a fully-connected regressor :

N
S AWV, r(fi (W5 V), w2 )
=1

where r is a fully-connected regressor with parameter w,

3.3 Losses and Optimization

To allow the removal of the ResNets from the joint-training framework for efficient deployment, we
introduce a temperature weight 7 that controls the contribution of the gradients from the teacher
network. At early stages of the training process, the gradients from ResNets play a bigger role with a
larger weight, and at the later stages, the gradients contributed by ResNets fade out by using a smaller
weight.

We train the parameters W for the student network on condition that the teacher’s parameter is known
as V using the following loss function L(-):

N-—1 N
L(W,w,) = Ly(W) +n{ 3 L, (Wi V) + A (V) (L (Wi V) w2} )
=1

i=1

where 7, A are the penalty term which determines how much to penalizes the losses from the teacher
network. We adopt a cosine annealing policy [38] for 7 to decay from 7,42 t0 Nimin.

3.4 The Algorithm

Algorithm 1 JointRD Algorithm

Input: An initialized JointRD composed of a plain-CNN model s and a corresponding residual
model ¢, training set X and the corresponding labels Y.

Freeze the weights V' of residual model ¢;
repeat
Randomly select a batch {z, y}
Feed the data into ResNet ¢ using to get the feature maps f;(V;x,y)
~ Feed the same batch of data into Path 1, 2, 3, 4 in Section [3.2] to obtain feature maps
L (W, V;x,y) and losses L., (W), Ls(W),i=1,--- ,N
Get the overall loss using Equation
update the weights of the plain-CNN model.
until convergence

4 Experiments

In this section, we evaluate our proposed JointRD on several datasets. First, we verify the effectiveness
of our algorithm through experiments with classification datasets: CIFAR-10 [39], CIFAR-100 [40]
and ImageNet [41]]. To evaluate the transferability of learned features of plain-CNN networks, we
further finetune the Imagenet pre-trained plain-CNN models on two downstream task datasets: MIT67
[26] and Caltech101 [27].



We compare our methods with previous knowledge distillation methods [42] 28] and plain-CNN
models initialized with the Dirac delta matrix [29] and the related results demonstrate that our method
can outperform these methods in most cases.

4.1 Experiments on Benchmark Datasets

CIFAR-10 and CIFAR-100 We conduct our first set of experiments using CIFAR-10 [39] and
CIFAR-100 [40Q], each containing 50,000 training images and 10,000 test images. CIFAR-10 has 10
classes and CIFAR-10 has 100 classes. ResNet with three different depth are used, i.e., ResNet18,
ResNet34, ResNet50, and each of them contains four stages according to the resolution of feature
maps.

Training details We train all models 200 epochs, with a learning rate of 0.1, multiplied by 0.1 at
epoch 100 and 150. For all models, we set A = 0.001 and 7 decreasing with a cosine annealing
policy from 1.0 to 0.5 in 60 epochs in the Equation 3] For the initialization of ResNet basic block [3l,
we direct apply the Dirac delta matrix on each of the convolution operations. While for the ResNet
bottleneck block (the input and output dimensions is not the same), we apply the Dirac delta matrix
to all convolution operations except for the first pointwise convolution in blocks and the pointwise
convolution acting as skip-connections in downsampling layers.

Results We report the mean and standard error of four repeated experiments with four different
seeds. In Table[3] we present the results for training plain-CNN without all shortcuts, but having the
pointwise convolutions kept for downsampling layers. In Table[d] we present the results of further
removing the pointwise convolution at the downsampling layers. In the tables below, "KD (MSE) +
Dirac" means that we keep the KD (MSE) losses in the JointRD, but use the cross-entropy loss from
the plain-CNN student network. "ResNet" means the corresponding ResNet with the same depth.
"Naive" means that we train plain-CNN models naively.

As illustrated from Table (3] our JointRD can train Plain-CNN to achieve comparable accuracy with
the ResNet counterpart, significantly outperforming the combination of knowledge distillation and
Dirac delta initialization in almost all cases.

