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Abstract

Many results in recent years established polynomial time learnability of various1

models via neural networks algorithms (e.g. [3, 9, 7, 6, 17, 28, 18, 10, 4, 23, 19,2

13, 5]). However, unless the model is linearly separable [5], or the activation is3

quadratic [13], these results require very large networks – much more than what is4

needed for the mere existence of a good predictor.5

In this paper we make a step towards learnability results with near optimal network6

size. We give a tight analysis on the rate in which the Neural Tangent Kernel[16], a7

fundamental tool in the analysis of SGD on networks, converges to its expectations.8

This results enable us to prove that SGD on depth two neural networks, starting9

from a (non standard) variant of Xavier initialization [15] can memorize samples,10

learn polynomials with bounded weights, and learn certain kernel spaces, with11

near optimal network size, sample complexity, and runtime. In particular, we show12

that SGD on depth two network with Õ
(
m
d

)
hidden neurons (and hence Õ(m)13

parameters) can memorize m random labeled points in Sd−1.14

1 Introduction15

Understanding the models (i.e. pairs (D, f∗) of input distribution D and target function f∗) on which16

neural networks algorithms guaranteed to learn a good predictor is at the heart of deep learning17

theory today. In recent years, there has been an impressive progress in this direction. It is now known18

that neural networks algorithms can learn, in polynomial time, linear models, certain kernel spaces,19

polynomials, and memorization models (e.g. [3, 9, 7, 6, 17, 28, 18, 10, 4, 23, 19, 13, 5]).20

Yet, while such models has been shown to be learnable in polynomial time and polynomial sized21

networks, the required size (i.e., number of parameteres) of the networks is still very large, unless the22

model is linear separable [5], or the activation is quadratic [13]. This means that the proofs are valid23

for networks whose size is significantly larger then the minimal size of the network that implements a24

good predictor1.25

In this paper we make a progress in this direction. We first consider the neural tangent kernel [16],26

which is a linearization of the functions that can be computed by the network, with weights that are27

close to a given weight vector w. The NTK is one of the main technical tools in recent analysis28

of SGD on neural networks. Our first result is a near optimal bound on the rate in which the NTK29

converge to its expectation. We then utilize this results, and prove that it implies that SGD on depth30

two networks, starting form a (somewhat non-standard) variant of Xavier initialization [15] can31

1More specifically, we mean that the proofs require number of parameters that is suboptimal by a multiplica-
tive factor that grows polynomially with one of the problem parameters – either the model capacity (margin, VC
dimension, etc.), the desired error (i.e. ε), or the input dimension.
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learn memorization models, polynomials, and kernel spaces, with near optimal network size, sample32

complexity, and runtime (i.e. SGD iterations).33

To the best of our knowledge, this is the first result which shows near optimal learnability of these34

models, and we believe that the result about NTK will be an essential tool for further progress, and in35

particular for proving a similar results for additional settings, architectures, and initialization schemes36

(particularly, the standard Xavier initialization). We next give more details about our results.37

Neural Network Algorithm We assume that the instance space is Sd−1 and consider depth 238

networks with 2q hidden neurons. Such networks calculate a function of the form39

hW,u(x) =

2q∑
i=1

uiσ (〈wi,x〉) = 〈u, σ (Wx)〉

We assume that the network is trained via SGD, starting from random weights that are sampled40

from the following variant of Xavier initialization [15]: W will be initialized to be a duplication41

W =

[
W ′

W ′

]
of a matrix W ′ of standard Gaussians and u will be a duplication of the all-B vector in42

dimension q, for some B > 0, with its negation. We will use rather large B, that will depend on the43

model that we want to learn.44

Bounded distributions Some of our results will depend on what we call the boundedness of45

the data distribution. We say that a distribution D on Sd−1 is R-bounded if for every u ∈ Sd−1,46

Ex∼D 〈u,x〉2 ≤ R2

d . To help the reader to calibrate our results, we first note that by Cauchy-47

Schwartz, any distribution D is
√
d-bounded, and this bound is tight in the cases that D is supported48

on a single point. Despite that, many distributions of interest are O(1)-bounded or even (1 + o(1))-49

bounded. This includes the uniform distribution on Sd−1, the uniform distribution on the discrete50

cube
{
± 1√

d

}d
, the uniform distribution on Ω (d) random points, and more (see section A.5). For51

simplicity, we will phrase our results in the introduction for O(1)-bounded distribution. We note that52

if the distribution is R-bounded (rather than O(1)-bounded), our results suffer a multiplicative factor53

of R2 in the number of parameters, and remains the same in the runtime (SGD steps).54

NTK Convergence For weights (W,u) and x ∈ Sd−1 we denote by ΨW,u(x) ∈ R2q×d the55

gradient, w.r.t. the hidden weights W , of hW,u(x). (A slight variant of) The NTK at W is56

kW (x,y) =
〈ΨW,u(x),ΨW,u(y)〉

2qB2

And the expected initial NTK is k(x,y) = EW kW (x,y) Our main technical contribution is near57

optimal analysis of the rate (it terms of the size of the network) in which kW converges to k.58

Specifically, we show that for any O(1)-bounded distribution, and every function f : Rd → R in the59

kernel spaceHk corresponding to k, there is a function f̂ in the kernel spaceHkW corresponding to60

kW such that61

E
x∼D

(f(x)− f̂(x))2 = O

(
‖f‖2k
dq

)
Here, ‖ · ‖k denotes the kernel norm of f . The proof of the aforementioned result is based on a62

new analysis of vector random feature schemes. While standard analysis of random feature schemes63

would lead to a bound of the form Ex∼D(f(x)− f̂(x))2 = O
(
‖f‖2k
q

)
, our new analysis show that64

for O(1)-bounded distributions, a factor of the input dimension d can be saved.65

As mentioned above, we utilize our result for NTK convergence to prove various learnability results66

for SGD on depth two networks.67

Memorization In the problem of memorization, we consider SGD training on top of a sample68

S = {(x1, y1), . . . , (xm, ym)}. The goal is to understand how large the networks should be, and (to69

somewhat leaser extent) how many SGD steps are needed in order to memorize 1 − ε fraction of70

the examples, where an example is considered memorized if yih(xi) > 0 for the output function h.71

