
Provably Efficient Neural Estimation of Structural
Equation Model: An Adversarial Approach

Luofeng Liao
The University of Chicago
luofengl@uchicago.edu

You-Lin Chen
The University of Chicago

youlinchen@uchicago.edu

Zhuoran Yang
Princeton University
zy6@princeton.edu

Bo Dai
Google Research, Brain Team

bodai@google.com

Zhaoran Wang
Northwestern University

zhaoranwang@gmail.com

Mladen Kolar
The University of Chicago

mkolar@chicagobooth.edu

Abstract

Structural equation models (SEMs) are widely used in sciences, ranging from
economics to psychology, to uncover causal relationships underlying a complex
system under consideration and estimate structural parameters of interest. We
study estimation in a class of generalized SEMs where the object of interest is
defined as the solution to a linear operator equation. We formulate the linear
operator equation as a min-max game, where both players are parameterized by
neural networks (NNs), and learn the parameters of these neural networks using
the stochastic gradient descent. We consider both 2-layer and multi-layer NNs with
ReLU activation functions and prove global convergence in an overparametrized
regime, where the number of neurons is diverging. The results are established using
techniques from online learning and local linearization of NNs, and improve in
several aspects the current state-of-the-art. For the first time we provide a tractable
estimation procedure for SEMs based on NNs with provable convergence and
without the need for sample splitting.

1 Introduction

Structural equation models (SEMs) are widely used in economics [50], psychology [9], and causal
inference [41]. In the most general form [41, 42], an SEM defines a joint distribution over p observed
random variables tXju

p
j“1 as Xj “ fjpXpaDpjq

, εjq, j “ 1, . . . , p, where tfju are unknown
functions of interest, tεju are mutually independent noise variables, D is the underlying directed
acyclic graph (DAG), and paDpjq denotes the set of parents of Xj in D. The joint distribution of
tXju is Markov with respect to the graph D.

In most cases, estimation of SEMs are based on the conditional moment restrictions implied by the
model. For example, some observational data can be thought of as coming from the equilibrium of a
dynamic system. Examples include dynamic models where an agent interacts with the environment,
such as in reinforcement learning [17], consumption-based asset pricing models [20], and rational
expectation models [25]. In these models, the equilibrium behavior of the agent is characterized
by conditional moment equations. A second example is instrument variable (IV) regression, where
conditional moment equations also play a fundamental role. IV regression is used to estimate causal
effects of input X on output Y in the presence of confounding noise e [38]. Finally, in time-series
and panel data models, observed variables exhibit temporal or cross-sectional dependence that can
also be depicted by conditioning [46].
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For these reasons, we study estimation of structural parameters based on the conditional moment
restrictions implied by the model. We propose the generalized structural equation model, which
takes the form of a linear operator equation

Af “ b, (1)

where A : HÑ E is a conditional expectation operator, which in most settings is only accessible by
sampling,H and E are separable Hilbert spaces of square integrable functions with respect to some
random variables, f P H is the structural function of interest, and b P E is known or can be estimated.
Section 1.1 provides a number of important examples from causal inference and econometrics that fit
into the framework (1).

Our contribution is threefold. First, we propose a new min-max game formulation for estimating f
in (1), where we parameterize both players by neural networks (NN). We derive a stochastic gradient
descent algorithm to learn the parameters of both NNs. In contrast to several recent works that rely
on RKHS theory [16, 36, 44], our method enjoys expressiveness thanks to the representation power
of NNs. Moreover, our algorithm does not need sample splitting, which is a common issue in some
recent works [26, 32]. Second, we analyze convergence rates of the proposed algorithm in the setting
of 2-layer and deep NNs using techniques from online learning and neural network linearization. We
show the algorithm finds a globally optimal solution as the number of iterations and the width of NNs
go to infinity. In comparison, recent works incorporating NNs into SEM [26, 32, 7] lack convergence
results. Furthermore, we derive a consistency result under suitable smoothness assumptions on the
unknown function f . Finally, we demonstrate that our model enjoys wide application in econometric
and causal inference literature through concrete examples, including non-parametric instrumental
variable (IV) regression, supply and demand equilibrium model, and dynamic panel data model.

