APPENDICES TO PROVABLY EFFICIENT NEURAL ESTIMATION OF
STRUCTURAL EQUATION MODEL: AN ADVERSARIAL APPROACH

A Examples of generalized structural equation models

In Section 2} we introduce our model in its full generality. Here we specialize it in concrete examples
from the causal inference literature and econometrics.

We remark that the convergence result detailed in Theorem applies to all examples while con-
sistency result (Theorem [4.2) applies only to Example [T| because compactness of the conditional
expectation operator is required in Theorem |4.2

We add that the paper by Babii and Florens [6, Page 5, Footnote 4] includes a battery economics
models that involve conditional moment restrictions, including the measurement error models,
dynamic models with unobserved state variables, demand models, neoclassical trade models, models
of earnings and consumption dynamics, structural random coefficient models, discrete games, models
of two-sided markets, high-dimensional mixed-frequency IV regressions, and functional regression
models. We refer readers to the paper for detailed references.

Example [1} revisited (Instrumental Variable Regression, [38. 26, 28]). In applied econometrics,
endogeneity in regressors usually arises from omitted variables, measurement error, and simultaneity
[50]. The method of instrumental variables (IV) provides a general solution to the problem of an
endogenous explanatory variable. Without loss of generality, consider the model of the form

Y =g0(X)+e, Ele|Z]=0, ([P revisited)

where g¢ is the unknown function of interest, Y is an observable scalar random variable, X is a
vector of explanatory variables, Z is a vector of instrument variables, and ¢ is the noise term. For
the special case X = Z, the estimation of gy reduces to simple nonparametric regression, since
E[Y | X = z] = go(x), and can be solved via spline regression or kernel regression [49]. When X is
endogenous, which is usually the case in observational data, traditional prediction-based methods fail
to estimate gy consistently. In this case, go(x) # E[Y | X = z], and prediction and counterfactual
prediction become different problems.

To see how the model fits our framework, define the operator A : L?(X) — L%*(Z), Ag = E[g(X) |
Z]. Letb = E[Y | Z] € L?(Z). The structural equation (2) can be written as Ag = b. The minimax
problem with penalty level o (o« > 0) takes the form

: 1,2 a 2
fergggx)uggfz)E[f(X)U(Z) —Y u(Z) - 3u(2) + 5 (X)), (23)

where the expectation is taken over all random variables.

The IV framework enjoys a long history, especially in economics [23]. It provides a means to answer
counterfactual questions like what is the efficacy of a given drug in a given population? What fraction
of crimes could have been prevented by a given policy? However, the presence of confounders makes
these questions difficult. If X is endogenous, which is usually the case in observational data, then
go(z) # E[Y | X = z], and prediction and counterfactual prediction become different problems.
When valid IVs are identified, we have a hope to answer these counterfactual questions.

Counterfactual prediction targets the quantity E[Y | do(X = )] defined by the causal graph (see
Figure|1), where the do(-) operator indicates that we have intervened to set the value of variable X to
x while keeping the distribution of ¢ fixed [41]. To facilitate counterfactual prediction, we need to
impose stronger conditions on the model [36} 26]: (i) relevance: P(X | Z = z) is not constant in z;
(ii) exclusion: Y 1L Z | X, ¢; and (iii) unconfounded instrument: ¢ 1l Z. FigureE]encodes such
assumptions succinctly.

Example 2} revisited (Simultaneous Equations Models). Dynamic models of agent’s optimization
problems or of interactions among agents often exhibit simultaneity. Demand and supply model is
such an example. Let () and P denote the quantity sold and price of a product. Consider the demand
and supply model adapted from [33].

Q=D(P1I)+ U,
P=5(Q,W)+Us, (@B revisited)
E[U; | I,W] =0, E[Us | I, W] = 0.
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Figure 1: A causal diagram of IV. Three observable variables X, Y, Z (denoted by filled circles)
and one unobservable confounding variable €. There is no direct effect of the instrument Z on the
outcome Y except through X.

Here D and S are functions of interest, I denotes consumers’ income, W denotes producers’ input
prices, U; denotes an unobservable demand shock, and U, denotes an unobservable supply shock.
Equation (3) is generally the results of equilibrium. Due to simultaneity, there is no hope to recover
demand function D by simple nonparametric regression of ¢} on P and I; nor can we recover supply
function S by regressing P on () and W. The knowledge of D is essential in predicting the effect
of financial policy. For example, let 7 be a percentage tax paid by the purchaser. Then the resulting

equilibrium quantity is the solution @ to the equation

Q=D(1+7)(S(Q,I)+Up),W) + Us.

To cast the model (3)) to a minimax problem, define the operators
Ay L3P 1) — L*(I,W),A,D = E[D(P,I) | I, W],
Ay LA(Q, W) — L*(I,W), A2S = E[S(Q, W) | I, W].
The resulting minimax problem is

{E[ul (LW)'(D(PJ)—Q)+u2(17W)~(S(Q7W)—P)}

min max 1 2 1 2
DELQ(P,I), u1$u26L2(17W) 72“1(17W) 72“2(IaW) ]
SeL?(Q,W)

Note in this case the operators A; and A, are not compact [11] due to common elements. The
min-max derivation remains valid but the stability of the solution is left for future work.

The causal reading of the simultaneous equations models is an open question since an important
assumption often made in causal discovery is that the causal mechanism is acyclic, i.e., that no
feedback loops are present in the system [41]. There are efforts in bridging this gap; see, for example,
[35].