Many results assumes that the points are random or “look like random" in some sense.72
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In order to memorize even just slightly more that half of the m examples we need a network with at73

least m parameters (up to poly-log factors). However, unless m ≤ d (in which case the points are74

linearly separable), best know results require much more than m parameters, and the current state of75

the art results [23, 19] require m2 parameters. We show that if the points are sampled uniformly at76

random from Sd−1, and the labels are random, then any fraction of the examples can be memorized77

by a network with Õ(m) parameters, and Õ
(
m
ε2

)
SGD iterations. Our result is valid for the hinge78

loss, and most popular activation functions, including the ReLU.79

Learning Polynomials For the sake of clarity, we will describe our result for learning even poly-80

nomials, with ReLU networks, and the loss being the logistic loss or the hinge loss. Fix a constant81

integer c > 0 and consider the class of even polynomials of degree ≤ c and coefficient vector norm at82

most M . Namely, PMc =
{
p(x) =

∑
|α| is even and≤c aαx

α :
∑
|α| is even and≤c a

2
α ≤M2

}
where for83

α ∈ {0, 1, 2, . . .}d and x ∈ Rd we denote xα =
∏d
i=1 x

αi
i and |α| =

∑d
i=1 αi. Learning the class84

PMd requires a networks with at least Ω
(
M2
)

parameters (and this remains true even if we restrict85

to O(1)-bounded distributions). We show that for O(1)-bounded distributions, SGD learns PMc ,86

with error parameter ε (that is, it returns a predictor with error ≤ ε), using a network with Õ
(
M2

ε2

)
87

parameters and O
(
M2

ε2

)
SGD iterations.88

Learning Kernel Spaces Our result for polynomials is a corollary of a more general result about89

learning certain kernel spaces, that we describe next. Our result about memorization is not a direct90

corollary, but is also a refinement of that result. We consider the kernel k : Sd−1 × Sd−1 → R given91

by92

k(x,y) = 〈x,y〉 · E
w∼N (I,0)

σ′ (〈w,x〉 , 〈w,y〉) (1)

which is a variant of the Neural Tangent Kernel [16]. We show that for O(1)-bounded distributions,93

SGD learns functions with norm ≤ M in the corresponding kernel space, with error parameter ε,94

using a network with Õ
(
M2

ε2

)
parameters and O

(
M2

ε2

)
SGD iterations. We note that the network95

size is optimal up to the dependency on ε and poly-log factors, and the number of iteration is optimal96

up to a constant factor. This result is valid for most Lipschitz losses including the hinge loss and the97

log-loss, and for most popular activation functions, including the ReLU.98

1.1 Related Work99

The connection between networks, kernels and random features has a long history. Early work100

includes [25, 21]. In recent years, this connection was utilized to analyze neural networks algorithm101

(e.g. [3, 9, 7, 6, 17, 28, 18, 10, 4, 23, 19, 13]). In fact, the vast majority of known non-linear learnable102

models, including memorization models, polynomials, and kernel spaces utilize this connection. It is103

worth mentioning very recent papers [8, 27, 1, 14] that proves learnability beyond NTK.104

It is hard to quantitatively compare the various result about learning polynomials and kernels, as105

they often depend on various parameters of the distributions, and talk about different kernels and106

polynomial spaces. Yet, to the best of our knowledge, in none of the known results the network size107

is optimal in both the input dimension and the kernel norm as theorems 5 and 6. In this regard, we108

would like to mention Ji and Telgarsky [17] which has optimal (logarithmic) dependence on ε in the109

case that the input distribution is realizable with margin in the NTK space. This should be compared110

to our dependance which is on one hand quadratic in 1/ε, but on the other hand valid for both the111

realizable and un-realizable settings.112

As for memorization results, as mentioned above, results with about near optimal network size either113

consider linearly separable data [5] or quadratic activation [13]. As for non-polynomial activations114

and non-linearly-separable data, the results of Daniely [7] imply that under rather mild conditions, m115

points with arbitrary labels can be memorized by networks of size poly(m), but without an exact116

specification of the exponent of the polynomial. Allen-Zhu et al. [2] showed a memorization result117

using Õ(m24) parameters. Zou and Gu [28] improved the bound to Õ(m8), then to Õ(m6) by Du118

et al. [10] and Wu et al. [26], to Õ(m4) by Du et al. [11], and finally, the state of the art until our work119

was memorization with Õ(m2) parameters [23, 20]. We would also like to mention Fiat et al. [12]120
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whose result shares some ideas with our proof. In their paper it is shown that for the ReLU activation,121

linear optimization over the embedding ΨW,u can memorize m points with Õ(m) parameters.122

2 Preliminaries123

2.1 Notation124

We denote vectors by bold-face letters (e.g. x), matrices by upper case letters (e.g. W ), and collection125

of matrices by bold-face upper case letters (e.g. W). We denote the i’s row in a matrix W by wi.126

The p-norm of x ∈ Rd is denoted by ‖x‖p =
(∑d

i=1 |xi|p
) 1
p

, and for a matrix W , ‖W‖ is the127

spectral norm ‖W‖ = max‖x‖=1 ‖Wx‖. We will also use the convention that ‖x‖ = ‖x‖2. For a128

distribution D on a space X , p ≥ 1 and f : X → R we denote ‖f‖p,D = (Ex∼D |f(x)|p)
1
p . We129

denote by L2(X ,Rd) the space of functions f : X → Rd with Ex∼D ‖f(x)‖2 <∞. Note that it is130

an inner product space w.r.t. the inner product 〈f, g〉L2(X ,Rd) = Ex∼D 〈f(x), g(x)〉. We use Õ to131

hide poly-log factors.132

2.2 Supervised learning133

The goal in supervised learning is to devise a mapping from the input space X to an output space134

Y based on a sample S = {(x1, y1), . . . , (xm, ym)}, where (xi, yi) ∈ X × Y drawn i.i.d. from135

a distribution D over X × Y . In our case, the instance space will always be Sd−1. A supervised136

learning problem is further specified by a loss function ` : R× Y → [0,∞), and the goal is to find137

a predictor h : X → R whose loss, LD(h) := E(x,y)∼D `(h(x), y), is small. The empirical loss138

LS(h) := 1
m

∑m
i=1 `(h(xi), yi) is commonly used as a proxy for the loss LD. When h is defined139

by a vector w of parameters, we will use the notations LD(w) = LD(h), LS(w) = LS(h) and140

`(x,y)(w) = `(h(x), y). For a classH of predictors fromX to R we denote LD(H) = infh∈H LD(h)141

and LS(H) = infh∈H LS(h)142

A loss ` is L-Lipschitz if for all y ∈ Y , the function `y(ŷ) := `(ŷ, y) is L-Lipschitz. Likewise, it is143

convex if `y is convex for every y ∈ Y . We say that ` is L-decent if for every y ∈ Y , `y is convex,144

L-Lipschitz, and twice differentiable in all but finitely many points.145

2.3 Neural network learning146

We will consider fully connected neural networks of depth 2 with 2q hidden neurons and activation147

function σ : R → R. Throughout, we assume that the activation function is continuous, is twice148

differentiable in all but finitely many points, and there is M > 0 such that |σ′(x)|, |σ′′(x)| ≤ M149

for every point x ∈ R for which f is twice differentiable in x. We call such an activation a decent150

activation. This includes most popular activations, including the ReLU activation σ(x) = max(0, x),151

as well as most sigmoids.152

Denote N σ
d,q =

{
hW(x) = 〈u, σ(Wx)〉 : W ∈M2q,d,u ∈ R2q

}
. We also denote by W = (W,u)153

the aggregation of all weights. We next describe the learning algorithm that we analyze in this paper.154