1.1 Examples of generalized SEM

We describe three examples of generalized SEM: IV regression, simultaneous equations models, and
dynamic panel data model. In Appendix A, we introduce two more examples: proxy variables of
unmeasured confounders in causal inference [34] and Euler equations in consumption-based asset
pricing model [20]. Other examples that fit into the generalized SEM framework, but are not detailed
in the paper, include nonlinear rational expectation models [25], policy evaluation in reinforcement
learning, inverse reinforcement learning [40], optimal control in linearly-solvable MDP [16], and
hitting time of stationary process [16].
Example 1 (Instrumental Variable Regression [38, 26, 28]). In many applied problems endogeneity
in regressors arises from omitted variables, measurement error, and simultaneity [50]. IV regression
provides a general solution to the problem of endogenous explanatory variables. Without loss of
generality, consider the model of the form

Y “ g0pXq ` ε, Erε | Zs “ 0, (2)

where g0 is the unknown function of interest, Y is the response, X is a vector of explanatory
variables, Z is a vector of instrument variables, and ε is the noise term. To see how the model
fits our framework, define the operator A : L2pXq Ñ L2pZq, pAgqpzq “ ErgpXq | Z “ zs. Let
bpzq “ ErY | Z “ zs P L2pZq. The structural equation (2) can be written as Ag “ b.
Example 2 (Simultaneous Equations Models). Dynamic models of agent’s optimization problems or
of interactions among agents often exhibit simultaneity. Consider a demand and supply model as a
prototypical example [33]. Let Q and P denote the quantity sold and price of a product, respectively.
Then

Q “ D pP, Iq ` U1 , P “ S pQ,W q ` U2,

ErU1 | I,W s “ 0 , ErU2 | I,W s “ 0,
(3)

where D and S are functions of interest, I denotes consumers’ income, W denotes producers’ input
prices, U1 denotes an unobservable demand shock, and U2 denotes an unobservable supply shock.
Each observation of tP,Q, I,W u is a solution to the equation (3). In Appendix A we cast it into the
form (1). The knowledge of D is essential in predicting the effect of financial policy. For example,
let τ be a percentage tax paid by the purchaser. Then the resulting equilibrium quantity is the solution
Q̂ to the equation Q̂ “ D

`

p1` τqpSpQ̂, Iq ` U1q,W
˘

` U2.

Example 3 (Dynamic Panel Data Models [46]). Exploiting how outcomes vary across units and over
time in the dataset is a common approach to identifying causal effects [1]. Panel data are comprised
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of observations of multiple units measured over multiple time periods. We consider a dynamic model
that includes time-varying regressors and allows us to investigate the long-run relationship between
economic factors [46]:

Yit “ m pYi,t´1, Xitq ` αi ` εit,

Erεit | Y i,t´1, Xits “ 0, i “ 1, . . . , N, t “ 1, . . . , T.
(4)

HereXit is a pˆ1 vector of regressors,m is the unknown function of interest, αi’s are the unobserved
individual-specific fixed effects, potentially correlated with Xit, and εit’s are idiosyncratic errors.
Xit :“ pXit

J, . . . , Xi1
JqJ and Y i,t´1 :“ pYi,t´1, . . . , Yi1q

J are the history of individual i up to
time t. After first differencing, we can cast (4) into equation of the form (1) (see Appendix A).

1.2 Related work

Neural networks in structural equation models. IV regression and generalized method of moments
(GMM) [24] are two important tools in structural estimation. For example, the work of Blundell et al.
[8] estimates system of nonparametric demand curves with endogeneity and a sieve-based measure
of ill-posedness of the statistical inverse problem is introduced. The work of Chen and Pouzo [14]
allows for various convex or/and lower-semicompact penalization on unknown structural functions.
Typical nonparametric approaches to to IV regression include kernel density estimators [38, 12] and
spline regression [18, 11]. However, traditional nonparametric methods usually suffer from the curse
of dimensionality and the lack of guidance on the choice of kernels and splines.

Existing work on structural estimation using NNs, best to our knowledge, includes Deep IV [26],
Deep GMM [7] and Adversarial GMM [32]. However, due to the artifacts in saddle-point problem
derivation and non-linearity of NNs, these methods suffer from computational cost [26], the need
of sample splitting [32, 26] or lack of convergence results [7, 32]. The use of NN also appears in
works in econometrics. The work of Chen and Ludvigson [13] applies NN to estimate unknown habit
function in consumption based asset pricing model. The work of Farrell et al. [21] discusses the use
of NN in semi-parametric estimation but not computational issues.

