
Supplementary material

The supplementary material is organized as follows. In Appendix A we provide some auxiliary
results, including those stated in Section 2 above. In Appendix B we give proofs of the results which
were only stated or whose proof was only sketched in the paper. For reader’s convenience all such
results are restated below. Appendix C contains some comments on previous results in [3]. Finally, in
Appendix D we present refined versions of Theorems 3.1 and 5.1.

A Auxiliary results

Lemma 2.3. Let f ∈ Fβ(L), with β ≥ 1 and let Assumption 2.1 (i) hold. Let ĝt and xt be defined
by Algorithm 1 and let κβ =

∫
|u|β |K(u)|du. Then

‖E[ĝt |xt]−∇f(xt)‖ ≤ κβLdhβ−1
t . (3)

Proof. To lighten the presentation and without loss of generality we drop the lower script “t” in all
quantities. Using the Taylor expansion we have

f(x+ hrζ) = f(x) + 〈∇f(x), hrζ〉+
∑

2≤|m|≤`

(rh)|m|

m!
D(m)f(x)ζm +R(hrζ),

where by assumption |R(hrζ)| ≤ L‖hrζ‖β = L|r|βhβ . Thus,

E[ĝ|x] =
d

h
E
[(
〈∇f(x), hrζ〉+

∑
2≤|m|≤`,|m| odd

(rh)|m|

m!
D(m)f(x)ζm+

R(hrζ)−R(−hrζ)

2

)
ζK(r)

]
.

Since ζ is uniformly distributed on the unit sphere we have E[ζζ>] = (1/d)Id×d, where Id×d is the
identity matrix. Therefore,

E
[d
h
〈∇f(x), hζ〉ζ

]
= ∇f(x).

As
∫
r|m|K(r)dr = 0 for 2 ≤ |m| ≤ ` and

∫
rK(r)dr = 1 we conclude that

‖E[ĝ |x]−∇f(x)‖ =
d

2h
‖E
[(
R(hrζ)−R(−hrζ)

)
ζK(r)

]
‖

≤ d

2h
E
[
|R(hrζ)−R(−hrζ)| |K(r)|

]
≤ κβLdhβ−1.

Lemma 2.4. Let Assumption 2.1(i) hold, let ĝt and xt be defined by Algorithm 1 and set κ =∫
K2(u)du. Then

(i) If Θ ⊆ Rd,∇f(x∗) = 0 and Assumption 2.2 holds,

E[‖ĝt‖2 |xt] ≤ 9κL̄2

(
d‖xt − x∗‖2 +

d2h2
t

8

)
+

3κd2σ2

2h2
t

,

(ii) If f ∈ F2(L) and Θ is a closed convex subset of Rd such that max
x∈Θ
‖∇f(x)‖ ≤ G, then

E[‖ĝt‖2 |xt] ≤ 9κ

(
G2d+

L2d2h2
t

2

)
+

3κd2σ2

2h2
t

.

Proof. We have

‖ĝ‖2 =
d2

4h2

∥∥(f(x+ hrζ)− f(x− hrζ) + ξ − ξ′
)
ζK(r)

∥∥2

=
d2

4h2

(
f(x+ hrζ)− f(x− hrζ) + ξ − ξ′

)2
K2(r).
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Using the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) we get

E[‖ĝ‖2 |x] ≤ 3d2

4h2

(
E
[(
f(x+ hrζ)− f(x− hrζ)

)2
K2(r)

]
+ 2κσ2

)
. (16)

Here,(
f(x+ hrζ)− f(x− hrζ)

)2
=

(
f(x+ hrζ)− f(x− hrζ)± f(x)± 2〈∇f(x), hrζ〉

)2
≤ 3

{(
f(x+ hrζ)−f(x)− 〈∇f(x), hrζ〉

)2

+
(
f(x− hrζ)− f(x)− 〈∇f(x),−hrζ〉

)2

+ 4〈∇f(x), hrζ〉2
}

≤ 3

(
L̄2

2
‖hrζ‖4 + 4〈∇f(x), hrζ〉2

)
,

where the last inequality follows from standard properties of convex functions with Lipschitz
continuous gradient, see e.g., [8, Lemma 3.4]. Taking the expectation and using the fact that
E[ζζ>] = (1/d)Id×d we obtain

E[(f(x+ hrζ)− f(x− hrζ))2K2(r)] ≤ 3κ

(
L̄2h4

2
+

4h2

d
‖∇f(x)‖2

)
. (17)

To prove part (i) of the lemma, it is enough to combine (16), (17) and the inequality ‖∇f(x)‖ ≤
L̄‖x− x∗‖ that follows from the Lipschitz gradient assumption and the fact that ∇f(x∗) = 0. Next,
under the assumptions of part (ii) of the lemma we get analogously to (17) that(

f(x+ hrζ)− f(x− hrζ)
)2 ≤ 3

(
2L2‖hrζ‖4 + 4〈∇f(x), hrζ〉2

)
.