ExampleEl, revisited (Dynamic Panel Data Model, [46]). Panel data is a common form of econo-
metric data; it contains observations of multiple units measured over multiple time periods. We
consider the dynamic model of the following form that includes time-varying regressors, allowing us
to investigate the long-run relationship between economic factors [46].

Yie =m (Yi—1, Xit) + o + €it, @ revisited)
Elei | Y, 1,X5] =0, i=1,...,N, t=1,...,T,
where X;; is a px 1 vector of regressors, m is the unknown function of interest, «;’s are the unobserved
individual-specific fixed effects, potentially correlated with X;;, and €;;’s are idiosyncratic errors.
Xy =(Xat",...,.Xqa")Tand Y, , | = (Yis—1,...,Yi1) | are the history of individual i up to
time t. We assume that (Y;;, X;4, &;¢) are i.i.d. along the individual dimension ¢ but may not be
strictly stationary along the time dimension ¢. Clearly, for a large ¢ the conditional set {Y, ,_;, X, }

contains a large number of valid instruments. We do not pursue a search for an efficient choice of IVs
in the paper.

To see how it relates to model (I)), we consider the first-differenced model
AYiy = m (Ui—1) —m (U i—2) + Aegy, 24)
E[Aey |U;—2] =0, i=1,...,N, t=3,...,T, (25)

where AYjy =Yy — Vi1, Uiy—o = [Yi1—2, X, |]" and Aej, == ey — ;41 The conditional
expectation (25) is obtained by applying law of iterated expectation to conditional on U; ;_».
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Model (24) cannot be solved via traditional nonparametric regression because Ae;; is generally
correlated with Y; ;1 on the RHS of (24).

Now we cast the model (25) into a minimax problem. For ease of exposition we assume strict
stationarity on the sequence {U;;}, which implies that the marginal distribution of U;;_; and
the transition distribution p(Ui7t_1|U,»7t_2) are time-invariant. Now we define a random vector
(D',E',D,E,F,e) =4 (Yis—1,Xit, Yis—2,Xit—1,AY:, Aey), and the definition is valid due to
stationarity. Equation can be rewritten as

E[F — m(D',E') + m(D,E) | E, D] = 0.

Define the operator A : L?>(D', E') — L*(E,D), Am = E[m(D’, E') | E, D] and the function
b=E[F | E, D]. Equation (23) becomes (A — I)m = b, which is a Frehdolm equation of type II.
The key difference between type I and type II Fredholm equations lies in stability of the solution. If
I — K : H — H is injective, then it is surjective, the inverse operator (I — K)~* is continuous and
therefore the solution to type II equation is stable [30].

We remark that 1 is the greatest eigenvalue of A because (D', E’) and (D, E) are identically
distributed. Therefore we assume the multiplicity of 1 is one in order to identify m up to a constant.
The resulting min-max problem is
i E[u(E,D) - (F —m(D',E') + m(D, E)) — su(E, D)?].
oD pax  Efu(E, D) (F —m(D', E") + m(D, E)) — u(E, D)?]
In the absence of the lagged term Y; ;—; on the RHS of (@), the model (@) reduces to the nonparametric
panel data model [27]],

Y; :m(XZ-t)—i—ai—i—Eit, izl,...,m t:17...,T.

If the lag term does not appear, we recover the measurement error model studied in [11].

Example 4 (Euler Equation and Utility, [20]]). In economic models, the behavior of an optimizing
agent can be characterized by Euler equations [25]. Consumption-based capital asset pricing model
(CCAPM) is such an example. Here we consider a simplified setting of [20] where at time ¢ an agent
receives income W; and purchases or sells certain units of an asset at price P;. For simplicity we
assume there is only one asset on the market. Let U be a time-invariant utility function, and b € (0, 1)
be the discount factor. U and b are parameters of interests known to the agent but unknown to the
researchers. The stream of consumption {C}} is the solution to the optimization problem

o0
max E[ ﬁtU(Ct)] (26)

{Ct,Qt}7%, i—0

S.t. Ct + PtQt = PtQt—l + Wt, (27)

where @ is the quantity of the asset owned by the agent at time ¢. RHS of the constraint (27) is
the total value owned by the agent before the exchange at time ¢, while the LHS represents the total
value after the exchange. The agent manipulates his consumption, C;, and the quantity of the asset he
holds, )¢, to maximize his expected long-run discounted utility.

Define R; = P;1/P;. Using the method of Lagrange multiplier, one can obtain the optimality
condition of (26)

U (Cii1)

B R f—; ) 1| It] =0, (28)

where I; represents the information available at time ¢. A derivation can be found in [20]. Let g = U’
be the marginal utility function. Conditioning on C in (28), we obtain

E[BRi+19(Cis1) | Ci] = g(Ch). (29)

The goal to estimate the function g given {C}, Ri1+1,Ci+1}. To see how our min-max derivation
applies, define the operator A : L?(Cy11) — L*(Cy), (Ag)(c) = E[g(Ci11)Res1 | Cr = c]. We
assume A is well-defined. Then (28)) can be succinctly written as

BAg =g.
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We remark that ¢ is identified up to an arbitrary sign and scale normalization; [20] provides a detailed
discussion on identification. Assuming (3 is known, the resulting min-max problem is

geLg%g1+1)uer[I}2a(}é )]E[ﬁg(CHl)RtHu(Ct) 9(Cru(Cy) — $u*(Ch)].

One caveat is that g = 0 is a trivial solution to (29) and therefore during the training of NNs we
should avoid such a solution. The empirical performance of [Algorithm T]in this example is left for
future work.