Kernel IV [44] and Dual IV [36] apply reproducing kernel Hilbert space (RKHS) theory to IV
regression. Dual IV is closely related to the work of Dai et al. [16], where the authors discuss
problems of the form minf Ex,yr`py,Ez|xrfpx, zqsqs and reformulate it as a min-max problem using
duality, interchangeability principle, and dual continuity. In Appendix F, we show that our minimax
formulation of IV has a natural connection to GMM compared to Dual IV.

Finally, we notice an excellent concurrent work [19] which discusses the statistical property of a class
of minimax estimator for conditional moment restriction problems. The proposed estimator in that
paper is almost identical to ours, and yet we focus on showing convergence of training with NN using
neural tangent kernel theory. There is significant distinction from their work.

Neural tangent kernel and overparametrized NN. Recent work on neural tangent kernel (NTK)
[29] shows that in the limit when the number of neurons goes to infinity, the nonlinear NN function
can be represented by a linear function specified by the NTK. Consequently, the optimization problem
parametrized by NNs reduces to a convex problem, and can be tackled by tools in classical convex
optimization. Examples following this idea include [10, 48, 51]. In fact, the present paper follows a
similar philosophy, by reducing the analysis of neural gradient update to regret analysis of convex
online learning, in the presence of bias and noise in the gradient. Finally, the present work is also
related to recent advances in overparametrized NNs [3, 2, 22, 29, 31, 52, 39]. These works point
out that NNs exhibit an implicit local linearization which allows us to interpret the former as a
linear function when they are trained using gradient type methods. The present paper is built on an
adaptation of these results.

1.3 Notations

We call pf˚, u˚q P F ˆ U a saddle point of a function φ : F ˆ U Ñ R if for all f P F , u P U ,
φpf˚, uq ď φpf˚, u˚q ď φpf, u˚q. The indicator function 1t¨u is defined as 1tAu “ 1 if the event
A is true; otherwise 1tAu “ 0. Let rns “ t1, 2, . . . , nu. For two sequences tanu, tbnu, the notation
bn “ Opanq represents that there exists a constant C such that bn ď Can for all large n. We write
an „ bn if an “ Opbnq and bn “ Opanq. The notation Õ ignores logarithmic factors. For a matrix
A, let }A}F be the Frobenius norm.
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For a probability space pΩ,F ,Pq, let X : Ω Ñ Rp be a p-dimension random vector. The probability
distribution of X is characterized by its joint cumulative distribution function F . Partition X into
X “ rXJ1 , X

J
2 s
J where X1 P Rp1 , X2 P Rp2 , and let FX1 , FX2 be the marginal distribution

functions, respectively. Denote by L2
F pRp1 , FX1

q “ tf1 : Rp1 Ñ R : EX1
rf1pX1q

2s ă 8u the
Hilbert space of real-valued square integrable functions ofX1 and similarly defineL2

F pRp2 , FX2
q. For

ease of presentation we denoteL2
F pRp1 , FX1

q byL2pX1qwhen the context is clear. For f, g P L2
F , the

inner product is defined by xf, gyL2pXq “ EX rfpXqgpXqs. For a linear operator A : HÑ E denote
byN pAq “ tf P H : Af “ 0u its null space. Denote by A˚ the adjoint of a bounded linear operator
A. For a subspace B Ă H in a Hilbert spaceH, denote by BK “ ta P H : xa, byH “ 0,@b P Bu the
orthogonal complement of B inH.

2 Adversarial SEM

We formalize our problem setup and introduce the Tikhonov regularized method for finding a solution
for the operator equation in (1) in Section 2.1. In Section 2.2 we derive a saddle-point formulation
of our problem. The players of the resulting min-max game are parametrized by NNs, detailed in
Section 3.

2.1 Problem setup

Let X “ rXJ1 , X
J
2 s
J be a random vector with distribution FX . Let FX1 , FX2 be the marginal

distributions of X1 and X2, respectively. We assume there are no common elements in X1 and X2.
Furthermore, suppose there is a regular conditional distribution for X1 given X2. LetH “ L2pX1q

and E “ L2pX2q. We let A : HÑ E be the conditional expectation operator defined as

pAfqp¨q “ ErfpX1q | X2 “ ¨ s.

We want to estimate the solution f to the equation (1), Af “ b, for some known or estimable b P E .
In statistical learning literature, (1) is called stochastic ill-posed problem when b or both A and b
have to be estimated [47]. In the linear integral equation literature, when A is compact, (1) belongs
to the class of Fredholm equations of type I. An inverse problem perspective on conditional moment
problems is provided in [11].