We will use a variant of the popular Xavier initialization [15] for the network weights, which we155

call Xavier initialization with zero outputs. The neurons will be arranged in pairs, where each pair156

consists of two neurons that are initialized identically, up to sign. Concretely, the weight matrix W157

will be initialized to be a duplication W =

[
W ′

W ′

]
of a matrix W ′ of standard Gaussians2 and u will158

be a duplication of the all-B vector in dimension q, for some B > 0, with its negation. We denote159

the distribution of this initialization scheme by I(d, q,B). Note that if W ∼ I(d, q,B) then w.p. 1,160

∀x, hW(x) = 0. Finally, the training algorithm is described in 1.161

2It is more standard to assume that the instances has L2 norm O
(√

d
)

, or infinity norm O(1), and the

entries of W ′ has variance 1
d

. For the sake of notational convenience we chose a different scaling—divided the
instances by

√
d and accordingly multiplied the initial matrix by

√
d. Identical results can be derived for the

more standard convention.
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Algorithm 1 Neural Network Training
Input: Network parameters σ and d, q, loss `, initialization parameter B > 0, learning rate η > 0,
batch size b, number of steps T > 0, access to samples from a distribution D
Sample W1 ∼ I(d, q,B)
for t = 1, . . . , T do

Obtain a mini-batch St = {(xti, yti)}bi=1 ∼ Db
With back-propagation, calculate a stochastic gradient∇LSt(Wt) and update Wt+1 = Wt −
η∇LSt(Wt)

end for
Choose t ∈ [T ] uniformly at random and return Wt

2.4 Kernel spaces162

Let X be a set. A kernel is a function k : X ×X → R such that for every x1, . . . , xm ∈ X the matrix163

{k(xi, xj)}i,j is positive semi-definite. A kernel space is a Hilbert spaceH of functions from X to164

R such that for every x ∈ X the linear functional f ∈ H 7→ f(x) is bounded. The following theorem165

describes a one-to-one correspondence between kernels and kernel spaces.166

Theorem 1. For every kernel k there exists a unique kernel spaceHk such that for every x, x′ ∈ X ,167

k(x, x′) = 〈k(·, x), k(·, x′)〉Hk . Likewise, for every kernel space H there is a kernel k for which168

H = Hk.169

We denote the norm and inner product inHk by ‖ · ‖k and 〈·, ·〉k. The following theorem describes a170

tight connection between kernels and embeddings of X into Hilbert spaces.171

Theorem 2. A function k : X ×X → R is a kernel if and only if there exists a mapping Ψ : X → H172

to some Hilbert space for which k(x, x′) = 〈Ψ(x),Ψ(x′)〉H. In this case, Hk = {fΨ,v | v ∈ H}173

where fΨ,v(x) = 〈v,Ψ(x)〉H. Furthermore, ‖f‖k = min{‖v‖H : fΨ,v} and the minimizer is174

unique.175

For a kernel k and M > 0 we denote HMk = {h ∈ Hk : ‖h‖k ≤ M}. We note that spaces of the176

formHMk often form a benchmark for learning algorithms.177

2.5 The Neural Tangent Kernel178

Fix network parameters σ, d, q and B. The neural tangent kernel corresponding to weights W is3179

tkW(x,y) =
〈∇WhW(x),∇WhW(y)〉

2qB2

The neural tangent kernel space, HtkW
, is a linear approximation of the trajectories in which hW180

changes by changing W a bit. Specifically, h ∈ HtkW
if and only if there is U such that181

∀x ∈ Sd1−1, h(x) = lim
ε→0

hW+εU(x)− hW(x)

ε
(2)

Furthermore, we have that
√
qB · ‖h‖tkW

is the minimal Euclidean norm of U that satisfies equation182

(2). The expected initial neural tangent kernel is183

tkσ,B(x,y) = tkσ,d,q,B(x,y) = E
W∼(d,q,B)

tkW(x,y)

We will later see that tkσ,d,q,B depends only on σ and B. If the network is large enough, we can184

expect that at the onset of the optimization process, tkσ,B ≈ kW. Hence, approximately, Htkσ,B185

consists of the directions in which the initial function computed by the network can move. Since186

the initial function (according to Xavier initialization with zero outputs) is 0, Htkσ,B is a linear187

approximation of the space of functions computed by the network in the vicinity of the initial weights.188

NTK theory based of the fact close enough to the initialization point, the linear approximation is189

good, and hence SGD on NN can learn functions in Htkσ,B that has sufficiently small norm. The190

main question is how small should the norm be, or alternatively, how large should the network be.191

3The division by 2qB2 is for notational convenience.
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We next derive a formula for tkσ,B . We have, for W ∼ I(d, q,B)192

tkW(x,y) =
〈∇WhW(x),∇WhW(y)〉

2qB2

=
1

qB2

q∑
i=1

〈Bσ′ (〈wi,x〉)x, Bσ′ (〈wi,y〉)y〉+
1

qB2

q∑
i=1

σ (〈wi,x〉)σ (〈wi,y〉)

=
〈x,y〉
q

q∑
i=1

σ′ (〈wi,x〉)σ′ (〈wi,y〉) +
1

qB2

q∑
i=1

σ (〈wi,x〉)σ (〈wi,y〉)

Taking expectation we get193

tkσ,B(x,y) = 〈x,y〉 σ̂′ (〈x,y〉) +
1

B2
σ̂ (〈x,y〉) = 〈x,y〉 kσ′(x,y) +

1

B2
kσ(x,y)

Finally, we decompose the expected initial neural tangent kernel into two kernels, that corresponds to194

the hidden and output weights respectively. Namely, we let195

tkσ,B = tkhσ,B + tkoσ,B for tkhσ(x,y) = 〈x,y〉 σ̂′ (〈x,y〉) and tkoσ,B(x,y) =
1

B2
σ̂ (〈x,y〉)

Accordingly, we denote196

tkhW(x,y) =
〈x,y〉
q

q∑
i=1

σ′ (〈wi,x〉)σ′ (〈wi,y〉) and tkoW(x,y) =
1

qB2

q∑
i=1

σ (〈wi,x〉)σ (〈wi,y〉)

2.6 Vector Random Feature Schemes197

Random features schemes [25, 21] introduced as a mean for developing fast algorithm for learning198

kernel spaces. Here, we will use random features as a tool for analyzing SGD on networks. Let X be199

a measurable space and let k : X × X → R be a kernel. A random features scheme (RFS) for k is a200

pair (ψ, µ) where µ is a probability measure on a measurable space Ω, and ψ : Ω × X → Rd is a201

measurable function such that202

∀x,x′ ∈ X , k(x,x′) = E
ω∼µ

[〈ψ(ω,x), ψ(ω,x′)〉] . (3)

