Supplementary material

The supplementary material is organized as follows. In Appendix [A] we provide some auxiliary
results, including those stated in Section[2]above. In Appendix [B]we give proofs of the results which
were only stated or whose proof was only sketched in the paper. For reader’s convenience all such
results are restated below. Appendix [C|contains some comments on previous results in [3]. Finally, in
Appendix [D] we present refined versions of Theorems [3.1]and [5.1]

A Auxiliary results

Lemma 2.3. Let f € Fg(L), with 8 > 1 and let Assumption2.1)(i) hold. Let j; and x; be defined
by Algorithmand let kg = [ |ulP| K (u)|du. Then

IE[ge | x:] — Vf(x2)|| < wsLdh] ™" 3)

Proof. To lighten the presentation and without loss of generality we drop the lower script “¢” in all
quantities. Using the Taylor expansion we have

r ||
Fla+hr¢) = f(a) + (V@) hrQ) + (hT)!D“”)f(x)cm + R(hr¢),

2<|ml<e
where by assumption |R(hr¢)| < L||hr(||? = L|r|°h”. Thus,
) d rh)ml m
Elgle] = TE[((i@) ot Y D ey

2<|m| <4,|m] odd

R(hr¢) — R(—hr()
2

)gK(r)]

Since ( is uniformly distributed on the unit sphere we have E[C¢T] = (1/d)Ixq4, Wwhere I x4 is the
identity matrix. Therefore,

E[L(v (), h)c] = Vi(a).
As [rIM K (r)dr = 0for2 < |m| < ¢and [ 7K (r)dr = 1 we conclude that

[Elgle] — V7 @)l = o IB[(R(hr) — R(-hrQ))CK ()] |
< SR(IR(r) ~ R-hrQ)| K (1)) < o Ldh® ™"

Lemma 2.4. Let Assumption 2.1[i) hold, let g, and x; be defined by Algorithm [I] and set k =
| K?*(u)du. Then

(i) If© C R4, V f(z*) = 0 and Assumption holds,

) _ Lo 2h2 3kd%0?
Ef)30]12 ] < 951 (dnxt P )

8 2hZ

(ii) If f € Fa(L) and © is a closed convex subset of R? such that mag)cHVf(x) | <G, then
e

L2d2h? 2 2
E[||g]% ] 2] < 9% (G2d+ d ht) 3kd2o

2 2h?
Proof. We have

2
lgll* = fﬁl\ (fa+hr¢) = fla = hr¢) + & — &) CK ()|
2

N2 -2
= gz (Fla Q) = f(a = hr() + € = €/) K (r).
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Using the inequality (a + b+ ¢)? < 3(a® + b? + %) we get

Ellg1?|2] < 5oy (B[ (@ + Q) = fl@ = hrQ)) K2()] +2n02) (16)
Here,
(Flo+hrQ) = flo—hrQ))* = (fl+hrQ) = flo —hr() £ f(a) £ AV f(x), hr¢))*
{ (& + hrQ)—f(x) — (V@) hrQ))

IN

+(ta =€) = 1) = (V). ~hrQ) + 409 ) e

< 3 (2||hrcn4 +4<Vf<x>»hr<>2) :

where the last inequality follows from standard properties of convex functions with Lipschitz
continuous gradient, see e.g., [8, Lemma 3.4]. Taking the expectation and using the fact that
E[¢¢T] = (1/d)I4xq we obtain

+— V@I

T214 2
E[(f(z+ hr¢) — f(x — hrg))QKQ(T)] < 3k <L h 4k > .

To prove part (i) of the lemma, it is enough to combine (T6)), (I7) and the inequality ||V f(z)| <
L|lz — x*|| that follows from the Lipschitz gradient assumption and the fact that V f(z*) =
under the assumptions of part (ii) of the lemma we get analogously to (I7) that

(f(x+hr¢) — flx — hr¢))® < 3 (2L2||hr¢|[* + 4(V £ (), hr¢)?) .

This yields inequality (T7) with the only difference that L2 /2 is replaced by 2L2. Together with @)
it implies the result.

?3
Z
¢l
>
~

Lemma A.1. Let f be Lipschitz continuous with constant G > 0 in a Euclidean hy-neighborhood of
the set ©, and let Assumption[2.1|(i) hold. Let G, and x, be defined by Algorithm[I| Then

) . 342
Bl |7 < 5(C°G*d + Gppo).

where C* > 0 is a numerical constant and r = [ K?(u)du.

Proof. We have

d2
197 = 5 I(f (@ + hr¢) = flz = hr() + € = E)CK ()]
d2
— o (@4 1) = (o = hrQ) +€ = € PR ()
Using the inequality (a + b+ ¢)? < 3(a® + b? + %) we get
2

317 0] < oy B/ + hrQ) — f(o — hr)*K2(r)] + 260%).