Example 5 (Proxy Variables of an Unmeasured Confounder, [34]). Consider the causal DAG in
Figure [2]in the sense of Pearl [41]. Here X and Y denote the treatment and the outcome, respectively.
The confounder U is unobserved, while its proxies Z and W are observed. Assume U, W, Z
are continuous and in the discussion we assume X and Y are fixed at (z,y). The conditional
independence encoded in Figure2)is W 1L (Z, X) | U and Z 1L Y | (U, X). Using the do-operator
of Pearl [41]], the causal effect of X on Y is

p(y| do(x)) = J Pyl w)p(u)d,

where p(-) stands for probability mass functions of a discrete variable or the probability density
function for a continuous variable. However, U is unobserved so we cannot directly calculate the
causal effect.

The work of Miao et al. [34] provides an identification strategy for the causal effect of X on Y
with the help of the confounder proxies Z and W. Consider the solution h(w, z, y) to the following
integral solution: for all (z,y) and for all z,

“+o0
plylza) = f h(w, 2,y)p(w]z, 2)duw, (30)

—o0
which is a Fredholm integral equation of the first kind.
Lemma A.1 (Theorem 1 of [34]]). Assume the causal DAG in Figureand that a solution to (30)
exists. Assume the following completeness condition E[g(U)|Z, X] = 0 almost surely if and only if
g(u) = 0 almost surely. Then p(y| do(x L (w, z,y)p(w)dw.

The result suggests that one can identify the causal effect by first solving for & in (30) and then
applying Lemman since p(y|z, z), p(w|z,x) and p(w) can be estimated from the data. To see
how (B0) fits into our framework, we note that Equation (30) implies E[1{Y = y} | Z,X] =
E[h(W, X,y) | Z, X] for all y, and thus similar min-max problem derivation goes through. However,
in [34] the identification strategy is limited to the case where X and Y are categorical, and it would
be interesting to see how our method performs in the setting of continuous treatment and continuous

outcome.
zZ U \%
o—0
X Y

Figure 2: A causal graph of confounder proxies. Adapted from Figure 1(f) of [34].

B Linear approximation error of multi-layer NNs

Without assumptions on the distribution of data (Assumption [A.4), we have slightly worse upper
bounds on the error of linearization for multi-layer NNs.

Lemma B.1 (Error of local linearization, multi-layer, [2, 22[]). Consider the multi-layer neural
networks described in (10). Under Assumption with probability at least 1 — exp(—Q(log® m))
with respect to the random initialization, for any W € Sp g and all x such that |x|| = 1,
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1 |f(z,W)| = O(BH?*21ogm),
2. [Vw fz,W)| = O(H),
3| f(x, W) — f(x, W)| = O(BY3m~Y5 H310g"? m), and
4. |V fz, W) = Vi fla, W) = O(BY3m =S H?21og"? m).
Proof. See Section[D.2]in Appendix [D] O

C Bounds on the terms (19), (20) and 1)

C.1 Bounds on the terms (19), 1)

First, we establish the closeness between the original function ¢ and the one consists of linearized NN,
¢. The following lemma shows that ¢ is a good surrogate for ¢ in the sense that the approximation
error is of order O(aB%?m~"'/*), which vanishes as m — 0.

Denote F(6,w; 1 X1, Xo) = uwfp — uwb — 2uw + “fg. Note Ex[F(6,w; X1, X2)] = ¢(0,w).
Similarly we define F(H w; X1, Xs) = uwfg — %ﬁf} + %j‘?

Lemma C.1 (Closeness between (b and ¢). Leta = max{l, al. Forany 0,w € Sp, we have
IEinithg(G,w) — ¢(6,w)|] = O(aBE’/Qm*l/‘l)_

Proof. See Sectiongin Appendix D] The proof relies on the decay rates of approximation error, as
detailed in Lemma O

Lemma[C.T|suggests it suffices to set

T
€ = (’)(aB5/2m_1/4 )+ max ( Z o (6;) — Z ¢t(9)). 31
r4S
We now turn to bound the term (20) using techniques adapted from convex online learning analysis.

C.2 A bound on the term (20)

We emphasize we apply online learning analysis (Lemma i to the regret associated with ggt’s but
using updates designed for ¢;’s.

Lemma C.2 (Online convex learning with noisy and biased gradient). Given a sequence of convex
functions on a convex space ©, f1, fa,---: © — R, consider the projected gradient descent updates

011 =T (0 —n (G +&)). (32)

where E [(;]0:] = V[ (0:), Io(0) € argmaxycg |60 — €| is the projection map to ©. Assume
sup, |G + ftH < K as. and supa 6] < M. Then with probability at least 1 — 6,

nK M Mn(1/8)  2v2M &
th &——Zﬁ <TG gy SN T T Llel 6y
forall 9 e @.
Proof. See Section[D.3]in Appendix [D] O

In order to apply Lemmato analyze the regret generated by the sequence {&t} with actual updates

being Vg Fi(0,; X1, Xo,) instead of Vg¢,(0;), we need to verify two conditions: (i) bounded
update steps, i.e., [VoF3(0;; X1 ¢, X2.+)| is bounded for all ¢, and (ii) bounded parameter space.

To achieve global convergence, we also require that bias in updates, |VgF;(6y; X1, Xo,) —
ngzﬁt(ﬁt)ﬂ which corresponds to the |€:] term in (33)), converges to zero as m — oo. In our

analysis we assume V@Ft(9 X1, X2,¢) is an unbiased estimate of V(;St( ). The following lemma
summarizes the results we need to apply Lemma|C.2]and obtain a bound on the term (20).
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Lemma C.3 (Bounded gradient and vanishing bias). Consider the updates in algorithm
(Algorithm 1I)). For all w;, 8, the following holds.