This yields inequality (17) with the only difference that L̄2/2 is replaced by 2L2. Together with (16),
it implies the result.

Lemma A.1. Let f be Lipschitz continuous with constant G > 0 in a Euclidean ht-neighborhood of
the set Θ, and let Assumption 2.1 (i) hold. Let ĝt and xt be defined by Algorithm 1. Then

E[‖ĝt‖2 |xt] ≤ κ
(
C∗G2d+

3d2

2h2
t

σ2
)
,

where C∗ > 0 is a numerical constant and κ =
∫
K2(u)du.

Proof. We have

‖ĝ‖2 =
d2

4h2
‖(f(x+ hrζ)− f(x− hrζ) + ξ − ξ′)ζK(r)‖2

=
d2

4h2
(f(x+ hrζ)− f(x− hrζ) + ξ − ξ′)2K2(r).

Using the inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2) we get

E[‖ĝ‖2 |x] ≤ 3d2

4h2

(
E[(f(x+ hrζ)− f(x− hrζ))2K2(r)] + 2κσ2

)
.

The lemma now follows by using [33, Lemma 10], which shows by a concentration argument that
if x ∈ Θ, r ∈ [−1, 1] are fixed, ζ is uniformly distributed on the unit sphere and f is Lipschitz
continuous with constant G > 0 in a Euclidean h-neighborhood of the set Θ, then

E[(f(x+ hrζ)− f(x− hrζ))2] ≤ c (hr)2G2

d
,

where c > 0 is a numerical constant.

Lemma A.2. Let f(·) be a convex function on Rd and ht > 0. Then the following holds.

(i) Function f̂t(·) is convex on Rd.
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(ii) f̂t(x) ≥ f(x) for all x ∈ Rd.

(iii) Function f̂t(·) is differentiable on Rd and for the conditional expectation given xt we have

E[ĝt|xt] = ∇f̂t(xt).

Proof. Item (i) is straightforward. To prove item (ii), consider gt ∈ ∂f(x). Then,

f̂t(x) ≥ E
[
f(x) + ht〈gt, ζ̃〉

]
= f(x) + ht〈gt,E[ζ̃]〉 = f(x).

For item (iii) we refer to [25, pg. 350], or [16]. It is based on the fact that for any x ∈ Rd using
Stokes formula we have

∇f̂t(x) =
1

V (Bd)hdt

∫
‖v‖=ht

f(x+ v)
v

‖v‖
dsht(v) =

d

V (Sd)ht

∫
‖u‖=1

f(x+ htu)uds1(u)

=
d

V (Sd)ht

∫
‖u‖=1

f(x+ htu)uds1(u) = E
[ d
ht
f(x+ htζt)ζt

]
where V (Bd) is the volume of the unit ball Bd, dsr(·) is the element of spherical surface of raduis r
in Rd, and V (Sd) = dV (Bd) is the surface area of the unit sphere in Rd. Since f(x+ htζt)ζt has
the same distribution as f(x− htζt)(−ζt) we also get

E
[d(f(x+ htζt)− f(x− htζt)

)
ζt

2ht

]
= ∇f̂t(x).

Lemma A.3. If f is α-strongly convex then f̂t is α-strongly convex. If f ∈ F2(L) then for any
x ∈ Rd and ht > 0 we have

|f̂t(x)− f(x)| ≤ Lh2
t . (18)

and

|Ef(x± htζt)− f(x)| ≤ Lh2
t . (19)

Proof. Using the fact that E[ζ̃] = 0 we have

|E
[
f(x+ htζ̃)− f(x)

]
| = |E

[
f(x+ htζ̃)− f(x)− 〈∇f(x), htζ̃〉

]
| ≤ Lh2

tE[‖ζ̃‖2] ≤ Lh2
t .

Thus, (18) follows. The proof of (19) is analogous. The α-strong convexity of f̂t is equivalent to the
relation

〈∇f̂t(x)−∇f̂t(x′), x− x′〉 ≥ α ‖x− x′‖
2
, ∀x, x′ ∈ Rd, (20)

which is proved as follows:

〈∇f̂t(x)−∇f̂t(x′), x− x′〉 = 〈E
[
∇f(x+ htζ̃)−∇f(x′ + htζ̃)

]
, x− x′〉 (21)

= E
[
〈∇f(x+ htζ̃)−∇f(x′ + htζ̃), (x+ htζ̃)− (x′ + htζ̃)〉

]
≥ α ‖x− x′‖2 , ∀x, x′ ∈ Rd,

due to the α-strong convexity of f .