The lemma now follows by using [33, Lemma 10], which shows by a concentration argument that
ifx € ©, r € [—1,1] are fixed, ¢ is uniformly distributed on the unit sphere and f is Lipschitz
continuous with constant G > 0 in a Euclidean h-neighborhood of the set O, then

(/o + ) — £l — hr))?) < LT0E

where ¢ > 0 is a numerical constant. |

Lemma A.2. Let f(-) be a convex function on R% and hy > 0. Then the following holds.

(i) Function ft() is convex on R%.
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(ii) fi(x) > f(z)forall z € R%
(iii) Function ft() is differentiable on R? and for the conditional expectation given x; we have

E[g¢|z:] = V]Et(l't)'

Proof. Item (i) is straightforward. To prove item (ii), consider g; € 9f(x). Then,

fe(@) > E[f(2) + he(9e, Q)] = f(z) + he(ge, E[C]) = f(2).

For item (iii) we refer to [25, pg. 350], or [16]]. It is based on the fact that for any x € R¢ using
Stokes formula we have

. 1 v d
THE) = Gy, 1 O = T g 1 eI
d d
= V Sk /||u|—1 J(x + hu)udsi(u) = E[Ef(x + htCt)Ct}

where V' (By) is the volume of the unit ball By, ds,(-) is the element of spherical surface of raduis r
in R, and V' (S4) = dV (By) is the surface area of the unit sphere in R%. Since f(x + h;(;)(; has
the same distribution as f(z — h:(:)(—¢;) we also get

E[d(f(f + ht(t)Z_htf(x - htCt))Ct} _ Vft(w).

Lemma A.3. If f is a-strongly convex then ft is a-strongly convex. If f € Fa(L) then for any
z € R and hy > 0 we have

\fe(z) — f(z)| < Lhi. (18)
and

|Ef(z + he(y) — f(z)] < Lh3. (19)

Proof. Using the fact that E[(] = 0 we have
E[f (2 + hi) = f(@)]| = [B[f(x + hC) = f(2) = (Vf(2), he)]| < LRE[|IC]?] < Lh3.

Thus, (T8) follows. The proof of (T9) is analogous. The a-strong convexity of f; is equivalent to the
relation

(Vfi(z) = Vi), z—a') > alz— J:’||2 , Vz,2’ € R4, (20)
which is proved as follows:

(Vhile) = Vu(a"),o = a') = (E[V (@ + hl) = V(@' + hl)],e — ) 1)
=E[(Vf(z+h) — V(@ +hQ), (z+ hl) — (&' + he{))]
>alz—2|°, Vi, €RY,

due to the a-strong convexity of f. [ |
B Proofs
Theorem 3.1. (Upper Bound, Constrained Case.) Ler f € F, g(L) with o, L > 0 and § > 2.

Let Assumptions and hold and let © be a convex compact subset of R®. Assume that
maxgco |V f(2)[[ < G. If o > 0 then the cumulative regret of Algorithm|[I| with

1

3ko? 28 2

h: _— t7 = — t::l.T
' <2<ﬂl><nﬁf:>2> YA v

e
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satisfies
T
Ve e0: S E[f() - f(z)] < é (d2 (A T8 4 Ag) + AgdlogT) )
=1

where A1 = Sﬂ(naz)%(n[ﬂl)%, Ay = 5E2(0/L)% + 9kG? /d with constant ¢ > 0 depending
only on 3, and Az = 9xG?. The optimization error of averaged estimator T = % Zthl x4 satisfies

Blien) - e < 5 (@ (e + F) + 4 TR ). ©
where ©* = argmin, g f(z). If 0 = 0, then the cumulative regret and the optimization error of
Algorithmwith any hy chosen small enough and 1, = % satisfy the bounds @) and (), respectively,
with Ay = 0, Ay = 9xG?/d and A3 = 10xG>.

Proof. Fix an arbitrary * € ©. By the definition of the algorithm, we have ||z;11 — x||? <
lw¢ — n:ge — x||?, which is equivalent to

(o 20 — ) < |lze — z|? 277|t$t+1 — |2 " %HQtHQ- 22)
By the strong convexity assumption we have
F(@) = f(@) < (Vf (@) 2 — ) = Sllae =l 23)
Combining the last two displays and setting a; = ||2; — z||> we obtain

Elf(ze) = f(@) 2] < E[ge|e] = V(o) l[Je — 2] + %m]E[at — rp1 | 2]

n . «
+§t]E[H9t||2|$t] - §E[at|$t]

_ 1
< wgLdh] |y — x| + 5—Elay — appa ]

27715
. @
(I HEARSSEREAR 24)
where the second inequality follows from Lemma As 2ab < a? + b* we have
1/2kgL _
A1y _ <7(6 25,2(8-1) _ ) )
dhy ™ lze — x| < 50, d°h; —|—2 L”xt x| (25)
We conclude, taking the expectations and letting r; = E[ay], that
TE—T « o d?
Bl () — f()) < gt = Gk (e TR ERIGNT 26)