We often refer to ψ (rather than (ψ, µ)) as the RFS. Our motivation form considering vector RFS in203

this paper steams from the NTK RFS, which is given by the mapping ψ : Rd × Sd−1 → Rd defined204

by ψ(ω,x) = σ′(〈ω,x〉)x and µ being the standard Gaussian measure on Rd. Note that it is an RFS205

for the kernel tkhσ (see section 2.5).206

We define the norm of ψ as ‖ψ‖ = supω,x ‖ψ(ω,x)‖. We say that ψ is C-bounded if ‖ψ‖ ≤ C. We207

say that an RFS ψ : Ω× Sd−1 → Rd is factorized if there is a function ψ′ : Ω× Sd−1 → R such that208

ψ(ω,x) = ψ′(ω,x)x. We note that the NTK RFS is factorized and C-bounded for C = ‖σ′‖∞.209

Fix a C-bounded RFS ψ for a kernel k. A random q-embedding generated from ψ is the random210

mapping Ψω(x) :=
(ψ(ω1,x),...,ψ(ωq,x))√

q , where ω1, . . . , ωq ∼ µ are i.i.d. The random q-kernel211

corresponding to Ψω is kω(x,x′) = 〈Ψω(x),Ψω(x′)〉. Likewise, the random q-kernel space212

corresponding to Ψω isHkω . We note that in the case of the NTK RFS, a random q-embedding is,213

up to scaling, the gradient of a randomly initialized network. Likewise, tkhW is a random q-kernel214

generated from the NTK RFS.215

It would be useful to consider the embedding216

x 7→ Ψx where Ψx := ψ(·,x) ∈ L2(Ω,Rd) . (4)

From (3) it holds that for any x,x′ ∈ X , k(x,x′) =
〈

Ψx,Ψx′
〉
L2(Ω)

. In particular, from Theorem 2,217

for every f ∈ Hk there is a unique function f̌ ∈ L2(Ω,Rd) such that218

‖f̌‖L2(Ω) = ‖f‖k (5)

6



and for every x ∈ X ,219

f(x) =
〈
f̌ ,Ψx

〉
L2(Ω,Rd)

= E
ω∼µ

〈
f̌(ω), ψ(ω,x)

〉
. (6)

Let us denote fω(x) = 1
q

∑q
i=1

〈
f̌(ωi), ψ(ωi,x)

〉
. From (6) we have that Eω [fω(x)] = f(x).220

Furthermore, for every x, the variance of fω(x) is at most221

1

q
E
ω∼µ

∣∣〈f̌(ω), ψ(ω,x)
〉∣∣2 ≤ C2

q
E
ω∼µ

∣∣f̌(ω)
∣∣2 =

C2‖f‖2k
q

.

An immediate consequence is the following corollary.222

Corollary 3 (Function Approximation). For all x ∈ X , Eω |f(x)− fω(x)|2 ≤ C2‖f‖2k
q .223

Now, if D is a distribution on X we get that224

E
ω
‖f−fω‖2,D

Jensen
≤

√
E
ω
‖f − fω‖22,D =

√
E
ω

E
x∼D
|f(x)− fω(x)|2 =

√
E
x
E
ω
|f(x)− fω(x)|2 ≤ C‖f‖k√

q

Using the above inequality, it is possible to show that (see theorem 10 below) SGD on top of a random225

q-embedding, using a convex and Lipschitz loss, is guaranteed to find a function f̂ that satisfies226

ELD(f̂) ≤ LD(f∗) +O
(
‖f∗‖k√

q

)
for any f∗ ∈ Hk.227

3 Results228

We next present our results in detail. Due to lack of space, all proofs are differed to the appendix.229

3.1 Verctor RFS and NTK Convergence230

Fix a C-bounded RFS ψ : Ω×X → Rd for a kernel k. Corollary 3 implies that O
(
‖f‖2k
ε2

)
random231

features suffices to guarantee that for every f ∈ Hk, in expectation, the empirical kernel space232

will contain an ε approximation of f . This bound does not depend on d, the dimension of a single233

random feature. We might expect that at least in some cases, d-dimensional random feature is as234

good as d one-dimensional random features. The next result show that for factorized RFS and O(1)-235

bounded distributions this is indeed the case and O
(
‖f‖2k
dε2

)
random features suffices to guarantee236

ε-approximation.237

Theorem 4. Assume that ψ : Ω× Sd−1 → Rd is factorized and D is R-bounded distribution. Then,238

E
ω
‖f − fω‖2,D ≤

√
E
ω
‖f − fω‖22,D ≤

RC‖f‖k√
qd

Furthermore, if ` : Sd−1 × Y → [0,∞), is L-Lipschitz loss and D′ is a distribution of Sd−1 × Y239

with R-bounded marginal then Eω LD′(fω) ≤ LD′(f) + LRC‖f‖k√
qd

240

Using the above inequality, it is possible to show that (see theorem 10 below) SGD on top of a random241

q-embedding, using a convex and Lipschitz loss, is guaranteed to find a function f̂ that satisfies242

ELD(f̂) ≤ LD(f∗) +O
(
‖f∗‖k√
qd

)
for any f∗ ∈ Hk. Applying this to the NTK RFS, and via further243

reduction to neural network learning, we can show that a similar guarantee is valid for algorithm 1.244

This is described in the next section.245

3.2 Learning the neural tangent kernel space with SGD on NN246

Fix a decent activation function σ and a decent loss `. We shows that algorithm 1 can learn the class247

HM
tkhσ

using a network with Õ
(
M2

ε2

)
parameters and using O

(
M2

ε2

)
examples. We note that unless248

σ is linear, the number of samples is optimal up to constant factor, and the number of parameters249

is optimal, up to poly-log factor and the dependency on ε. This remains true even if we restrict to250

O(1)-bounded distributions.251
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Theorem 5. Given d, M > 0, R > 0 and ε > 0 there is a choice of q = Õ
(
M2R2

dε2

)
, T = O

(
M2

ε2

)
,252

as well as B > 0 and η > 0, such that for every R-bounded distribution D and batch size b, the253

function h returned by algorithm 1 satisfies ELD(h) ≤ LD
(
HM

tkhσ

)
+ ε254

As an application, we conclude that for the ReLU activation, algorithm 1 can learn even polynomials255

of bounded norm with near optimal sample complexity and network size. We denote256

PMc =

p(x) =
∑

|α| is even and≤c

aαx
α :