A compact operator1 with infinite dimensional range cannot have a continuous inverse [11], which
raises concerns about stability of operator equation (1). A classical way to overcome the problem
of instability is to look for a Tikhonov regularized solution, which is uniquely defined [30]. For all
b P E , α ą 0, we define the Tikhonov regularized problem

fα “ arg min
fPH

1
2}Af ´ b}

2
E `

α
2 }f}

2
H. (5)

2.2 Saddle-point formulation

From an optimization perspective, problem (5) is difficult to solve in that the conditional expectation
operator is nested inside the square loss.

First, it is difficult to estimate the conditional expectation in some cases since we have only limited
samples coming from the conditional distribution ppX1 | X2q. In the extreme case, for each value of
X2 “ x2 we only observe one sample.

Second, when approximating f using some parametrized function class, we encounter the so-called
double-sample issue. Let’s investigate Example 1. In the nonparametric IV problem ErgpXq|Zs “
ErY |Zs, we want to estimate g. Consider the square loss Lpgq “ EZ

“`

ErgpXq ´ Y |Zs
˘2‰

. Assume
g is approximated by a function parameterized with θ. Taking the gradient w.r.t. θ and assuming
exchange of ∇θ and E, we get ∇θLpgq “ 2EZ

“

ErgpXq ´ Y |Zs ¨ Er∇θgpXq|Zs
‰

. Assume we
observe iid samples of pX,Y, Zq. The product of two conditional expectation terms implies that, to
obtain an unbiased estimate of the gradient, we will need two samples of pX,Y, Zq with Z taking the
same value. This is usually unlikely except for simulated environments.

1See Appendix E for a discussion of when a conditional expectation operator is compact.
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Our saddle-point formulation circumvents such problems by using the probabilistic property of
conditional expectation. The proposed method also offers some new insights into the saddle-point
formulation of IV regression [36, 7], which shows our derivation is closely related to GMM. This is
discussed in Appendix F.

Now we derive a min-max game formulation for (5). Assume b is known. Let R : HÑ R` be some
suitable norm onH that captures smoothness of the function f . We consider the constrained form of
minimization problem (5): minfPH

1
2Rpfq subject to Af “ b. For some positive number α ą 0, we

define the Lagrangian with penalty on the multiplier u P E ,

L̃pf, uq “ 1
2Rpfq ` xAf ´ b, uyE ´

α
2 }u}

2
E .

Without loss of generality, we move the penalty level α to Rpfq. Finally, using a property of
conditional expectation that xAf, uyE “ EX2

“

ErfpX1q | X2supX2q
‰

“ ErfpX1qupX2qs and
choosing Rpfq “ }f}2H, we arrive at our saddle-point problem

min
fPL2pX1q

max
uPL2pX2q

E
“`

fpX1q ´ bpX2q
˘

upX2q `
α
2 fpX1q

2 ´ 1
2upX2q

2
‰

. (6)

We remark that as long as Rpfq can be estimated from samples, our subsequent algorithm and
analysis work with some adaptations. Note that the above derivation is also suitable for equations of
the form pI ´Kqf “ b, where K is a conditional expectation operator (e.g., Example 4 in Appendix
A). Moreover, the function b can be either known or estimable from the data, i.e., b can be of the form
bpX2q “ Erb̃pX1, X2q | X2s where b̃ is known.

3 Neural Network Parametrization

The recent surge of research on the representation power of NNs [29, 3, 2, 31, 4, 10] motivates us to use
NNs as approximators in (6). Consider the 2-layer NN with parametersB andm (to be defined in (9)).
As the width of the NN,m, goes to infinity, the class NNs approximates a subset of the reproducing ker-
nel Hilbert space induced by the kernel Kpx, yq “ Ea„N p0, 1d Idq

“

1
 

aJx ą 0
(

1
 

aJy ą 0
(

xJy
‰

.
Such a subset is a ball with radius B in the corresponding RKHS norm. This function class is
sufficiently rich, if the width m and the radius B are sufficiently large [4].

However, due to non-linearity of NNs, to devise an algorithm for the NN-parametrized problem (6)
with theoretical guarantee is no easy task. In this section, we describe the NN parametrization scheme
and the algorithm. As a main contribution of the paper, we then provide formal statements of results
on convergence rate and estimation consistency.