Summing both sides over ¢ gives
T T
1 T % B-1) | Mg
S Elf(@) - f@) <530 (B - D) + Z( raL2 S h 7Y+ TE)gi)17).
t=1 2 t=1 e 2
The first sum on the r.h.s. is smaller than O for our choice of 1, = E' Indeed,
T T
— 1 1 1
Z(W_an>§ﬁ(_a)+ Tt(__Oé):
p M 2 mo 2/ =\ mer 2

From this remark and Lemma ii) (where we use that Assumption implies f € F2(L/2)) we

obtain
T T

| Ly 1o
SOEIf ) - S < 5 3 ((ssLni ™ 4 3Elll ) @)
t=1 « t=1 t
T —
1 _ 1 L2d?h? 3rd?o?
< = 25272(8-1) | = 2 t
<= ; ((,%L) ahy Y 4 (95 (G2a+ - ) T |
d? & 2(8-1) . 3KO? 9k L2h? 9xG?
< — .
<=y AR > b+ - |+ T dlog T+ 1), (28)

o~
Il

1
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L
If o > 0 then our choice of h; = (m) *” +~25 is the minimizer of the main term (in curly

brackets in (28))). Plugging this /; in (28] and using the fact that thl t— 1418 < pTYP for B > 2
we get (@). Inequality (3)) follows from (@) in view of the convexity of f. If ¢ = 0 the stochastic
variability term in (28) disappears and one can choose h; as small as desired, in particular, such that

the sum in (28) is smaller than £ d log T'. This yields the bounds for o = 0. |

Theorem 4.1. Let the assumptions of Theorembe sansﬁed Let o > 0 and assume that (&)},
are independent random variables with E[¢]] = 0 and E[¢]'] < o? fort = 1,...,T. If f attains its
minimum at point ©* € ©, then

o 1 A A dlogT
E|M — f(z*)| < Jroé(dQ(Tﬁi1 +T2>+A3 Tg > 9)

Proof. We have

- Eﬂé > Bl - f(a)]
< 2 LS B )
rt T &
and the theorem follows by using (). n

Theorem 3.2. (Upper Bounds, Unconstrained Case.) Let f € F, g(L) with o, L > 0 and > 2.
Let Assumptionsand hold. Assume also that o > \/C\.d/T, where C, > T2kL2. Let x;’s be
/]

the updates of Algorithm|l|with © = R?, h; and n; as in () and a non-random x, € R?. Then the
estimator defined by (7) satisfies

—1

o d d? - 1
E[f(Zr, 1) — f(z*)] < CHL2OTT||Q;1 — x> + C— ((kgL)?* + k(L +02)) T~ 7 ®)
where C' > 0 is a constant depending only on 8 and x* = argmin,cga f(2).

Proof. We start as in the proof of Theorem[3.1]to get (24). Then, using the strong convexity of f and
the fact that z* is the minimizer of f we get analogously to (23) that

2k L L *
dhﬁ71” *H < Hﬂ thQ(B 1) + ||I 71:*“2 Hﬁ d2h2(ﬁ 1) + f(xt) f(l' )
t t 2L 2kgL

Combining the last display and (24), using Lemmaand letting r; = E[||x; — 2*||?] we get
d*h? ) 3d202}

Elf(z) = £@)] < T2 o, 4 2(wsL)? L — 0 [%2 (‘” -

Mt 8 2h?
(29)
Fort =1,...,Tp, since hy = T~ 2 and 1, = (aT)~! we have the following consequence of (29)
1 9k L? 9k L?
< l— =+ —5d b 1 d b 30
Tt+1_7“t( T+(aT) >+ T < T (+(T) >+T (30)
where
d? o B=1 9 o a1 3 o 1
d? o 9 -5 3 S\, 8



Letting C3 = 9xL?, inequality (30) is of the form 7441 < r,q + b, with ¢ = (1 + Cad ) Then

(aT)?
To—1 To 2
To j To q (aT) To
TTo+1 < T1g +bTZq <riq —|—bT§<T1+ br ) g °.
=1 q— 1 ng
Now, assuming
4C5d
Ty = { ; J (32)
«
we obtain
Csd
T, 3
q'° = exp [To log (1—|— (aT)Q)]

4Csd Csd
< o |G (14075 )|
4C2d? 40?2
< exp < a4?")112 ) < exp < 023) =:Cy

where in the last inequality we have used the assumption that, for C, > 0 large enough,

C.d

. 33
a > T 33)
As we shall see, this also guarantees that 7y < 7. In conclusion, we obtain
(aT)?
rr41 < Cy (7"1 + WbT
(aT)? d? s 9 -5 3 5 _B-1
< —— | 2(kgL —kL - T 5
< Cy (r1+ Cod o2T (kgL) +81~c —&—2&0
d _
= Cy(m+ = (2(ksl)*+ i+ 3no?) TH ). (34)
C3 8 2

We now go back to inequality (29). Recalling the definition of Z7, r and the fact that h, = t 26 and
n = % fort € {Tp + 1,...T}, we deduce from (29) that