Even when we further remove the pointwise convolution in the downsampling layer, we can achieve
sufficient high accuracy with marginal accuracy sacrifice.

Table 3: Benchmark results on CIFAR-10/CIFAR-100. Plain-CNN: all shortcuts removed

Dataset Model JointRD (ours) Naive KD (MSE) + Dirac ResNet
plain-CNN 18 7824 +0.04 77.44+0.10 78.39 £ 0.10 77.92 £0.26
CIFAR-100 | plain-CNN 34 78.47 £0.22 72.30 4+ 2.62 77.86 £0.73 78.58 £ 0.21
plain-CNN 50 78.16 £0.20 55.39 +4.29 50.38 £ 7.11 78.39 £ 0.40
plain-CNN 18 95.11 £0.08 94.81 +0.06 94.72 £ 0.11 95.19 £0.04
CIFAR-10 | plain-CNN 34 94.78 +0.25 93.73 £0.07 94.50 £ 0.10 95.39 £ 0.16
plain-CNN 50 94.40 £0.08 91.13+0.36 92.27+£0.27 95.31 +£0.08

Table 4: Benchmark results on CIFAR-10/CIFAR-100. Plain-CNN*: removed all shortcuts together
with pointwise convolutions of downsampling layers

Dataset Model JointRD (ours) Naive KD (MSE) + Dirac ResNet
plain-CNN 18* 77.91 £0.21 76.67 +0.01 77.81+0.26 77.9240.26
CIFAR-100 | plain-CNN 34* 78.4240.54 72.72+0.41 7841 +0.12 78.58 £0.21
plain-CNN 50*  77.68 +0.58 54.53 £+ 5.57 59.79 + 7.68 78.39 £+ 0.40
plain-CNN 18* 95.03 0.03 94.78 +£0.13 94.67+0.13 95.19 4+ 0.04
CIFAR-10 | plain-CNN 34* 94.62+0.16 93.78 +0.13 94.62 £ 0.03 95.39 +0.16
plain-CNN 50  94.36 +0.36 90.59 £ 0.59 93.11+0.25 95.31 +0.08

ImageNet The ImageNet dataset consists of 1.2M training images and 50K validation images with
1000 classes. We use our method to train plain-CNN 34 and plain-CNN 50 using this dataset. The
results are reported in Table[3]



Training details Following [42]], we train the whole networks for 120 epochs, with an initial
learning rate 0.2, multiplied by 0.1 at epoch 30, 60, 90. The batch size is 512. We set the weight
decay as le—* for resnet34 and Plain-CNN 34. While for the plain-CNN 50, due the removal of
shortcuts, the previous weight decay for resnet is too high for plain-CNN 50, therefore we set it
as le~®. As for the weight decay for resnet50, we found its accuracy decreases from 76.11% to
75.72% when we decrease its weight decay from le=* to 1e . So we keep it as 1e~* to get a higher
baseline. We set the A = 0.0001 and 7 decreasing with a cosine annealing policy from 1.0 to 0.5
in 60 epochs in Equation[3] The "Dirac" means that we only apply the Dirac delta matrix and we
normalize the weights of convolution layers following [29]. We keep the pointwise convolutions kept
for downsampling layers.

From Table [5 plain-CNN models trained with JointRD can achieve comparable results with the
corresponding ResNet. Our method also consistently outperforms Dirac delta initialization [29] and
KD(MSE) (combined with Dirac delta initialization for a fair comparison [42]]), and plain KD(logits).

Table 5: ImageNet Benchmark.