To keep the notation simple, we assume X1 and X2 are of the same dimension d. We parametrize the
function spaces L2pX1q and L2pX2q in (6) by a space of NNs, FNN, defined in (9) and (10) below.
With this parameterization, we write the primal problem in (5) as

min
fPFNN

Lpfq :“ 1
2}Af ´ b}

2
E `

α
2 }f}

2
H, (7)

and the min-max problem in (6) becomes
min
fPFNN

max
uPFNN

φpf, uq :“ E
“`

fpX1q ´ bpX2q
˘

upX2q `
α
2 fpX1q

2 ´ 1
2upX2q

2
‰

. (8)

Problem (8) involves simultaneous optimization over two NNs. Notice that for each fixed f in the
outer minimization, the maximum of the inner maximization over E is attained at up¨q “ ErfpX1q |

X2 “ ¨s ´ bp¨q P E . This can be seen by noting maxuPE txAf ´ b, uyE ´
1
2}u}

2
Eu “

1
2}Af ´ b}

2
E . If

for all f P FNN such maximum is attained in FNN, then every primal solution f˚ P FNN in the saddle
point of (8), pf˚, u˚q, is also an optimal solution to the problem (7).

Next we introduce the function classes of NNs and the initialization schemes.

3.1 Neural Network Parametrization

2-layer NNs. Consider the space of 2-layer NNs with ReLU activations and initialization Ξ0 “

rW p0q, b1, . . . , bms

Fd,B,mpΞ0q “

"

x ÞÑ
1
?
m

m
ÿ

r“1

brσpWr
Jxq : W P SB

*

, (9)

5



where σpzq “ 1 tz ą 0u ¨ z is the ReLU activation, b1, . . . , bm are scalars, and

SB “
 

W P Rmd : }W ´W p0q}2 ď B
(

is the B-sphere centered at the initial point W p0q P Rmd. Here we denote succinctly by W the
weights of a 2-layer NN stacked into a long vector of dimension md, and use Wr P Rm to access
the weights connecting to the r-th neuron, i.e., W “ rW1

J, . . . ,Wm
JsJ. Each function in FB,m is

differentiable with respect toW , 1-Lipschitz, and bounded byB. We state the following distributional
assumption on initialization.
Assumption A.1 (NN initialization, 2-layer, [29]). Consider the 2-layer NN function space
Fd,B,mpΞ0q defined in (9). All initial weights and parameters, collected as Ξ0 “ rW p0q, b1, ¨ ¨ ¨ , bms,
are independent, and generated as br „ Uniformpt´1, 1uq and W p0q „ N

`

0, 1
dId

˘

. During train-
ing we fix tbrumr“1 and update W .

Multi-layer NNs. The class of H-layer NN, Fd,B,H,m with initialization ΞH,0 “
 

A, tW phqp0quHh“1, b
(

is defined as

Fd,B,H,mpΞH,0q “
!

x ÞÑ bJxpHq where xphq “ 1?
m
¨ σpW phqxph´1qq, h P rHs,

xp0q “ Ax : W P SB,H

)

, (10)

where W “ pvecpW p1qqJ, . . . , vecpW pHqqJqJ P RHm2

is the collection of weights W phq P Rm2

from all middle layers, xphq is the output from the h-th layer, A P Rmˆd, b P Rm, the function σ is
applied element-wise, and

SB,H “
 

W P RHm
2

: }W phq ´W phqp0q}F ď B for any h P rHs
(

.

We use the following initialization scheme.
Assumption A.2 (NN initialization, multi-layer, [3, 22]). Consider the space of multi-layer
NNs Fd,B,H,mpΞH,0q defined in (10). Each entry of A and tW phqp0quHh“1 is independently ini-
tialized by Np0, 2q, and entries of b are independently initialized by Np0, 1q. Assume m “

Ωpd3{2B´1H´3{2 log3{2
pm1{2B´1qq and B “ Opm1{2H´6 log´3mq. All initial parameters,

ΞH,0 “
 

A, tW phqp0quHh“1, b
(

, are independent. During training we keep A, b fixed and update W .

We overload notations and denote by Einitr¨s the expectation taken over the random variables Ξ0 or
ΞH,0, the randomness of NN initialization.