T —
_ N at L?
(T — To)E[f(Zr, 1) — f(@*)] < D (re— rip) 5 = are + 18k —dr,
t=To+1
d? T 9,_B8=1 9 _5 _pg1 9, £=1
+— Y (z(nﬂL) 7+ kLT 4+ 3ko tﬁ) .
t=To+1

Since 9xL? = Cj condition (32) implies that 185L% ¢ < & for ¢ > Ty, + 1. Thus

T
3 e
(T - T)E[f (og, 1) — SN < 5 Y [(re—resn)t = re] + Ur,
t=To+1
where
vp = 2rsL)? + 2kI? + 3o it‘ﬂ% s 2rsL)? + 2RI2 + 3k0? ) BT
T — o K[)’ 453 RO = I"iﬁ 4143 RO .
t=Ty
On the other hand
T T
S et —n) Srna@H -1+ Y n-(E-1) - 1) = Trna.
t=To+1 t=To+2
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Using inequality (34) and condition (32)) we get
T 2C5Cyd d 9 3
) < S0 (o + o (2(k5L)% + kL2 + Sko? 5
Cs 8 2

ER !
=od & 2
= 2C, | 9xL ! + . 2(K)ﬂL) + nL + na T

=

These bounds imply

)

(T —To)E[f(Zr,r)— f(z")] < 18C4ni2gr1 +(2Cy + 6)% <2(nBL)2 + %HEQ + 3n02) T%.

=

Since C\, > 8C3 = 72k L? it follows from (32) and (33) that T > 275 Thus
2

- d 9 - B—1
T — ] < 2_ 7 i 2 Y 2 2 — -
E[f(ng,T) f(CL' )] < 36Cy4kL OLTTI + (404 + 25) o (2(%35[/) + 4HL + 3ko ) T 5
[ |

Theorem 5.1. Let f € F, o(L) with o, L > 0. Let Assumption Ehold and let © be a convex

compact subset of R%. Assume that max,ce |V f(z)|| < G. If 0 > 0 then for Algorzthmlwzth Jt
1/4
defined in (I0) and parameters h; = (Zﬁ%) and n; = 2= we have

Yz €O : IEZ )<mm<GBT2Fa\Ff+A4logT) (11)

where B is the Euclidean diameter of © and Ay = 6.5Lc + 22G?/d. Moreover, if x* =
argmin, g f(x) the optimization error of averaged estimator T = % 23:1 xy is bounded as

d d?logT
Elf(zr) — )] < min | GB,2V3L + Ay— . 12
[f@r) = fe")] < min (GB2VELo 4 4,5 ¥ET ) (12)
Finally, if o0 = 0, then the cumulative regret of Algorithm[I|with any ht chosen small enough and
Ny = -; and the optimization error of its averaged version are of the order & 1og T and £ 10§,T

respectlvely

Proof. Fix x € ©. Due to the a-strong convexity of ft (cf. Lemma we have
Jolw)) = fil@) < (Vfilwn),a =) = 5 [l — o],
Using (T8) and Lemma[A-2]ii) we obtain
f@e) = f(@) < b} + (Vo(a),ae =) = 5 |lo = all.

Using this property and exploiting inequality (22)) we find, with an argument similar to the proof of
Theorem 3.1} that

Ty —T o .
Vz € ©: E[f(z:) — f(2)] < Lhi + tTtH —gnt %E[HgtHQ] (35
t
By assumption, 7, = —-. Summing up from ¢ = 1 to 7" and reasoning again analogously to the proof
of Theorem 3.1 we obtam
T
1 .
vee®:  EY (f(e) - fla) <Y (LAF + 5 Ella]?)- (36)

t=1 t=1

Now, inspection of the proof of Lemma|2.4|shows that it remains valid with K = 1 when K (-) = 1 in
Algorithm[T} This yields

L2d%h2 2 2
E[[l3:[1%) < 9 (G2d+ d ht> 3d%0

2 2n2
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Thus,

T
Vre®: E )< [(p+ 9L2d2)hf+ﬁ+@. (37)

2
P P 4h; at 2at

]~
<
—

1/4
2 2 o . . .
The chosen value h; = (m) minimizes the r.h.s. and yields

T
Vee®: EY  (flz) - f

| A

T 1/2
3 d2 2 (4Lot + 9L2d? 9G? d

3d202
t=1
daf 3Ld%*0 5 d
< —(1+logT
_Z\/g[ Jat o }+9G a( +logT)

t=1

§2\/?Taff+(3f L+9%2) (1+1logT).