1. |VoF(0;21,22)|| = O(aB) for all z,y, and

2. Einio x [[VoF (8,015 X1, Xo) — VoF(8,wi; X1, X2)[] = O(aB¥2m=1/4).

Proof. See Section in Appendix O

Equipped with Lemma|[C.T|and Lemma[C.3] we are now ready to obtain a bound on the regret ¢
defined in (T8). Set M = B, K = aB, ||&]| = O(aB*?m~"4) in the RHS of (33), continue (31),
and we obtain with probability at least 1 — § with respect to sampling process,

_ anB B aB3¥?log"*(1/8)  aB*

Einit[ef] = 0(“35/2m 1/4) +O( 3t Tn " T?/2 Su + m1/4)
I — |

linearization error (T9) and @T) L T 1

It can be shown ¢, is of the same order, thus completing the proof of claim 1 in Theorem@.1]

D Proof of theorems

A remark on notations. Throughout the proof we ignore dependence on 6, w, X1, X2 and the NN
initial parameters Z or Z g ¢ defined in (9) and (I0), respectively. For readers’ convenience, we now
restate the dependence of all the functions on their parameters. Recall the NN fy(X;) = f(0; X7) is
an NN with weights 6 and input X; and similarly for u,,(X2) = u(w; X3). Note fy and uy depend
on the initialization implicitly through the range of NN weights (which is centered around the initial
weight) and the output layer weights (and the input layer weight, too, in the case of multi-layer NNs).
Recall

¢ = ¢(0,w) = ¢(fo, uw) = E[(f(8; X1) — b(X2))u(w; X2) + § f(6; X1)* — Ju(w; X2)?],
and
= F(0,w; X1, X2) = (f(0; X1) — b(Xa))u(w; X2) + £ £(0; X1)* — 2u(w; X5)?,

and they satisfy ¢(0,w) = Ex, x,[F(6,w; X1, X2)]. Note ¢ is convex-concave in (f, ) but not
in (A, w). Recall the linearized counterparts of f and wu, defined in (17), are fy = f (0(0); Xl)
(Vo f(0(0),X1),0—0(0))and similarly | foru u,. Now we replace NNs f@ and u,, by their hat-versions

in the definition of ¢ and F' and obtain (b qb(@ w,Zp), and F= F(H w, Zp; X1, X>). In the proof
we only discuss the case where b = b(X3) is known. The proof goes thorough for the more general

case b(X2) = E[b(X1, X2) | Xo] with little modifications.

D.1 Proof of Lemma[5.1]

Proof. The proof follows closely Lemma 5.1 and Lemma 5.2 in [10]. Recall that the weights of a 2-
layer NN is represented by W € R™? where d is the input dimension and m is the number of neurons.

W, € R? represents the weights connecting inputs and the 7-th neuron. W = [W,",... . W,[]T.
We start with
1 m
IV £ W)l < 0 3, 1{W T > 0} el < 1

for all W € Sp, all 2. So claim 2 follows. Claim 1 is indeed true because f(x, W) is 1-Lipschitz wrt
W and that |[W — W (0)|2 < B for all W € Sg. To show claim 3 we first analyze the expression
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>

(&, W) = f(z, W)].
|f(w, W) = fla, W)

~—

(L{W,/z >0} —1{W,(0)"2 > 0}) -b,W,] 2

iD= T ps

LT 0] — 10072 > 0)| - (W) + W, - W)L

ﬂ
Il

N

3l 3= 3~ §\~
NgE

1L{{W,(0)Ta| < Wy — W (0),} - (W3 (0) | + [ W — Wi (0) )

3
—

3l

< = 2 L{WeO)Ta] < [Wy = W0} - [Wr = Wi (0)],- (34)
r=1
Here the first inequality follows from |z|2 = 1. The second inequality follows from the following
reasoning.
1{W, 'z >0} # 1{W,(0)"z > 0}

— [W:(0)"a] < W, 2 = W, (0) 2] < W, = W (0)]
The third inequality follows from 1{|x| < y}|z| < 1{|z| < y}y forall z,y > 0.
Next we square both sides of (34), invoke Cauchy-Schwartz inequality, and the fact that |[W —
W(0)[2 < B.

~ 4B
[f (2, W) = Flo, WP < — Z L{|W,.(0) | < W, — W, (0)],} - (35)
r=1
To control the expectation of the RHS of (33)), we introduce the following lemma.

Lemma D.1. There exists a constant ¢; > 0, such that for any random vector W such that |W —
W(0)|2 < B, it holds that

1
Einit,x [m Z 1 {’WT(O)T(E’ < HWT - W H }

r=1

<cB- m=2,

Taking expectation on both sides of (33) we get
Euice | |f (@, W) = Fla, W) | < 4e1B* - m™72,
establishing claim 3. Claim 4 also follows from Lemma [D.T] as follows.

|V f (2, W) = Vw [z, W)|3

7%2 (L{W x>0} — 1 {W,(0)Tz > 0})° - |3

H\W < [We = W (0)]5} -

1
m ‘

HM3|

Proof of Lemma [D.1|

Proof. The proof follows Lemma H.1 of [10] and is stated for completeness. By the assumption that
there exists ¢y > 0, for any unit vector v € R? and any constant ¢ > 0, such that Px (Jv T X| < ¢) <
c(, we have

Einit, 2 lﬂlz Z L{|W,.(0) " < W, — WT(O)Q}]

r=1

1 m
< Einit lm Z Co - HWT - W,«(O)”z/WT(O)Q] . (36)
r=1
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Note the expectation in (36)) does not involve the data distribution. Next we apply Holder’s inequality.