3.2 Algorithm

To describe an implementable algorithm, we rewrite the saddle-point problem (8) in terms of NN
weights. Denote the weights of NNs f and u in (8) by θ and ω, respectively. Now θ and ω play
the role of W in (9) (resp. (10)) since during training only the weights W in (9) (resp. (10)) are
updated. For brevity set fθp¨q “ fpθ; ¨q and uωp¨q “ upω; ¨q. With a slight abuse of notation, we use
φpθ, ωq and φpfθ, uωq (defined in (8)) interchangeably. Note φ is convex in the NN fθ but not in the
NN weights θ. Let F pθ, ω;x1, x2q “ uωpx2qfθpx1q ´ uωpx2qbpx2q ´

1
2u

2
ωpx2q `

α
2 f

2
θ px1q. The

saddle-point problem (8) is now rewritten as

min
θPSB

max
ωPSB

φpθ, ωq “ E
“

F pθ, ω;X1, X2q
‰

. (11)

Algorithm 1 is the proposed stochastic primal-dual algorithm for solving the game (8). Given initial
weights θ1 and ω1, stepsize η, and i.i.d. samples tX1,t, X2,tu, for t “ 2, . . . , T ´ 1,

θt`1 “ ΠSB

`

θt ´ η∇θF pθt, ωt;X1,t, X2,tq
˘

,

ωt`1 “ ΠSB

`

ωt ` η∇ωF pθt, ωt;X1,t, X2,tq
˘

.
(Algorithm 1)

Here ΠSB
is the projection operator. The search spaces in (11) and the projection operator should

be replaced by SB,m and ΠSB,m
, respectively, when multi-layer NNs are used. If b takes the form

bpX2q “ Erb̃pX1, X2q | X2s our algorithm proceeds by replacing b in F with b̃.
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Define by D “ σ
 

tX1,t, X2,tu
T
t“1

(

the σ-algebra generated by the training data. Define the average
of NNs as our final output

sfT p¨q “
1

T

T
ÿ

t“1

fpθt; ¨q . (12)

4 Main results

Due to nonlinearity of NNs, φ is not convex-concave in pθ, ωq, which makes the analysis of Algorithm
1 difficult. However, as will be shown in Theorem 4.1, under certain assumptions Algorithm 1
enjoys global convergence as T and m go to infinity. For a candidate solution f , we consider the
suboptimality Epfq as a measure of quality of solution, i.e.,

Epfq “ Lpfq ´ L˚, (13)

where L˚ “ minfPFB,m
Lpfq is the minimum value of L over the space of NNs. We define similar

quantities when multi-layer NNs are used. Next we describe regularity assumptions on the data
distribution.
Assumption A.3 (Bounded support and bounded range). Assume maxt}X1}2, }X2}2u ď 1 almost
surely. Assume bpX2q is bounded almost surely.
Assumption A.4 (Regularity of data distribution). Assume that there exists c ą 0, such that for any
unit vector v P Rp and any ζ ą 0, Pp|vJX1| ď ζq ď cζ, Pp|vJX2| ď ζq ď cζ.
Assumption A.5 (The conditional expectation operator is closed in FNN). With high probability
with respect to NN initialization, for any f P FB,m (or FB,H,m), up¨q “ ErfpX1q | X2 “ ¨ s ´ bp¨q
belongs to the class FB,m (or FB,H,m).

In Assumption A.3, boundedness of the random variable bpX2q is satisfied in common applications.
Assumption A.4 is used when invoking the linearization effects of 2-layer NNs; see Lemma 5.1.
Assumption A.5 ensures the connection between the min-max problem (8) and the primal problem
(7). Assumption A.5 can be removed by incorporating an approximation error term in the error
bound. We are ready to state the global convergence results for Algorithm 1. The proof is presented
in Appendix D.7.
Theorem 4.1 (Global convergence of Algorithm 1). Consider the iterates generated by Algorithm 1
with stepsize η. Let a “ maxtα, 1u. Recall Einitr¨s is the expectation w.r.t. NN initialization. For the
averaged NN sfT (defined in (12)), its suboptimality Ep sfT q (defined in (13)) satisfies the following
bounds.

1. (2-layer NNs) Under Assumption A.1, A.3, A.4 and A.5, with probability over 1´ 2δ with respect
to the training data D,

Einit

“

Ep sfT q
‰

“ O
´

aηB `
B

Tη
`
aB3{2 log1{2

p1{δq

T 1{2
`
aB5{2

m1{4

¯

. (14)

2. (Multi-layer NNs) Under Assumption A.2, A.3 and A.5, with probability over 1 ´ cδ ´
c exp

`

Ωplog2mq
˘

with respect to the training data D and NN initialization ΞH,0,

Ep sfT q “ O
´

P1ηa logm`
P2

Tη
`
P3a logm log1{2

p1{δq

T 1{2
`
P4a log3{2m

m1{6

¯

,

where P1 “ H4B4{3, P2 “ H1{2B, P3 “ H5B2, P4 “ H6B3, and c is an absolute constant.