As1+1ogT < ((log2)~! +1)log T for any T' > 2, we obtain (TT). On the other hand, we have
the straightforward bound

T
Vee®: EY (f( (z)) < GBT. (38)

t=1
The remaining part of the proof follows the same lines as in Theorem [3.1] |

Theorem 6.1. Let © = {x € R? : |[z|| < 1}. For o, L > 0,8 > 2, let F), 5 denote the set of func-

tions f that attain their minimum over R? in © and belong to Fo, 5(L) N {f : max,co |V f ()] <
G}, where G > 2. Then for any strategy in the class Il we have

d d,, s
sup E[f(zr) — min f(z)] > C min ( max(c, T~Y2+V/8) — 2775 ), 14
2 E[f(er) —min f(z)] = Cmin (max A B
and 44
. _B-1
sup E[Hszx*(f)Hﬂ > C' min (17T7 —T 7 ), (15)
fFEF] 4 Ts «

where C > 0 is a constant that does not depend of T, d, and «, and x*(f) is the minimizer of f on ©.

Proof. We use the fact that sup ;¢ 7/ . is bigger than the maximum over a finite family of functions in

(’1, - We choose this finite family in a way that its members cannot be distinguished from each other
with positive probability but are separated enough from each other to guarantee that the maximal
optimization error for this family is of the order of the desired lower bound.

We first assume that @ > T —1/2+1/8,

Let 9 : R — R be an infinitely many times differentiable function such that

1 if |2| <1/4,
no(z) =4 €(0,1) ifl/d<|z| <1,
0 if |z| > 1.

Setn(z) = ffoc no(r)dr. Let Q = { — 1, 1}d be the set of binary sequences of length d. Consider
the finite set of functions f,, : R? — R, w € Q, defined as follows:

d
folw) = a@+06) lul® /2 + > wirkPy(uih ™),  u=(u1,...,ua),

i=1

where w; € {—1,1}, h = min ((a?/d) =
be chosen small enough.

*%T‘ﬁ) and 7 > 0,8 > 0 are fixed numbers that will
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Let us prove that f,, € F, (’l g forr > 0 and ¢ > 0 small enough. It is straightforward to check that if
r is small enough the functions f,, are a-strongly convex and belong to F3(L).

Next, the components of the gradient V f,, have the form
(Vfuo(u) = a(l 4 6)u; + wirh®“tno(ush™1).

Thus,

IVfo()]* < 20%(1 4 6)* Jul® + 2r*a”
and the last expression can be rendered smaller than G2 uniformly in u € © by the choice of § and r
small enough since G2 > 4a?.

Finally, we check that the minimizers of functions f,, belong to ©. Notice that we can choose 7 small
enough to have a1 (1 4 §)~!rh#~2 < 1/4 and that under this condition the equation V f,,(x) = 0
has the solution

s = (" (w1), ..., 2" (wd)),

where 7* (w;) = —w;a~1(1 + §)~1rhP~1. Using the definition of h we obtain
gl < d2a™ (14 6) " rhP T < dV a1+ 6) T r(e?/d) P < (1+6) <1

for » > 0 small enough, which means that , belongs to the interior of ©.

Combining all the above remarks we conclude that the family of functions { f,,,w € 2} is a subset of
.7-'('1,5 for r > 0 and 6 > 0 small enough.

For any fixed w € €2, we denote by P,, r the probability measure corresponding to the joint
distribution of (21, y1, - . ., yr) where y; = f,,(2¢) + & with independent identically distributed &;’s
such that (T3) holds and z;’s chosen by a sequential strategy in I17. We have

T
APy (21,41, yr) = dF (y1 — fu(z1)) HdF<yi — fuo(®i(z1,91, . .. a%—l)))-

i=2
Without loss of generality, we omit here the dependence of ®; on 25, ..., 2;_1 since z;,7 > 2,is a
Borel function of z1,y1, ..., y;—1. Let E,, 7 denote the expectation w.r.t. P, 7.

Consider the statistic

W € argmin || zp — x| -
weN
Since ||z} — x| < ||zr — k|| + |lzr — 2% || < 2||zr — x| for all w € Q we obtain

1
Eor[llor —afl*] > {Bur[llzl - 25°]

= a_2r2h2ﬁ_2Ew,Tp(ffJ, w),

where p(0,w) = Z?: 1 I(&; # w;) is the Hamming distance between w and w. Taking the maximum
over 2 and then the minimum over all statistics & with values in {2 we obtain

* |2 —2.2728-2: -
f?é%‘Ew’T[”ZT 2|7 ] = a7 ?r?h 1gfr$1€z%<Ewp(w,w)

By [34, Theorem 2.12], if for some v > 0 and all w,w’ €  such that p(w,w’) = 1 we have
KL(P, r,Py 1) <+, where KL(-,-) denotes the Kullback-Leibler divergence, then

d
inf magzc E, rp(w,w) > 1 exp(—7).

w we
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Now for all w,w’ € © such that p(w,w’) = 1 we have

P,
KL(PrPurr) = [ log (45 )de .