IEinit,z |"£II:L Z 1 {‘WT(O)Tx‘ < ”WT’ - WT(0)|2}]

r=1

. 2 o, . 1/2
< co/m - Einyg W, — W,.(0)|5 : T —1
(Z ? 7;1 |W,(0)[5

r=1

. . 1/2
< coBm™ - Einy l 1
2 L W0)]3

1/2
< coBm ™ v Eyno i [Vwl3]”
Setting ¢1 = ¢ - By n(0,1,4/a) [1/||w\|%] finishes the proof. O
D.2 Proof of Lemma[B.1]

Proof. See [3|122] for a detailed proof. Also see Appendix F in [10]. In detail, claim 1 follows from
equation F.10 of [10]. Claim 2 and claim 4 follow from Lemma F.1 of [10]. Claim 3 follows from
Lemma F.2 of [[10]. O

D.3 Proof of Lemma[5.2]

Proof. Recall ¢(f, ) is convex in f and concave in u, and that L(f) is convex in f. The final output
fr is the average of the sequence { ft}thl and so is ur. Recall €, €, satisfy

T
%qu(ftaut)g InlIl 7Z¢faut +€fa
t=1

T
lng(ftaut) = ma’X 7Z¢ ft7
Tt:l

Note both f and u range over the space of NNs. We start with the equivalent expression for L defined

in (7). By Assumption[A.3] for all f € Fyn, L(f) = maxyery, ¢(f,u) with ¢ defined in (8). We
have

L(fr) —
= max. ¢(fT, u) = min - max ¢(f,u)
< ug%vxz\r ¢(fT7 ) - fn]l-lnN ¢(fa UT)
T
Sugﬁﬁfzqs few) = min Z )
T T
- [(H;Z (o) = 7 Zy ot ]

+ l(,; Z ¢(ft’ut)) - fén]:i}{rlN % Z (b(f’ ut)]
t=1 t=1
S €f + €y

*

In fact, we easily have ST UL(fi)) — L* < €5 + eq. O

D.4 Proof of Lemma[C.1]

Proof. 2Recall X =X/, X", ¢(0,w) = Ex[F(0,w; X1, X2)] = Exy[uf — ub— (1/2)u? +
(@/2)f7].
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Denote F(0,w) = @if — b — (1/2)42 + (o/2) f2, where the hat-version are the linearized NN. We
start by noting

Einie [6(6, ) — $(6,w)]]

= Einit,x [|F —F|]

= Einit,x [|(Uf —ub— *AQ %]?2) (uf —ub— %Uz + ng))”

< Eumie xy [[af — wf]] + Eunie x [|(@ — w)bl] + (1/2)Einie.x [|82 — ] + (0/2)Einie,x [IF? — £2]].

Now bound the terms

Einit, x [|0f ——ufﬂ, 37
Einit, x [|(@ — u)b]], (38)
Einit,x [|0% — u?[], (39)
Eunie, x [1F2 = £21)- (40)

For the term (37), we have
Einie,x [|0f — uf]]
< Einit, x [|(f = )] + Binit, x [(@ — ) f]

\/]Elnlt X A2 1n1t X ‘f f| \/Elnlt X 1nlt,X |:|a - U;P]
(Cauchy-Schwarz inequality)

= \/(9(32 -B3m~1/2) + \/O(B?’m*l/z) -O(B?) (Lemma[5.1))
= (9(35/2m_1/4).

We can apply similar techniques and obtain the following bounds on (]3;8[) and (@D
Einit, x [|(@ — w)b]] = O(B*?m~"/2),
Einie, x [[8* = w?[] = O(B**m~1/%).
Putting all pieces together we get
Einit[‘%(ﬁ,w) —¢(0,w)]] = O((1 + @) BY2m =14,

D.5 Proof of Lemmal[C.2]

Proof. We need the following lemma that controls regret in the context of online learning with exact
gradient, and then we extend it to our noisy and biased gradient scenario.

Lemma D.2 (Regret analysis in online learning, [45]]). Let f1, f1, - : © — R be convex functions,
where © is convex. Consider the mirror descent updates,

Ctr1 = Vh* (Vh (at) —nVfi (ot)) )
0t+1 = arglgéiél Dy, (93 Ct-‘rl) ’

(z,y) = h(z)—h(y) = Vh(y) " (x—y)

is the Bregman divergence, h* is the convex conjugate of h, and | - ||+ is the dual norm of | - |.
Suppose that sup, |V fi (04)||, < K and supg h(0) < M. Then for all 6 € ©,

1 & 4 nK M

=W A Z

T= = T77

We refer readers to [45]] for a proof of Lemma Now we take h(z) = %[z, and |z is the
Euclidean norm.
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Note that in our case the actual update is (; + &, where (; is an unbiased estimate of the
gradient Vf(6;), and & is a noise term. We construct linear surrogate functions ﬁ(&) =
fe (0) + (¢ + ft)T (0 — ;) and notice that (; + &; is indeed the gradient of the surrogate at ;, i.e.,
V/i(0;) = ¢ + &. Now we apply Lemmato the sequence { f;} and obtain

1o 1o B M
AR PIWIORE S

which implies

2 Tn Tt:l thl
nB M 1y )
<7+T—n+ft;(§t—vft(9t)) (0 —06:) + ; (0 =6,).

Now we bound the term Zthl (¢ — V£ (6:))" (6 — 6;). We note the boundedness of the quantities

(G — Vi (0)T (0 —6) < [¢ — Vi (6:)] 2v2M < 4BV2M.