Model JointRD (ours) Dirac KD (MSE)+Dirac KD(logits) Naive | ResNet
plain-CNN 34 73.78 72.75 73.69 71.91 71.64 | 73.88
plain-CNN 50 76.08 72.29 75.84 71.47 69.34 | 76.11

4.2 Transferability of Pretrained Plain-CNN

To examine the transferability of ImageNet pretrained plain-CNN model learned with our method,
we fine-tune this pretrained model on two datasets: MIT67 [26] and Caltech101 [27]. Note that the
fine-tuning process also requires the using of the

JointRD framework. Specifically, we first initial- Model MIT67 Caltechl01
ize the plain-CNN student network and the ResNet ResNet 50 3034 06.04
teaf:her netwqu W.1th their ImageNet pre-trained plain-CNN 50*  81.67 96.38
weight, then iteratively updating the teacher net-

work and the student network on the downstream Table 6: Transfer learning accuracy

target dataset for 100 epochs. The initial learning

rate is 1e~3 and declined to 1e~% with a cosine schedule. We set the batch-size as 64 and weight
decay as 0.0005. We set the A = 0.005 for the MIT67 and A = 0.5 for the Caltech101, and we set iy
decreasing from 1.0 to 0.001 in 100 epochs.

The results presented in Table [§] shows that when considering the extracted feature transferability,
plain-CNN surprisingly surpass the teacher model ResNet. This might due to that the JointRD
training framework passes the gradients information from both the plain-CNN network and the
ResNet network, this can be thought of as assembled gradients, leading to regularized model structure
and weight training.

4.3 Use JointRD on top of Pruning and KD

In this part, we conduct experiments to show that our method can be used on top of either pruning
([L7]) or KD ([28]) instead of being a substitution of them.

In the first experiment, we adopt the pruning method proposed by [[17] to prune the ResNet network
first with pruning rates of 30% and 60%. Then remove the shortcuts from the pruned network with
the proposed method. As shown from Table|/| pruning and the proposed JointRD framework can be
used jointly to improve deployment efficiency without affecting each other’s performance.

Table 7: Use pruning ([LL7]) on top of JointRD on CIFAR100.

Pruning Rate(%)
Model Acc (%) 0 | 30 | 60
ResNet-34 Accuracy 78.42 | 78.52 | 75.71
plainCNN-34 Accuracy 78.47 | 78.55 | 75.38
ResNet-50 Accuracy 78.39 | 78.56 | 77.20
plainCNN-50 Accuracy 78.16 | 78.17 | 77.03




In the second experiment, we applied KD proposed by [28] to the training of ResNet and the JointRD
framework. As shown in Table[8] our framework can benefit from KD as much as the original ResNet,
where the plain-CNN network achieves a slightly higher accuracy than the ResNet counterpart on
CIFAR100.

Table 8: Use KD(logits)([28]]) on top of JointRD on CIFAR100

Teacher: Student Baseline (%) | KD (%)
] ResNet-18 77.92 78.67
ResNet-30: | ain-CNN 18 | 77.91 79.05
ResNet-34 78.58 78.98
78.39% plain-CNN 34 78.47 79.23

In the third experiment, we benchmark the benefit brought by the proposed framework comparing
with pruning and KD on ImageNet. Although we have shown in previous experiments that our
methods can be used on top of pruning and KD, when used stand-alone, our method still outperforms
pruning with or without using KD(logits).

4.4 Ablation Study

Contribution of each element in JointRD we evaluate the performance of simply use the final
layer KD or Dirac initialization to verify the effectiveness of the proposed JointRD framework,
especially the gradient passing from the teacher network. As we can see from Table [I0} the proposed
method is significantly better than the single-use of KD or Dirac initialization. This table also
confirms the importance or including KD in the JointRD framework to further boost its performance.

Initialization of ResNet In the JointRD, the ResNet part is pre-trained and fixed during the training
process. Another choice would randomly initialize the ResNet and train it iteratively with the Plain-
CNN part. We compare this method with what we used in JointRD, results are provided in Table
As we can see that for small datasets such as CIFAR-100, these two methods perform similarly, and
the large datasets such as ImageNet, our JointRD performs significantly better. We will report more
ablation studies in the supplementary material due to the page limited.

Effect of of decaying factor of the teacher network In Equation [3} we reported that a penalty
factor to decay the influence of the teacher network gradients. To test the effect of this policy we
conducted a comparison experiment on CIFAR100 using plain-CNN 50, the result shows that this
decay policy works significantly better than a constant one: 78.16% verses 74.23%.