∑
|α| is even and≤c

a2
α ≤M2


For the ReLU activation σ, it holds that for every constant c, PMc ⊂ H

O(M)

tkhσ
(e.g. [9]). Theorem 5257

therefore implies that258

Theorem 6. Fix a constant c > 0 and assume that the activation is ReLU. Given d, M > 0, R > 0259

and ε > 0 there is a choice of q = Õ
(
M2R2

dε2

)
, T = O

(
M2

ε2

)
, as well as B > 0 and η > 0, such260

that for every R-bounded distribution D and batch size b, the function h returned by algorithm 1261

satisfies ELD(h) ≤ LD
(
PMc

)
+ ε262

We note that as in theorem 5, the number of samples is optimal up to constant factor, and the number263

of parameters is optimal, up to poly-log factor and the dependency on ε, and this remains true even if264

we restrict to O(1)-bounded distributions.265

3.3 Memorization266

Theorem 5 can be applied to analyze memorization by SGD. Assume that ` is the hinge loss (similar267

result is valid for many other losses such as the log-loss) and σ is any decent non-linear activation.268

Let S = {(x1, y1), . . . , (xm, ym)} be m random, independent and uniform points in Sd−1 × {±1}269

with m = dc for some c > 1. Suppose that we run SGD on top of S. Namely, we run algorithm 1270

where the underlying distribution is the uniform distribution on the points in S. Let h : Sd−1 → R be271

the output of the algorithm. We say that the algorithm memorized the i’th example if yih(xi) > 0.272

The memorization problem investigate how many points the algorithm can memorize, were most of273

the focus is on how large the network should be in order to memorize 1− ε fraction of the points.274

As shown in section A.5, the uniform distribution on the examples in S is (1 + o(1))-bounded w.h.p.275

over the choice of S. Likewise, it is not hard to show that w.h.p. over the choice of S there is a276

function h∗ ∈ HO(m)
k such that h∗(xi) = yi for all i. By theorem 5 we can conclude the by running277

SGD on a network with Õ
(
m
ε2

)
parameters and O

(
m
ε2

)
steps, the network will memorize 1 − ε278

fraction of the points. This size of networks is optimal up to poly-log factors, and the dependency of279

ε. This is satisfactory is ε is considered a constant. However, for small ε, more can be desired. For280

instance, in the case that we want to memorize all points, we need ε < 1
m , and we get a network281

with m3 parameters. To circumvent that, we perform a more refined analysis of this memorization282

problem and show that even perfect memorization of m points can be done via SGD on a network283

with Õ(m) parameters, which is optimal, up to poly-log factors.284

Theorem 7. There is a choice of q = Õ
(
m
d

)
, T = Õ

(
m
ε2

)
, as well as B > 0 and η > 0, such that285

for every batch size b, w.p. 1 − om(1), the function h returned by algorithm 1 memorizes 1 − ε286

fraction of the examples.287

We emphasize the our result is true for any non-linear and decent activation function.288

3.4 Open Questions289

The most obvious open question is to generalize our results to the standard Xavier initialization,290

where W is a matrix of independent standeard Gaussians, while u is a vector of independent centered291

Gaussians of variance 1
q . Another open question is to generalize our result to deeper networks.292
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A Proofs357

A.1 More preliminaries: inner product kernels and Hermite polynomials358

A special type of kernels that we will useful for us are inner product kernels. These are kernels359

k : Sd−1 × Sd−1 → R of the form360

k(x,y) =

∞∑
n=0

bn 〈x,y〉n

For scalars bn ≥ 0 with
∑∞
n=0 bn < ∞. It is well known that for any such sequence k is a kernel.361

The following lemma summarizes a few properties of inner product kernels.362

Lemma 8. Let k be the inner product kernel k(x,y) =
∑∞
n=0 bn 〈x,y〉

n. Suppose that bn > 0363

1. If p(x) =
∑
|α|=n aαx

α then p ∈ Hk and furthermore ‖p‖2k ≤ 1
bn

∑
|α|=n a

2
α364

2. For every u ∈ Sd−1, the function f(x) = 〈u,x〉n belongs toHk and ‖f‖2k = 1
bn

365

Hermite polynomials h0, h1, h2, . . . are the sequence of orthonormal polynomials corresponding to366

the standard Gaussian measure on R. Fix an activation σ : R→ R. Following the terminology of [9]367

we define the dual activation of σ as368

σ̂(ρ) = E
X,Y are ρ-correlated standard Gaussian

σ(X)σ(Y )

It holds that if σ =
∑∞
n=0 anhn then369

σ̂(ρ) =

∞∑
n=0

a2
nρ

n

In particular, kσ(x,y) := σ̂ (〈x,y〉) is an inner product kernel.370

A.2 Vector random feature schemes371

For the rest of this section, let us fix a C-bounded RFS ψ for a kernel k and a random q embedding372

Ψω . For every x,x′ ∈ X373

kω(x,x′) =
1

q

q∑
i=1

〈ψ(ωi,x), ψ(ωi,x
′)〉

is an average of q independent random variables whose expectation is k(x,x′). By Hoeffding’s374

bound we have.375

Theorem 9 (Kernel Approximation). Assume that q ≥ 2C4 log( 2
δ )

ε2 , then for every x,x′ ∈ X we have376

Pr (|kω(x,x′)− k(x,x′)| ≥ ε) ≤ δ.377

We next discuss approximation of functions inHk by functions inHkω , and prove theorem 3378
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Proof. (of theorem 4) Let x ∼ D and ω ∼ µ. We have379

E
ω
‖f − fω‖2,D

Jensen’s Inequality
≤

√
E
ω
‖f − fω‖22,D

=
√
E
ω
E
x
|f(x)− fω(x)|2

=
√
E
x
E
ω
|f(x)− fω(x)|2

=

√
Ex Eω∼µ

∣∣〈f̌(ω), ψ(ω,x)
〉
− f(x)

∣∣2
q

Variance is bounded by squared L2 norm
≤

√
Ex Eω∼µ

∣∣〈f̌(ω), ψ(ω,x)
〉∣∣2

q

=

√
Eω∼µ Ex

∣∣〈f̌(ω), ψ′(ω,x)x
〉∣∣2

q

ψ and hence also ψ′ is C-bounded
≤ C

√
Eω∼µ Ex

∣∣〈f̌(ω),x
〉∣∣2

q

D isR-bounded
≤ CR

√
Eω∼µ

∥∥f̌(ω)
∥∥2

qd

Equation (5)
=

CR‖f‖k√
qd

.