To control the sum of bounded random variables, we invoke Hoeffding-Azuma inequality, and obtain

thatfor0 < 6 < 1,
T
Mlog(1/d
{ Z — V£ (6)) 0—6,) =8B OgT(/)}

J.

N

Finally we have &, (6 — 6;) < |&] 2v/2M. Putting all the pieces together completes the proof. []

D.6 Proof of Lemma[C.J|
Proof. The gradients of F' with respect to w, 6 are

VGF = (uw + af@)vefea
Vol = (fo —b— uy) V.

First we show for all z1, x5, w and 6, we have that Vy F' is bounded. It is easy to see by Lemma
[VoF|2 = O((1 + «)B).

Next we show that for all 8, w, Einie x[|VeF; — Vgﬁ‘H] goes to Zero as m —» oo.

Einit,x [ [ Vo F = Vo 1]

< /e x [IV0 /12 Banie x [(u — )]
4 A/ Eanie x [ Vo — Vo || Esnie x [2]
+ oy Eaie x [V 12 i x [(f — 2]

+ aBanx[1V07 — Vaf 7B <[]
— O((1 + @) B¥2m~1/4)
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D.7 Proof of Theorem [4.1]

Remark In fact, the two bounds in Theorem [4.1|are also valid bounds on Eiy;¢ [+ Zt 1 E(f)] and
7 Zt 1 E(f), respectively. For example, in the 2-layer NN case, it also holds that

B aB32logt?(1/6) aB®?
1n1t|: ZE ft :| = (a’l’]B‘i‘Ti’r]'i‘ T1/2 + m1/4). (41)
During training we obtain a sequence of NN weights 61,65, - , 07 and the corresponding NN

f1, f2, ..., fr. The difference lies in that in @#I)) we bound the average of the suboptimality of the
NNs f1, fa,. .., fr rather than the suboptimality of the averaged NN fr = 5 Zt ft, as is done in
Theorem .1} The bound @I)) implies that to choose the output NN it suffices to just pick one NN
from the sequence of NNs f1, fo, ..., fr uniformly.

Proof of Theorem 4.1} two-layer NN

Proof. Based on the analysis in Appendix |C] all we need to do is to estimate the rate of the following
quantities

1. Einit“(g(@,w) — ¢( )|] (9((1 + a)B5/2 —1/4>,
2. sup [0] = O(B), = O((1+a)B),
3. sup |w] = O(B), = O(B),

4. Einit, x [|VoF — V9F||] = O((1 + a)B*>?m~"4), and
5. Einit x[| Vo F — Vo F||] = O(B¥2m~1/4),
The missing pieces are
e ||V, F| is bounded, and
o Eii x[|VuF — VL F|] = O(B¥2m~1/4) .
First we bound the term ||V, F'||. It is easy to see
IV.F| = O(B).
Then we show Einie x[| Vo F — Vo F||] = O(B¥2m~1/4)
Eunitx [| Vo F = Vo F]
< o/ Banex (1 = b = 0] Bus x [ Vit — Vou]?)

+ \/]Einit,xﬂ(f — f) + (v — 0)|?|Einie, x [| Vwt|?] (Cauchy-Schwarz inequality)
— O(BY?m~14)

0
Proof of Theorem 4.1, multi-layer NN

Proof. We mimic the same proof technique as the two-layer case. We need to verify with probability
at least 1 — exp(€(log? m)) over the NN initialization,

1. |6(6,w) — (6, w)| = O((1 + a) BY3HOm =16 10g%2 m), for all 6, w € Sp_u,
2. sup ]2 = HY2B,|VoF| = O((1 + ) BY3H*logm) for all §,w € Sp i and z1, 22,

3. sup |w[2 = HY?B, |V, F| = O(B*3H*logm), for all §,w € Sp y and 1, s,
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4. Ex[|VoF — Vo F|] = O(BY3HYm~Y610g®? m), for all §,w € Sp p, and

5. Ex[|VoF — VoF|] = O((1 + o) BY3H*m =6 10g*? m) for all 6, w € Sp .

To show claim 1, we need to find high probability bounds of the terms

[af — uf], (42)
|(U — u)b|, (43)
a2 — 2| (44)
1f2 = 12 (45)
For the term (@2),
af — uf|

<[a(f = N+ |@—w)f]

<A/ al21f = £12 + /17 PNa = ul? (Cauchy-Schwarz inequality)

= \/O(BQH3 log® m - B83 H6m=1/3 logm)

+AJO(BY HOm=1/310g m) - O(B2H?) (46)
— O(B7/3H9/2m71/6 10g3/2 m),

where equality (@8) is valid with probability at least 1 — exp(Q2(log” m)). Similarly we have the
following high probability bounds.

(@ — w)b| = OBY*m =Y H3log"/? m),
|a% —u?| = (Q(BS/?’m_l/GH6 log?’/2 m).
Putting all the pieces together completes the proof of claim 1.
For claim 2, |[W — W (0)|> < vHB implies sup 6|2 < H/?B. For |V F|,
IVoF]2
= [(u+af)Vaf]2
= O((1 + @)B*3H*logm).
This completes proof of claim 2. Claim 3 follows similarly. For claim 4,
|VoF -V F|
= I(f =b—=wVu—(f—b— )Vl

< \/|f— b— 2| Vi — Voul?