- [ G =)
*Zl (=t p)
F(yl—fw<zl))1:IdF(yi—fw< iz19i™)

< TIO %gg'fw(u) - fw’(u>‘2 = IOT2772(1)7

where the last inequality is granted if r < vg/n(1) due to (I3). Assuming in addition that r satisfies
r? < (log2)/(Ion*(1)) we obtain KL(P,, r,P. 1) < log2. Therefore, we have proved that if
o > T~1/2+1/8 then there exist » > 0 and § > 0 small enough such that

1 r2 d _

E, )] > sda~2r2h?2 = i (1 —T—*). 3
max x| ller — 2k ]_8 o “r g fuin (39)
This implies for o > T—1/2+1/8_ In particular, if & = a := T~'/?*1/# the bound is of
the order min (1 dT_%> Then for 0 < a < ag we also have the bound of this order since the

classes F, 5 are nested: F,, 5 C JF, 5. This completes the proof of (I5).

We now prove (T4). From (39) and a-strong convexity of f we get that, for o > T—1/2+1/8,
B—1

2 d
maxE,,r[f(2r) = f(al)] > Tomin (a, =T77). (40)

This implies in the zone a > T—'/2%1/8 since for such o we have

1

min (a, ng%) = min (max(a,T_1/2+1/B), d gT*%)_
a

@ VT’
On the other hand,
d - d
min (ao, —T_%) = min (T_1/2+1/B, —),
ag VT

and the same lower bound holds for 0 < a < o by the nestedness argument that we used to prove
(T5) in the zone 0 < a < ag. Thus, (T4) follows.

C Comments on [3]

In this section we comment on issues with some claims in the paper of Bach and Perchet [3]], which
presents a number of valuable results and provides a motivation for our work. We wish to clarify such
issues for the sake of understanding, as otherwise a comparison to the results presented here would
be misleading.

Bach and Perchet [3] introduce Algorithm [1|in the current form and provide upper bounds for its
optimisation error and online regret when f € Fg(L) with integer /5. The setting where f is strongly
convex is considered in Propositions 4,6-8 and 9 of that paper. Propositions 4, 6 9 give the rates

decaying in 7" not faster than 7 e , which is slower than the optimal rate 7'~ 5 . Proposition 8
dealing with asymptotic results is problematlc It is stated as bounds on ||zy — x* || but the authors
presumably mean bounds on E ||z — z*||*. The proof relies on the last inequality of Lemma 2 in
[3], where factor d is missing. The right-hand side of this inequality should be of the order d6”~!
and not 6%~ (this is analogous to our Lemma. This leads to too optimistic dependency of the
bounds in Proposition 8 on the dimension d. The same issue arises in Proposition 5 (the second line
of its proof uses a bound on the norm of (,, with missing factor d). A dependency of the bound
on the initial value of the algorithm is missing in the part of Proposition 8 entitled "unconstrained
optimization of strongly convex mappings". This remark also concerns Proposition 7.
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D Additional results

In this appendix, we provide refined versions of Theorems[3.T|and[5.1] First we state a non-asymptotic
version of Chung’s lemma [[11, Lemma 1]. It allows us to obtain in Theorem [D.2|upper bounds for
E{||z; — 2*||*}, where z, is generated by a constrained version of Algorithm i (i.e., with compact ©)
under the assumptions of Theorems [3.T]and[5.1] By using this result and considering averaging from
|T/2] + 1 to T rather than from 1 to 7", in Theorems[D.3|and [D.4] we provide finer upper bounds
for the optimization error than in Theorems|3.1|and 5.1} The refinement consists in the fact that we
get rid of the logarithmic factors appearing% and (I2). Finally, in Theorem [D.5|we show that
the term % log T in the bound on the cumulative regret in Theorem [5.1|can be improved to g log T’
under a slightly more restrictive assumption (we assume that the norm ||V f|| is uniformly bounded
by G on a large enough Euclidean neighborhood of © rather than only on ©).

Lemma D.1. Let {b;} be a sequence of real numbers such that for all integers t > 2,

N
1 a;
bt+1 < (1 - t) bt + El tpi+1’ (41)
where 0 < p; < land a; > 0 for 1 < i < N. Then fort > 2 we have
N

2b2 a;
by < — —_ 42
P < +;<1_pi)m (42)

Proof. For any fixed ¢ > 0 the convexity of the mapping u — g(u) = (t + u)~P implies that
g(1) — g(0) > ¢'(0), ie.,

1 1 p
Sl S .
tp (t + 1)p — ¢p+1
Thus,
a; a; 1 1\ 1
i W —(1- 7)7 . 43
ti"+11—p((t+1)p ( t tp> “43)
Using (@I)), and (#3) and rearranging terms we get
ol a; 1 al a;
b =Y e < (1 1) [ = Y |
t+1 ; (1 —p)(t+ 1) — t [ t v (1— pi)tpil

Letting 74 = by — Zf\;1 W we have 7,41 < (1 — %)Tt. Now, if 75 < 0 then 7; < 0 for any

t > 2 and thus @2) holds. Otherwise, if 75 > 0 then for ¢ > 3 we have
t—1
1 27‘2 2b2
< 1— 7) <2
TtTQi_H2( i) T
where we have used the inequalities ZZ;; log (1 — %) < - Zf;; L < _log(t —1) < log(2/t).
Thus, @2) holds in this case as well. [

Theorem D.2. Let f € Fo g(L) with3 > 2, a, L > 0,0 > 0, and letAssumptionhold. Consider
Algorithmwhere O is a convex compact subset of R? and assume that max,ce |V f(z)| < G.