Finally, for L-Lipschitz `, and (x, y) ∼ D′ then380

E
ω
LD′(fω) = E

ω
E
x,y

`(fω(x), y)

≤ E
ω

E
x,y

`(f(x), y) + LE
ω
E
x
|f(x)− fω(x)|

= E
x,y

`(f(x), y) + LE
ω
E
x
|f(x)− fω(x)|

= LD′(f) + LE
ω
E
x
|f(x)− fω(x)|

L1≤L2

≤ LD′(f) + LE
ω

√
E
x
|f(x)− fω(x)|2

first part of the lemma
≤ LD′(f) +

LCR‖f‖k√
qd

381

We next consider an algorithm for learningHk, by running SGD on top of random features.382

Algorithm 2 SGD on RFS
Input: RFS ψ : Ω× X → Rd, number of random features q, loss `, learning rate η > 0, batch
size b, number of steps T > 0, access to samples from a distribution D
Sample ω ∼ µq
Initialize v1 = 0 ∈ Rq×d
for t = 1, . . . , T do

Obtain a mini-batch St = {(xti, yti)}bi=1 ∼ Db
Update vt+1 = vt − η∇LSt (vt) where LSt(v) = LSt (fΨω,v).

end for
Choose t ∈ [T ] uniformly at random and return fΨω,vt

Theorem 10. Assume that ψ is factorized and C-bounded RFS for k, that ` is convex and L-Lipschitz,383

and that D has R-bounded marginal. Let f be the function returned by algorithm 2. Fix a function384
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f∗ ∈ Hk. Then385

ELD(f) ≤ LD(f∗) +
LRC‖f∗‖k√

qd
+
‖f∗‖2k
2ηT

+
ηL2C2

2

In particular, if ‖f∗‖k ≤M and η = M√
TLC

we have386

ELD(f) ≤ LD(f∗) +
LRCM√

qd
+
LCM√

T

Proof. Denote by v∗ ∈ Rdq the vector387

v∗i =
1
√
q

(
f̌∗(ω1), . . . , f̌∗(ω1)

)
By standard results on SGD (e.g. [22]) we have that given ω,388

LD(f) ≤ LD(f∗ω) +
1

2ηT
‖v∗‖2 +

ηL2C2

2

Taking expectation over the choice of ω and using theorem 4 and equation (5) we have389

LD(f) ≤ LD(f∗) +
LRC‖f∗‖k√

qd
+
‖f∗‖2k
2ηT

+
ηL2C2

2

390

We conclude the section with a few calculations of f̌ , that will be useful later.391

Example 11. Fix σ : R → R with Hermite expansion σ =
∑∞
n=0 anhn and let Ω = Rd and392

X = Sd−1393

1. Consider the RFS ψ(ω,x) = σ (〈ω,x〉) with µ being the standard Gaussian measure on394

Rd. We have that ψ is an RFS for the kernel k(x,y) = σ̂ (〈x,y〉). Consider the function395

f(x) = 〈x0,x〉n. We claim that f̌(ω) = 1
an
hn (〈x0, ω〉). Indeed, we have,396

E
ω∼µ

σ (〈ω,x〉) 1

an
hn (〈x0, ω〉) =

1

an

∞∑
k=0

E
ω∼µ

akhk (〈ω,x〉)hn (〈x0,ω〉)

=
1

an

∞∑
k=0

akδkn 〈x,x0〉k

= 〈x,x0〉n

and397 ∥∥∥∥ω 7→ 1

an
hn (〈x0, ω〉)

∥∥∥∥
L2(Ω)

= E
ω∼µ

1

a2
n

h2
n (〈x0, ω〉) =

1

a2
n

= ‖f‖2k

2. Consider the NTK RFS ψ(ω,x) = σ (〈ω,x〉)x with µ being the standard Gaussian measure398

on Rd. We have that ψ is an RFS for the kernel k(x,y) = 〈x,y〉 σ̂ (〈x,y〉). Consider399

the function f(x) = (〈x0,x〉)n. As in the item above, it is not hard to show that f̌(ω) =400
1

an−1
hn−1 (〈x0, ω〉)x0.401

A.3 Reduction of NN learning to SGD over vector random features402

We will prove our result via a reduction to linear learning over the initial neural tangent kernel space,403

corresponding the the hidden weights.404

That is, we define by ΨW(x) the gradient of the function W 7→ hW(x) w.r.t. the hidden weights.405

Namely,406

ΨW(x) = (u1σ
′(〈w1,x〉)x, . . . , u2qσ

′(〈w2q,x〉)x) ∈ R2q×d

Denote fΨW,V(x) = 〈V,ΨW(x)〉 and consider algorithm 3.407

It is not hard to show that by taking large enough B, algorithm 1 is essentially equivalent to algorithm408

3. Namely,409
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Algorithm 3 Neural Tangent Kernel Training
Input: Network parameters σ and d, q, loss `, learning rate η > 0, batch size b, number of steps
T > 0, access to samples from a distribution D
Sample W ∼ I(d, q, 1)
Initialize V1 = 0 ∈ R2q×d

for t = 1, . . . , T do
Obtain a mini-batch St = {(xti, yti)}bi=1 ∼ Db
Using back-propagation, calculate the gradient∇ of LSt(V) = LSt (fΨW,V) at Vt

Update Vt+1 = Vt − η∇
end for
Choose t ∈ [T ] uniformly at random and return fΨW ,Vt

Lemma 12. Fix a decent activation σ as well as convex a decent loss `. There is a choice B =410

poly(d, q, 1/η, T, 1/ε), such that for every input distribution the following holds. Let h1, h2 be the411

functions returned algorithm 1 with parameters d, q, η
B2 , b, B, T and algorithm 3 with parameters412

d, q, η, b, T . Then, |ELD(h1)− ELD(h2)| < ε413

Proof. (sketch) For simplicity, instead of assuming that σ is M -decent, we assume that the activation414

is twice differentiable and satisfies ‖σ′‖∞, ‖σ′′‖∞ < M . At the end of the sketch we will later415

explain how to handle M -decent activation.416

Consider a run of algorithm 1 starting from the initial weights W = (W,u) in the support of417

I(d, q, 1). Consider now another run, running on the same mini-batches, hyper-parameters and initial418

weights, except that in the second run the output weight are multiplied by B, and the learning rate is419

multiplied by 1
B2 . Our goal is to show that for large B, the second run approximates algorithm 3,420

with the approximation becoming better as B gets larger.421

The process of multiplying the output weights by B cause the gradient, ∇WhW(x), of the hidden422

layer to be multiplied by B, and the gradient, ∇uhW(x), of the output layer to remain the same.423

Thus, for large enough B, we can use this observation in order to ignore the gradient of the output424

weights. We therefore assume that algorithm 1 only updates the hidden weight. Likewise, while425

the gradient is multiplied by B, the step size is multiplied by 1
B2 . Hence, the total movement is426

multiplied by 1
B . It therefore holds that the optimization process takes place in a ball of radius R

B427

around W , where R = poly(M,d, q, 1/η, T, 1/ε) does not depend on B.428

Now by multiplying the output weights by B, we move from the network function hW (x) to429

h̃W (x) := BhW (x). The first order approximation of h̃ around the initial weights is430

h̃W+V (x) = BhW (x) +B 〈∇WhW (x), V 〉+
H

2
‖V ‖2 = B 〈∇WhW (x), V 〉+

H

2
‖V ‖2

Where H is a uniform bound on the Hessian of hW (x) (such a bound exists since ‖σ′‖∞, ‖σ′′‖∞ <431