A= D)+ (u— )2 Voul?
_ O(B4/3H4m71/6 10g3/2 m)

where the last equality holds with high probability. Recall the decomposition [22),

1 & 1 &
T t; ¢e(6:) — T Z ¢:(0) (22} revisited)
1< 1 & A 1 & 1 & A 1 & 1<
_IT;@((%)—T;¢t(9t)l+lT;¢t(0t)—T;@(())IJFIT;@(@—T;Qst(o)l,
(1) [210) €D



Finally, we put together the pieces. Define the events

and

1 & A 1 & A
Ey = {TZ@(@J - TE“MQ)
t=1 t=1

20)

P. P;l 1 1/2 1/8 Paal 3/2
:O(Plnalogm+T—727+ aPslogmlog 7(1/9) | Psalog " m,

T1/2 ml/6

where P, = H*BY3, P, = HY?B and P; = H”B2, defined in Theorem By claim 1 we
have P(E;) > 1 — exp(Q(log?m)). By claim 2, claim 5 and Lemma we have P(E;) >
1 — 6 — exp(Q(log® m)). Then P(E; n Ey)) = 1 — ¢d — cexp(Q(log? m)) for some absolute
constant c. The same analysis applies for w and therefore we complete the proof. O

D.8 Proof of Theorem [4.2]

The proof relies on the following lemma that controls the regularization bias by imposing smoothness
assumption on the truth.

Lemma D.3 (Hilbert scale and regularization bias). Assume the operator A in (1) is injective and
compact. Let f* = argminy, 5|Af — b2 + $[ f|3, for some o > 0. If the solution f to (T) lies
in the regularity space ® s defined in (13) for some 3 > 0, then

If = 123 = O(am 2,
Proof. See Section 3.3 of [[L1]]. O
Compactness of a conditional expectation operator is a mild condition; see Appendix [E] for a

discussion.

We remark that four quantities are involved in this proof: the truth f that uniquely solves Af = b, the
Tikhonov regularized solution f© defined in (3)), the Tikhonov regularized solution approximated
by the class of NNs (see Equation (7)), denoted fgy, and the average of the iterates generated by

Algorithm 1| f7. Lemmaprovides a bound on the gap between f and f; Theoremcontrols
/9 — fr- Theorem @4.2|assumes that fy = f¢. See Sectionfor a graphical representation.

We start with the decomposition of | fr — f|3,

|fr — FI3 < 20 fr — Fo03 + 207 = Fli3

Here the first term on the RHS represents optimization error and the second term is regularization
bias. Lemma[D.3]provides a bound on the second term. Now we bound the first term.

Recall the definition of Tikhonov regularized functional for a compact linear operator A

L(f) = Lalf) = 349 — b2 + SIf13

Denote by f“ the unique minimizer of L over . This is always well-defined for a compact linear
operator A. We want to show the strong convexity of L, i.e.,

S = £y < La(fr) = La(f): )
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If @7) is true, under the conditions of Theorem 4.1 (2-layer NN case), we have with probability at
least 1 — § over the sampling process,

2
mlt[”fT - fa”’;'-t] 1n1t[ (fT) a(fa)] (48)
B aB32logt?(1/6) aB®?
_ &O<a77B tat e = ) (49)

Setting n = (aT')~'/? where a = max{a, 1}, and combining results from Lemma|D.3|and @) we
complete the proof.

Now we show @7). Forallx € H,x + h € H,

2L (z + h) = |A(z + h) —b|} + allz + h|% (50)
= [Az — b + |AR|Z + (Az — b, Ah)e + alz|3; + afbl3, + 2alz, By (51)
= 2L, (%) + 20w, h)y + 2{Ax — b, Ah)e + | AR|% + a|h[3, (52)
= 2Lo(x) + 20, hyy + 2{A*(Az — b), h)# + |AR|2 + o] b3, (53)
= 2L, (2) + 2{ax + A* Az — A*b, hyy + | AR||% + a|h|,. (54)

Moreover, the regularized solution f¢ is given by the unique solution to the equation o f® +
A*Af* = A*b and depends continuously on b [30]. Setting z = f*, h = f — f* and applying
af®+ A*Af* = A*b complete the proof of @7).

E Compactness of conditional expectation operators

Let X = [X], X, ]T be a random vector with distribution Fx and let F,, Fx, be the marginal
distributions of X and Y, respectively. Assume there is no common elements in X; and X5. Define
Hilbert spaces H = L?(X;) and £ = L?(X32). Let A be the conditional expectation operator:

AH—-E
f() > E[f(X1) [ X2 =-].
If there is no common elements in X; and X5, compactness of an conditional expectation operator is

in fact a mild condition [L1]]. If p.d.f.s of X, Xy and X exist, denoted fx, fx, and fx,, then A can
be represented as an integral operator with kernel

fx1 X2(3317332)

Ix (@1) fx, (22)

and (Af)(z2) = (k(x1,22) f(21) fx, (x1)dz2. In this case, a sufficient condition for compactness

of Ais 2
| Eelrmel | ot ondondns <

Ix, (1) fx, (22)

k($17x2)

We now discuss well-posedness of (I). The operator equation (TJ) is called well-posed (in Hadamard’s
sense) if (i) (existence) a solution f exists, (ii) (uniqueness) the solution f is unique, and (iii) (stability)
the solution f is continuous as a function of b. More precisely, if A : H — £ is bijective and the
inverse operator A~! is continuous, then equation is well-posed [30]]. Injectivity is usually a
property of the data distribution and is tantamount to assuming identifiability of the structural function