1
(i) IfASWmPinnholds, hy = (m) 7% and g, = 2 then for t > 1 we have

2G? d?> _s-1
Ef ||z, — a*||°] < 5 + As—t~ 7 44
[llze — %] orr T8 e (44)

where ¥ = argmin, g f(x) and As > 0 is a constant that does not depend on d, o, t.
dZ 2 1/4 1
(i)If =2 hy = (37‘7) and 1y = —; then for t > 1 we have that

ILat19L2d2
2G? d d?
o Ag—e A
ot ENEPE T2t

where Ag, A7 > 0 are constants that do not depend on d, o, t.

E[||lz, — 2*[|°] < (45)
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Proof. Letr; = E||z; — a* . To prove the theorem, we will show that under the assumptions of
the theorem {r;} satisfies with suitable a; and p;, and then use Lemma

We start by noticing that, in view of the a-strong convexity of f and the fact that f is Lipschitz
continuous with constant GG in © for any ¢t > 1 we have

) G®
o — 2*|* < =5 (46)
«
Thus, (@4) and (43)) hold for ¢ = 1 and it suffices to prove the theorem for ¢ > 2. The definition of
Algorithm|T] gives that, for ¢t > 1,
e = a*|* < llae = 2™ = 209, 20 — 2%) + 05 191
Taking conditional expectation of both sides of this inequality given x; we obtain

* (12 * 12 ~ * A 112
Elllzees —a*% |2e) < o — 2|17 — 200 (Blge|ad], 20 — &) + n B[ gel|” |2
Using this inequality and Lemmas [2.3] and [2.4(ii) we find

Ellocss — o' Pl < oo —o* 7 = 2ma oy — o* | + 20ma Ldhf - 2| +
L2d?h? 3rd?0?
2 2 t
9% | G*d . 47
(o (020 257 ) + 25 ) )
On the other hand, for A > 0, we have
_ kgL
o= a7 < g (S2E RO 4 2 P @)

Combining (@8) and [@7) we get
Eflae —aFla] < (U= (2= Nma) o — 7| + CaxEndhy 0+

s (49)
w2 [ (9 (G2 + 1) 4 352 )]

1
I 2 26,1 . . .
Substituting h; = ( Q(B_BSW ) T, N = %, A= % in , and taking the expectation over
T we obtain

B—1
1 4(kpL)? , 3ko? P 281
< 1—- d t B
T = ( t)Tt T30 28— 1)(rpL)? +
18K L2d? 3k 7 T
o2 \2F (D)2 o2P2
6kd20? 3ko? -7 _28-1
+ =2
a?  \2(8—1)(kgL)?
Thus, we have
1 d?> 251
Tt+1 < (1 - E)Tt + C?t
where
Bp—1 1
4(kpL)? ( 3ko? )B 9 ( 3ko? )"
Cc = + 18kl | ————— +
3 2(8 —1)(kpL)? 2(8 —1)(kpL)?
1
36K 3ko? o8
+250 62 4 o () .
2(8 —1)(kpL)?

This is a particular instance of (#T). Therefore, we can apply Lemma|[D.1] which yields that, for all
t>2,

2 1
e < 2G 5+ ﬁCd—t*L.
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Thus, @4) follows.
We now prove (43). Since 8 = 2, using Lemmas [2.4]ii), and [A.3] we obtain

. . L22h2  3d%0?
E[||zsr1 — ||2 |z) < (1—m) ||og — = ||2+277tth+77t2 [(9 <G2d+ 5 t) + 57,2 )} .
t

. 02 2 1/4 . )
Setting here h; = (ﬁ%) = t, and taking the expectation over x; we get

IN

1 (4Lat +9L%d*)V/2\ 3do  9G?d
Tit (1 a ;)Tt * ( a? ) 12 a?t?

1 L d 2
(1= 3)re+ Ao gig + 41

IA

where Ay = 2v/3Lo and A, = 3v/3Lo + %. Applying Lemmafor t > 2 we get

2G2 d d?
—— + 245 2AL —
re < + a% t% + 2t
| ]
Consider the estimator
1 T
= —— . 50
= T > @ (50)
t=|T/2|+1

The following two theorems provide bounds on the optimization error of this estimator.

Theorem D.3. Let f € Fop(L) with 8 > 2, a,L > 0, ¢ > 0, and let Assumptions 2.1) and
hold. Consider Algorithm |]| ! where © is a convex compact subset of R and assume that

1
maxzeo |Vf(z)]| < G. Ifhy = (%) 7% and = % then the optimization error
of the estimator (50) satisfies
Al Al AlLd
Blf(r) - fa)] < win (G5 (@ (S + 52+ )
T B T T

where £* = argmin g f(x). Here A}, A5 and A% are positive constants that do not depend on
d,a, T, and B is the Euclidean diameter of ©.