4.5 Visualization of Learned Features and Gradients

To verify whether the proposed JointRD framework drives the plain-CNN part learns features
similar to those ResNet extracted, we visualized the intermediate features maps of plain-CNNS50
models trained with JointRD on CIFAR10 and their corresponding ResNet50. As shown in Figure
[2l plain-CNN models trained with JointRD learn similar features as the ResNet counterpart does.
For comparison, we also visualize the intermediate features maps from the same layer of naively
trained plain-CNN. Figure [2]shows that without using the JointRD framework, the features learned
by plain-CNN are very different from that of ResNet. This verifies the potential mechanism of the
JointRD is to guide the Plain-CNN to learn similar features as the teacher ResNet, and it successfully
achieves this goal in this experiment.

To further investigate the statement that the JointRD training framework provides better gradients
to the plain-CNN model, we also calculate the gradient confusion (lower the better, a measure

Table 9: Compare with smaller network obtained by pruning on ImageNet.

model memory(kb) latency(ms) Accuracy (%) KD Accuracy(%)
ResNet50 242194 166.71 76.11 Teacher
Prune 40% 222642 152.86 74.68 75.13
plainCNN50 222182 137.45 76.08 76.32




Table 10: Ablation study on the CIFAR-100 dataset

Model JointRD(ours)  JointRD(without KD) KD(MSE) Dirac
plain-CNN 18 78.24 1+ 0.04 75.97+0.35 75.59 +£0.25 76.44+0.31
plain-CNN 34  78.47 4 0.22 74.86 £+ 0.28 75.24 £0.46 75.96 +0.27
plain-CNN 50 78.16 4= 0.20 69.67 + 2.76 70.28+2.93 71.12+0.25

Table 11: Comparision between pretrained ResNet(JointRD) and random initialize it.

Dataset Model JointRD random initialize

plain-CNN 18  78.24 +0.04 78.24 +£0.12
CIFAR-100 plain-CNN 34 78.47 4+ 0.22 78.10 £0.81
plain-CNN 50 78.16 +0.20 78.22 £ 0.66

plain-CNN 34 73.78 72.38
plain-CNN 50 76.08 67.45

ImageNet

for quantifying optimization difficulty) value for each epoch of the training process of both
plain-CNN trained with JointRD and naively trained. From results plotted in Figure 3] We can
find that the gradients confusion of plain-CNN trained with JointRD is much lower than that of the
plain-CNN model trained naively from the beginning until convergence. This verifies our assumption
that the joint-training framework can provide the plain-CNN with gradients with better quality and
allow the optimization process to converge properly.
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Figure 2: Visualization of intermediate features Figure 3: Gradient confusion of naively trained
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5 Conclusion

This work presents a novel approach to deploy portable deep neural networks for mobile devices.
There is a great number of model compression and acceleration methods for excavating redundancy in
a pre-trained neural network, the online memory usage and computational costs required by shortcuts
in modern CNNs have not been fully investigated. We, for the first time, investigated the removal of
shortcuts without sacrificing accuracy. Specially, we build a joint-training network such than we can
pass the gradient of ResNet to the plain-CNN model to avoid the gradient vanishing problem. Besides
experimentally showing that we can remove shortcuts for ResNet models with various depth without
accuracy sacrifice, we also verify the generalization ability of this trained plain-CNN network, with
the performance of the plain CNN slightly higher than that of its ResNet.



Broader Impact

The deployment inefficiency caused by shortcuts connections in CNN models has been noticed but
largely ignored due to the significant accuracy improvement they bring to CNN models. In this
work, for the first time, we consider trains the CNN models with shortcuts and deploy them without.
Our experiments show that plain-CNN trained with our method would achieve comparable accuracy
with ResNet with the same length while significantly improve the deployment power, memory, and
latency efficiency. This work is also among the pioneering works that utilize the gradients of the
teacher network to train the student network so that the student network would achieve similar high
performance with the teacher network while having favorable deployment property. A potential
limitation of this work is that we only try to pass the gradients of a teacher network with the same
channel and depth to the student network. An interesting future work would be to explore passing the
gradient of a teacher model with a different structure to the student model.
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