M ). Now, since the optimization in a ball of radius R
B around W , we can ignore the quadratic part for432

large enough B, and reduce to the case of optimization over the linear function B 〈∇WhW (x), V 〉433

with learning rate of η
B2 starting at 0. This is equivalent to optimization over the linear function434

〈∇Wh(W,x), V 〉 with learning rate of η starting at 0, which is exactly algorithm 3.435

Finally, to handle general M -decent activation, we note that any such activation locally satisfies,436

‖σ′‖∞, ‖σ′′‖∞ < M . Now, for large enough B, the output of the hidden layer, before the activation,437

barely moves throughout the optimization process, and hence, for each example in the min-batches,438

we don’t move between different regions in which σ satisfies ‖σ′‖∞, ‖σ′′‖∞ < M .439

440

By lemma 11 in order to prove theorem 5 it is enough to analyze algorithm 3. Specifically, theorem 5441

follows form the following theorem:442

Theorem 13. Given d,M > 0,R > 0 and ε > 0 there is a choice of q = Õ
(
M2R2

dε2

)
, T = O

(
M2

ε2

)
,443

as well as η > 0, such that for every R-bounded distribution D and batch size b, the function h444

returned by algorithm 3 satisfies ELD(h) ≤ LD
(
HM

tkhσ

)
+ ε445
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Our next step is to rephrase algorithm 3 in the language of (vector) random features. We note that446

algorithm 3 is SGD on top of the random embedding ΨW. This embedding composed of q i.i.d.447

random mappings ψw(x) = (σ′(〈w,x〉)x,−σ′(〈w,x〉)x) where w ∈ Rd is a standard Gaussian.448

This can be slightly simplified to SGD on top of the i.i.d. random mappings ψw(x) = σ′(〈w,x〉)x.449

Indeed, if we make this change the inner products between the different examples, after the mapping450

is applied, do not change (up to multiplication by
√

2), and SGD only depends on these inner products.451

This falls in the framework of learning with (vector) random features scheme, which we define next,452

and analyze in the next section.453

We note that since the NTK RFS is factorized and C-bounded (for C = ‖σ′‖∞), theorem 12 follows454

from theorem 10. Together with lemma 11, this implies theorem 5.455

A.4 Memorization of random set of points – proof of theorem 7456

Consider the NTK RFS ψ(ω,x) = σ′ (〈ω,x〉)x with µ being the standard Gaussian measure on Rd.457

Recall that ψ is an RFS for the kernel tkhσ(x,y) = 〈x,y〉 σ̂′ (〈x,y〉). As in the proof of theorem458

5, it is enough to show that for q = Õ
(
m
d

)
= Õ

(
dc−1

)
, w.p. 1 − o(1) over the choice of S and459

ω = (ω1, . . . , ωq), there is v ∈ Rdq such that460

〈v,Ψω(xi)〉 = yi + o(1) for all i and ‖v‖22 = Õ(m) (7)

Choose a constant integer c′ > 4c+ 2 such that ac′−1 6= 0. Such a constant exists since σ is not a461

polynomial. Define462

f(x) =

m∑
i=1

yi (〈xi,x〉)c
′

463

Lemma 14. With probability 1− δ we have that464

f(xi) = yi +O

(
log

c′
2 (d/δ)

d

)
for all i and ‖f‖2kσ = O (m) +O

(
log

c′
2 (d/δ)

d

)

Proof. W.p 1− δ we have that 〈xi,xj〉 ≤ O
(√

log(m/δ)
d

)
= O

(√
log(d/δ)

d

)
for all i, j ∈ [m]. In465

this case we have that for any i466

f(xi) = yi +O

m( log (d/δ)

d

) c′
2

 = yi +O
(

log
c′
2 (d/δ) dc−

c′
2

)
= yi +O

(
log

c′
2 (d/δ)

d

)

Likewise,467

‖f‖2kσ = a−2
c′ m+O

m2

(
log (d/δ)

d

) c′
2

 = a−2
c′ m+O

(
log

c′
2 (d/δ) d2c− c′2

)
= a−2

c′ m+O

(
log

c′
2 (d/δ)

d

)

468

Based on lemma 13, in order to find v that satisfies equation (7) it is natural to take469

v =
1
√
q

(
f̌(ω1), . . . , f̌(ωq)

)
In which case E ‖v‖22 = ‖f‖2kσ and E [〈v,Ψω(x)〉] = E [fω(x)] = f(x). In fact, theorem 4 together470

with Chebyshev’s inequality indeed implies that for large q equation (7) holds. However, this analysis471

requires q ≈ m2

d while we want q ≈ m
d . In the remaining part of this section we undertake a more472

delicate anlysis of the rate in which fω approximates f in our specific case. This analysis will imply473

that q = Õ
(
m
d

)
suffices for equation (7) to hold w.h.p. Indeed, we will prove that474
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Lemma 15. W.p. 1− δ − 2Ω(d) over the choice of S and ω, we have that475

∀i ∈ [m], |fω(xi)− f(xi)| ≤ O

√m logc
′+2(m/δ)

dq


Togeter with lemma 13 and Markov’s inequality we have476

Theorem 16. W.p. 1− δ − 2Ω(d) over the choice of S and ω, we have that477

〈v,Ψω(xi)〉 = fω(xi) = yi +O

(
log

c′
2 (d/δ)

d

)
+O

√dc−1 logc
′+2(d/δ)

q

 for all i

and478

‖v‖22 = O (m/δ) +O

(
log

c′
2 (d/δ)

dδ

)

Choosing δ = 1
log(m) we get that for q = Õ

(
dc−1

)
equation (7) holds w.p. 1 − o(1). This proves479

theorem 7. The remaining part of the section is a proof of lemma 14. We will need the following480

version of Hoeffding’s bound. A distribution µ on R is called (δ,B)-bounded if PrX∼µ(|X| > B) ≤481

δ.482

Lemma 17. Let µ be a (δ,B)-bounded distribution and let X1, . . . , Xm be i.i.d. r.v. from µ. Then,483

w.p. 1−mδ − δ′484 ∣∣∣∣∣ E
X∼µ

[X]− 1

m

m∑
i=1

Xi

∣∣∣∣∣ ≤ B
√

2 ln(δ′/2)

m
+

2
√
δ EX∼µX2

1− δ

Proof. We note that given that Xi ∈ [−B,B] for all i we have by Hoeffding’s bound that w.p. 1− δ′485 ∣∣∣∣∣ 1

m

m∑
i=1

Xi − E
X∼µ

[X|X ∈ [−B,B]]

∣∣∣∣∣ ≤ B
√

2 ln(δ′/2)

m

We note that486

E
X∼µ

[X|X ∈ [−B,B]] =
EX∼µX + δ EX∼µ[X|X /∈ [−B,B]]