Proof. With the same steps as in the proof of Theorem [3.1] (see (28)) but taking now the sum over
t=1|T/2] +1,...,T rather than over t = 1,...,T we obtain

a IT/2]a 1 <
* 2(8—1
> B — f@) St Y ((nﬁL)zdzhtw )4
t=|T/2]+1 t=|T/2)+1
1 o L2d?h? 3kd?o?
+Z[9“(G i+ ) 212 D

T/2la  9kG2d <~ 1
< TT/2)+1 L /2 J + E "
t=|T/2]+1
T
1 2(3 1) LZth% 3K’/d20'2
- L)2d%h )
A st o

t=1

For the last sum here, we use exactly the same bound as in the proof of Theorem @ Moreover, it
follows from Theorem that

4G? d? -85t
T2+ < T+A Fy
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log(T/|T/2]) < 2forall T > 2 (recall that we assume T' > 2 throughout the paper), as well as the
the convexity of f we get

- 5 3o )+ %)

where A} = 24, + 5 , A}, = 2¢L?(/L)? with constant ¢ as in Theorem. lland A} = 2G? (18K +
1/d). On the other hand we have the straightforward bound

E[f(2r) — f(«")] < GB.

where Af = 2(9=1/8 A5 Combining these remarks and using the fact that 3, 754, 3+ <

|
Theorem D.4. Let f € F,, o(L) with o, L > 0, 0 > 0, and let Assumption|2.1|hold. Consider the
version of Algorithmas in Theoremwhere O is a convex compact subset of R? and assume that

2 2 1/4
maxzeo |Vf(@)|| < G. Ifhy = (mﬁ) and n, = 2 then the optimization error of the
estimator (50) satisfies

2
Blf(ir) - (a")] < min (GB. A~ + Ao ) 61

where ©* = argmin, g f(x). Here Ag and Ay are positive constants that do not depend on d, o, T,
and B is the Euclidean diameter of ©.

Proof. Arguing as in the proof of Theorembut taking the sum over |7/2] +1,..., T rather than
over 1,...,T we obtain

T T
. |T/2]c 9L%d? 3d?0?  9G3d
> E[fle) —f@)] Srimpn—G—+ > [(L+ 4at )h3+ 2ot T 20t }
t=|T/2]+1 t—|_T/2J+1 t
|T/2]a daf 3V3Ld?c  9G3d
< TiT/2)+1 + Z V3 +
2 b= T3] 41 [ vat 2at 2act }
T
T/2 3d 1
gerJHL /2]a +2V3L \F\/ + 5 (deo—+3G2) o=
t=|T/2]+1
T/2
grLT/QJHL /2]a +2V3L \F\/ + (\dea+3G2)

where we have used the inequality Zt \T/2]+1 1 <log(T/|T/2]) < 2forall T > 2 (recall that
we assume 7" > 2 throughout the paper). It follows from Theorem[D.2] that

d2
+ 24, 2T

T|\T/2|+1 < +\[A6

Nl=

a:T
Combining the last two displays yields

T

> ]E[f(act)ff(x*)]_G—QwL 2fff+A7 +2Faff+ (\dea+3G2).
t=|T/2]+1

From this inequality, using the fact that f is a convex function, we obtain

vaT aT’

where Ag = % +4v/3Lo and Ag = A7 + 2(3V/3Lo + (9d + 1)G? /d?). [

E[f(2r) — f(z")] < As
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Theorem D.5. Let f € F 2(L) with ., L > 0, and letAssumptionhold. Consider the version
1

of Algorithm|l|as in Theorem where © is a convex compact subset of R%, and h; = (%&2;’: ) Z,

N = é If f is Lipschitz continuous with Lipschitz constant G on the Euclidean h1-neighborhood of
O, then for o > 0 we have the following bound for the cumulative regret:

d d C*G? d
Vo €O : ;E[f(xt) — f(#)] < min (GBT,Q@Jﬁﬁ+ 5o+ logT)) ., (52)

where B is the Euclidean diameter of ©.

If 0 = 0, then the cumulative regret for any hy chosen small enough and n; = é satisfies
T
Vze©: Y E[f(z)— f(z)] < min <GBT C*G? — (1 + 10gT)>
t=1

Proof. The argument is analogous to the proof of Theorem 5.1} The difference is only in the bound
on E[||g¢[|?]. To evaluate this term, we now use Lemma[A.1] (noticing that when K (-) = 1 this lemma
is satisfied with xk = 1). This yields

= o 3d202
vzeO®: E & —(C*GQ ) e
z e D (flae) — 1 ; + 20 (53)
1
The chosen value h; = ?figf * minimizes the rh.s. and together with (38) yields (52). The
remaining part of the proof follows the same lines as in Theorem 3.1 |
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