F A comment on Dual IV

In this section, we review the work of Dual IV [36] and point out the differences between their work
and ours. Dual IV considers nonparametric IV estimation using min-max game formulation and bears
similarities with this work. However, we remark that our framework @]) includes a wide range of
models, including IV regression, and that the use of NNs and detailed analysis on the convergence of
the training algorithm also distinguish our work from Dual IV. The goal of this section is to show the
resulting min-max problem for IV regression in this paper has a natural connection with GMM.
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Recall that IV regression considers the following conditional moment equation
E[Y —g(X) | Z] =0. (@ revisited)

Let G be an arbitrary class of continuous functions which we assume contains the truth that fulfills
the integral equation. Dual IV proposes to solve

min R(g) := Evz [ (v ~E[g(X) | 2])°]. (55)

while this paper solves
. 2 2
minL(g) = |Af ~ bl = Bz | (E[Y | 7] - E[g(X) | Z])*],

an unregularized version of Example[I} The operator A and b € £ are defined in Example[]
To introduce the maximizer, Dual IV [36]] resorts to the interchangeability principle.

Lemma F.1 (Interchangeable principle). Let (2, F,P) be a probability space, f : R™ x ) —
R v {+w©}, and Lo = Lo(Q, F,P) be the class of square integrable functions. Let X be the
set of mappings x : Q — R™ such that f, € Lo, where f,(-) := f(x(-),-). Assume F(w) :=
sup,cy f(z,w) € Lo and that f is upper semi—continuousﬂ Then the following holds.

B[ sup (.| = sup B (x(@): )]

Proof. See Proposition 2.1 in [43]. See also Proposition 1 in [16] for a proof for the case where
f:RxQ—>R O

With the interchangeability principle, (53] can be rewritten as

I;leiél max ¥ (g,u) := Exy z[(9(X) = Y)u(Y, 2)] - iEyz [u(Y, Z)?].

By comparison, an unregularized version of the min-max problem derived in this paper (23) is

i —_v). 1,2
gerig&)uergggcz)Exyz[(g(X) Y)-u(Z) — zu(2)]. (56)

The absence of the variable Y in the maximizer w in (56) facilitates a natural connection between
(56) and GMM.

To achieve such interpretation, we first introduce a GMM estimator for (2). The conditional moment re-
striction (2)) implies that for a set of functions f1, fo,..., fm of Z, wehave E [(Y — g(X))f;(2)] =
0. Define by ¢(f,g) := Exyz[(Y — 9(X))f(Z)] the moment violation function, and the GMM
estimator

1 & 2
S — 1 .
ganv € argmin o ;1 ¢ (f,9)

Collect the moment violations by a vector ¥, (g) := (¥ (f1,9) .-+, ¥ (fin, g))T € R™. To achieve
efficiency the moments are usually weighted. Let A be a m by m symmetric matrix. We define the
quadratic norm |[¢[% = ¢ " A¢ given a vector ¢.

Now we are ready to state the connection between GMM and (56). Define the space of maximizer
U = span{fi,..., fm}. We focus on the inner maximization of (56). Define

J(g) = maxExy z[(g(X) = ¥) - u(Z) — 3u*(Z)].
Note that maximizer is now constrained in /. Mimicking Theorem 5 in [36]], we can show J(g) is in

fact a weighted sum of the moment violations {¢(f;, 9)}.

Lemma F.2. Let f1, fo,..., fm be a set of real-valued functions of Z. Define the weight matrix
A =KL [8(2)E(Z)T] where £ := (f1(Z),..., fm(Z))". Then J(g) = ou ()13 -

2Random upper semi-continuous, to be precise.
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Proof. The proof is identical to Appendix C of [36] except for replacing f(Y, Z) with f(Z). The
proof relies on simple algebra manipulation and is presented for completeness. For any v € U, u =

YLy ajfj for some a = (v, . .. Q)| € R™.

J(9)

max Exyz [(Q(X) -Y) (Z}l ajfj(Z)>] - %Ez (Z ajfj(Z)>

j=1

max > oiBxyz [(9(X) = Y)f(2)] - 3Bz (Z ajfj(Z)>
i=1 j=1

max o' 1, — 1ozTAoz

aeR™ v 2

LuTaty,

O

Lemma[F.2]shows that if the maximizer is constrained to be in the span of a set of pre-defined test
functions { fj }, the minimization in @ in fact produces a weighed GMM estimator. In contrast, the
GMM interpretation provided in Section 3.5 of [36]] requires the definition of a so-called augmented
IV W := (Y, Z). It is unnatural to view the response variable Y as a component of the IV.
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G A roadmap to the proof of Theorem 4.2]

In Figure 3] we can see throughout the discussion we make a couple of simplifying assumptions (e.g.,
Assumption[A.5]assumes the conditional expectation operator is close in Fyx, and Assumption [A.6|
assumes the primal problems (7) and (3)) give the same solution). These assumptions are justified by
the representation power of NNs. One could instead explicitly incorporate approximation error in the
bounds.

Af =b )
= f

Assumption[A.7} Lemma[D.3]

argmin |Af — blle + 2| f|2 . argmin |Af — ble + £ f|2
Fen H H 2 H HH Assumptlon@ FeFa H H 2 H HH

(&) @

= f = N

Assumption[A.5]

min max ¢(f,u) @)

fE]:NN UEFNN
= A saddle point

Convergence of SGD, NN linearization

Figure 3: Relation between the quantities of interest. Texts above/near the arrows summarize the key
elements of connecting different problems.
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