1− δ

=
EX∼µX + EX∼µ[X1[X /∈ [−B,B]]

1− δ
Hence, by Cauchy-Schwartz,487 ∣∣∣∣ E
X∼µ

[X|X ∈ [−B,B]]− E
X∼µ

[X]

∣∣∣∣ ≤ δ

1− δ

∣∣∣∣ E
X∼µ

X

∣∣∣∣+

√
δ EX∼µX2

1− δ
≤

2
√
δ EX∼µX2

1− δ
488

Recall now that by example ??489

f̌(ω) =

m∑
i=1

yi
ac′−1

hc′−1 (〈xi, ω〉)xi

Hence, for any x,490

fω(x) =
1

q

q∑
j=1

m∑
i=1

yi
ac′−1

hc′−1 (〈xi, ωj〉) 〈xi,x〉σ (〈ωj ,x〉)

In particular, fixing S, fω(x) is an average of the q i.i.d. random variables491

fω(x) =
1

q

q∑
j=1

Y (ωi,x)

Where492

Y (ω,x) =

m∑
i=1

yi
ac′−1

hc′−1 (〈xi, ω〉) 〈xi,x〉σ (〈ω,x〉)
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Lemma 18. W.p. ≥ 1 − δ over the choice of S, we have that for every i ∈ [m], Y (ω,xi) is493 (
δ + 2−Ω(d), O

(√
m logc

′+1(m/δ)
d

))
-bounded.494

Proof. Fix ω with ‖ω‖ ≤ 2
√
d. We have that Y (ω,xi), as a function of S, is a random495

variable that is a sum of a single random variable (the summand that corresponds xi) that is496 (
δ,O

(√
logc

′−1(1/δ)

))
-bounded, as well as (m − 1) additional i.i.d random variables that497

have mean 0, are
(
δ,O

(√
logc
′
(1/δ)
d

))
-bounded, and has second moment O

(
1
d

)
. By lemma 16498

we have that499

|Y (ω,xi)| ≤ O

√m logc
′+1(1/δ)

d

+O

(
2m
√
δ/d

1− δ

)
w.p. 1− (m+ 1)δ. Equivalently,500

|Y (ω,xi)| ≤ O

√m logc
′+1(m/δ)

d

+O

(
2
√

(m+ 1)δ/d

1− δ

)
= O

√m logc
′+1(m/δ)

d


w.p. 1− δ. We have shown that501

E
ω
E
S

1

|Y (ω,xi)| ≥ O

√m logc
′+1(m/δ)

d

 and ‖ω‖ ≤ 2
√
d

 ≤ δ
Changing the order of summation and using Markov, we get that w.p. ≥ 1−

√
δ over the choice of S,502

we have that503

Pr
ω

|Y (ω,xi)| ≥ O

√m logc
′+1(m/δ)

d

 and ‖ω‖ ≤ 2
√
d

 ≤ √δ
Replacing δ with

√
δ and using the fact that log

(
m/δ2

)
≤ 2 log(m/δ) we get that that w.p. ≥ 1− δ504

over the choice of S, we have that505

Pr
ω

|Y (ω,xi)| ≥ O

√m logc
′+1(m/δ)

d

 and ‖ω‖ ≤ 2
√
d

 ≤ δ
Hence, since Prω

(
‖ω‖ > 2

√
d
)
≤ 2−Ω(d), we conclude that w.p. ≥ 1 − δ over the choice of S,506

Y (ω,xi) is
(
δ + 2−Ω(d), O

(√
m logc

′+1(m/δ)
d

))
-bounded. Finally, using a union bound, and the507

fact that log
(
m2/δ

)
≤ 2 log(m/δ) we conclude that w.p. ≥ 1− δ over the choice of S, we have that508

for every i ∈ [m], Y (ω,xi) is
(
δ + 2−Ω(d), O

(√
m logc

′+1(m/δ)
d

))
-bounded.509

Proof. (of lemma 14) By lemma 17 we conclude that w.p 1 − δ over the choice of S, for every i,510

fω(xi) is an average of q i.i.d.
(
δ + 2−Ω(d), O

(√
m logc

′+1(m/δ)
d

))
-bounded random variables.511

Furthermore, the second moment of each of these variables is O(m). Using lemma 16 we have that512

w.p. 1− (m+ 1)δ −m2−Ω(d) over the choice of ω,513

|fω(xi)− f(xi)| ≤ O

√m logc
′+2(m/δ)

dq


17



Using the assumption that m = dc and simple manipulation we get that w.p. 1− δ − 2−Ω(d) over the514

choice of ω,515

|fω(xi)− f(xi)| ≤ O

√m logc
′+2(m/δ)

dq


516

A.5 Boundness of distributions517

Recall that a distribution D on Sd−1 is R-bounded if for every u ∈ Sd−1, Ex∼D 〈u,x〉2 ≤ R2

d . We518

next describe a few examples of 1-bounded and (1 + o(1))-bounded distributions.519

1. The uniform distribution is 1-bounded. Indeed, for any u ∈ Sd−1 and uniform x in Sd−1520

we have521

E
x
〈u,x〉2 =

∑
i,j

E
x
uiujxixj =

∑
i

E
x
u2
ix

2
i =

∑
i

u2
i E

x
x2
i =

1

d

∑
i

u2
i =
‖u‖2

d
=

1

d

2. Similarly, the uniform distribution on the discrete cube
{
− 1√

d
, 1√

d

}d
is 1-bounded. Indeed,522

for any u ∈ Sd−1 and uniform x in
{
− 1√

d
, 1√

d

}d
we have523

E
x
〈u,x〉2 =

∑
i,j

E
x
uiujxixj =

∑
i

E
x
u2
ix

2
i =

∑
i

u2
i E

x
x2
i =

1

d

∑
i

u2
i =
‖u‖2

d
=

1

d

3. LetD be the uniform distribution on the points x1, . . . ,xm ∈ Sd−1. Denote byX the d×m524

matrix whose i′ column is xi√
m

We have525

max
u∈Sd−1

E
x∼D
〈u,x〉2 = max

u∈Sd−1

1

m

m∑
i=1

〈u,xi〉2

= max
u∈Sd−1

1

m

m∑
i=1

uTxix
T
i u

= max
u∈Sd−1

uTXXTu

= ‖X‖2

Hence, D is ‖X‖-bounded. In particular, by standard results in random matrices (e.g.526

theorem 5.39 in [24]), if {xi}mi=1 are independent and uniform points in the sphere and527

m = ω(d) then w.p. 1− o(1) over the choice of the points, D is (1 + o(1))-bounded.528

4. The uniform distribution on any orthonormal basis v1, . . . ,vd is 1-bounded. Indeed, for any529

u ∈ Sd−1 and uniform i ∈ [d] we have530

E
i
〈u,vi〉2 =

1

d

d∑
i=1

〈u,vi〉2 =
‖u‖2

d
=

1

d
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