Each of the error rates in Theorem 4.1 consists of two parts: the optimization error and the linear
approximation error; see Section 5.2 for a detailed derivation. For the two-layer case, if the total
training step T is known in advance, the optimal stepsize choice is η „ T´1{2, and the resulting error
rate is ÕpT´1{2 `m´1{4q. The optimization error term OpT´1{2q is comparable to the rate in [37]
where stochastic mirror descent method is used in stochastic saddle-point problems. Importantly,
the error bound (14) converges to zero as T,mÑ8. For the multi-layer case, optimizing η yields
the error rate ÕpT´1{2 `m´1{6q; the linear approximation error has increased due to the highly
non-linear nature of multi-layer NNs.
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4.1 Consistency

If we assume smoothness of the solution f to the operator equation Af “ b defined in (1) and
compactness of the operator A, we are able to control the rate of regularization bias. For a compact
operator A, let tλj , φj , ψju8j“1 be its singular system [30], i.e., tφju and tψju are orthonormal
sequences in H, E , repectively, λj ě 0, and satisfy Aφj “ λjψj , A

˚ψj “ λjφj , where A˚ is the
adjoint operator of A. For any β ą 0, define the β-regularity space [11]

Φβ “
!

f P N pAqK such that
8
ÿ

j“1

xf, φjy
2
H

λ2β
j

ă 8

)

Ă H. (15)

Equipped with the definition of β-regularity space, we are now ready to state the consistency result
for 2-layer NN. The proof is presented in Appendix D.8.
Assumption A.6 (Zero approximation error). The primal problems (5) and (7) yield the same
solution.
Assumption A.7 (Smoothness of the truth). Assume the operator A defined in (1) is injective and
compact, and that f , the unique solution to (1), lies in the regularity space Φβ defined in (15) for
some β ą 0.
Theorem 4.2 (Consistency, 2-layer NN). Consider the iterates generated by Algorithm 1 with stepsize
η „ paT q´1{2, where a “ maxtα, 1u. Assume A.1, A.3, A.4, A.5, A.6 and A.7. Then with probability
at least 1´ δ over the sampling process,

Einit

“

} sfT ´ f}
2
L2pX1q

‰

“ C
´

αmintβ,2u `
1

α
?
a

1

T 1{2
`
a

α

` 1

T 1{2
`

1

m1{4

˘

¯

, (16)

where sfT is defined in (12), f in Assumption A.7, and C is a constant independent of β, α, T and m.

If 0 ă β ď 2 and 0 ă α ď 1, the optimal choice of α is α „ pT´1{2 `m´1{4q1{pβ`1q, assuming T
and m are large enough, and the estimation error (16) is of order O

`

pT´1{2 `m´1{4qβ{pβ`1q
˘

. To
the best of our knowledge, this is the first estimation error rate of structural equation models using
NNs. We remark [21] also provides bounds on the estimation error of an NN-based estimator in the
setting of semi-parametric inference, but they do not discuss computational issues.

5 Proof sketch

5.1 Local linearization of NNs

The key observation is that as the width of NN increases, NN exhibits similar behavior to its linearized
version [2]. For an NN f P FB,m (or FB,H,m, with slight notation overload), we denote its linearized
version at W p0q by

pfpx,W q “ fpx,W p0qq `
@

∇W f
`

x,W p0q
˘

,W ´W p0q
D

. (17)
The following lemma offers a precise characterization of linearization error for 2-layer NNs; the
proof is presented in Section D.1 in Appendix D. Essentially, it shows that for 2-layer NNs the
expected approximation error of the function fp ¨ ,W q by pfp ¨ ,W q decays at the rate Opm´1{2q, for
any W P SB . In other words, as the width of NN goes to infinity, the NN function behaves like a
linear function. Similar results on approximation error for multi-layer NNs hold; see Appendix B.
Lemma 5.1 (Error of local linearization, 2-layer). Consider the 2-layer neural networks in (9).
Assume that there exists c ą 0, for any unit vector v P Rd and any constant ζ ą 0, such that
PXp|vJX| ď ζq ď cζ. Under Assumption A.1 we have for all W P SB and all x,

Einit,X

“

|fpX,W q ´ pfpX,W q|2
‰

“ OpB3m´1{2q, and

Einit,X

“

}∇W fpX,W q ´∇W pfpX,W q}2
‰

“ OpBm´1{2q.

5.2 Convergence analysis

In this section, we discuss techniques used to bound the minimization error via the analysis of the
regret, in the case of 2-layer NNs. The same reasoning applies to the maximizing player ω and
extension to multi-layer NN is obvious. The following lemma relates regret and primal error. The
proof is presented in Appendix D.3.
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Lemma 5.2 (A bound on primal error). Consider a sequence of candidates tpft, utquTt“1 for the
minimax problem (8) that satisfy the following regret bounds

1

T

T
ÿ

t“1

φpft, utq ď min
fPFNN

1

T

T
ÿ

t“1

φpf, utq ` εf ,
1

T

T
ÿ

t“1

φpft, utq ě max
uPFNN

1

T

T
ÿ

t“1

φpft, uq ´ εu .

(18)

Denote sfT “
1
T

řT
t“1 ft . If Assumption A.5 holds, then Ep sfT q “ Lp sfT q ´ L

˚ ď εf ` εu .

The above lemma suggests we separate our analysis for the two players. For example, to analyze εf
we can think of the sequence tutu as fixed and find an upper bound of the quantity 1

T

řT
t“1 φpft, utq´

1
T

řT
t“1 φpf, utq. We will demonstrate our proof idea via the analysis of εf ; it can easily extend to

εu.

We focus on the analysis of the minimizer θ and therefore we denote φtp¨q “ φp¨, ωtq (defined in
(8)). Also let pφtpθq “ EX rpuωt

pfθ ´ puωt
b ´ 1

2pu
2
ωt
` α

2
pf2
θ s, obtained by replacing f and u in φtp¨q

with their linearized counterparts defined in (17). The most important property of the linearized
surrogate pφtpθq is that it is convex in θ. To estimate the rate of εf , we start with the decomposition of
regret. For any θ P SB , define the regret Regpθq “ 1

T

řT
t“1 φtpθtq ´

1
T

řT
t“1 φtpθq. Then we have

the decomposition

Regpθq “
1

T

T
ÿ

t“1

φtpθtq ´
1

T

T
ÿ

t“1

pφtpθtq

(19)

`
1

T

T
ÿ

t“1

pφtpθtq ´
1

T

T
ÿ

t“1

pφtpθq

(20)

`
1

T

T
ÿ

t“1

pφtpθq ´
1

T

T
ÿ

t“1

φtpθq

(21)

.

(22)

We bound each term separately. To control the terms (19) and (21) we use the linearization of NN,
which shows that the linearized NN and the original one behave similarly in terms of output and
gradient as the width of NN m grows (cf. Lemma 5.1 and Lemma B.1). The term (20) is bounded
using techniques in convex online learning. The idea is to treat the algorithm designed for solving
min-max game associated with φ as a biased primal-dual gradient methods for the one with pφ. We
illustrate our techniques in further details in Appendix C.

6 Conclusions

We have derived saddle-point formulation for a class of generalized SEMs and parametrized the
players with NNs. We show that the gradient-based primal-dual update enjoys global convergence in
the overparametrized regimes (mÑ8), for both 2-layer NNs and multi-layer NNs. Our results shed
new light on the theoretical understanding of structural estimation with neural networks.

Broader Impact

In recent years, the impact of machine learning (ML) on economics is already well underway
[5, 15], and our work serves as a complement to this line of research. On the one hand, machine
learning methods such as random forest, support vector machines and neural networks provide great
flexibility in modeling, while traditional tools in structural estimation that are well versed in the
econometrics community are still primitive, despite recent advances [32, 26, 7, 21]. On the other
hand, to facilitate ML-base decision making, one must be aware of the distinction between prediction
and causal inference. Our method provides an NN-based solution to estimation of generalized
SEMs, which encompass a wide range of econometric and causal inference models. However, we
remark that in order to apply the method to policy and decision problems, one must pay equal
attention to other aspects of the model, such as interpretability, robustness of the estimates, fairness
and nondiscrimination, assumptions required for model identification, and the testability of those
assumptions. Unthoughtful application of ML methods in an attempt to draw causal conclusions must
be avoided for both ML researchers and economists.
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