B Proofs

Theorem 3.1. (Upper Bound, Constrained Case.) Let f ∈ Fα,β(L) with α,L > 0 and β ≥ 2.
Let Assumptions 2.1 and 2.2 hold and let Θ be a convex compact subset of Rd. Assume that
maxx∈Θ ‖∇f(x)‖ ≤ G. If σ > 0 then the cumulative regret of Algorithm 1 with

ht =

(
3κσ2

2(β − 1)(κβL)2

) 1
2β

t−
1
2β , ηt =

2

αt
, t = 1, . . . , T
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satisfies

∀x ∈ Θ :

T∑
t=1

E[f(xt)− f(x)] ≤ 1

α

(
d2
(
A1T

1/β +A2

)
+A3d log T

)
, (4)

where A1 = 3β(κσ2)
β−1
β (κβL)

2
β , A2 = c̄L̄2(σ/L)

2
β + 9κG2/d with constant c̄ > 0 depending

only on β, and A3 = 9κG2. The optimization error of averaged estimator x̄T = 1
T

∑T
t=1 xt satisfies

E[f(x̄T )− f(x∗)] ≤ 1

α

(
d2

(
A1

T
β−1
β

+
A2

T

)
+A3

d log T

T

)
, (5)

where x∗ = arg minx∈Θ f(x). If σ = 0, then the cumulative regret and the optimization error of
Algorithm 1 with any ht chosen small enough and ηt = 2

αt satisfy the bounds (4) and (5), respectively,
with A1 = 0, A2 = 9κG2/d and A3 = 10κG2.

Proof. Fix an arbitrary x ∈ Θ. By the definition of the algorithm, we have ‖xt+1 − x‖2 ≤
‖xt − ηtĝt − x‖2, which is equivalent to

〈ĝt, xt − x〉 ≤
‖xt − x‖2 − ‖xt+1 − x]‖2

2ηt
+
ηt
2
‖ĝt‖2. (22)

By the strong convexity assumption we have

f(xt)− f(x) ≤ 〈∇f(xt), xt − x〉 −
α

2
‖xt − x‖2. (23)

Combining the last two displays and setting at = ‖xt − x‖2 we obtain

E[f(xt)− f(x) |xt] ≤ ‖E[ĝt |xt]−∇f(xt)‖‖xt − x‖+
1

2ηt
E[at − at+1 |xt]

+
ηt
2
E[‖ĝt‖2 |xt]−

α

2
E[at |xt]

≤ κβLdh
β−1
t ‖xt − x‖+

1

2ηt
E[at − at+1 |xt]

+
ηt
2
E[‖ĝt‖2 |xt]−

α

2
E[at |xt], (24)

where the second inequality follows from Lemma 2.3. As 2ab ≤ a2 + b2 we have

dhβ−1
t ‖xt − x‖ ≤

1

2

(2κβL

α
d2h

2(β−1)
t +

α

2κβL
‖xt − x‖2

)
. (25)

We conclude, taking the expectations and letting rt = E[at], that

E[f(xt)− f(x)] ≤ rt − rt+1

2ηt
− α

4
rt + (κβL)2 d

2

α
h

2(β−1)
t +

ηt
2
E[‖ĝt‖2] (26)

Summing both sides over t gives
T∑
t=1

E[f(xt)− f(x)] ≤ 1

2

T∑
t=1

(
rt − rt+1

ηt
− α

2
rt

)
+

T∑
t=1

(
(κβL)2 d

2

α
h

2(β−1)
t +

ηt
2
E[‖ĝt‖2]

)
.

The first sum on the r.h.s. is smaller than 0 for our choice of ηt = 2
αt . Indeed,

T∑
t=1

(
rt − rt+1

ηt
− α

2
rt

)
≤ r1

( 1

η1
− α

2

)
+

T∑
t=2

rt

(
1

ηt
− 1

ηt−1
− α

2

)
= 0.

From this remark and Lemma 2.4(ii) (where we use that Assumption 2.2 implies f ∈ F2(L̄/2)) we
obtain

T∑
t=1

E[f(xt)− f(x)] ≤ 1

α

T∑
t=1

(
(κβL)2d2h

2(β−1)
t +

1

t
E[‖ĝt‖2]

)
(27)

≤ 1

α

T∑
t=1

(
(κβL)2d2h

2(β−1)
t +

1

t

[
9κ
(
G2d+

L̄2d2h2
t

8

)
+

3κd2σ2

2h2
t

])

≤ d2

α

T∑
t=1

[{
(κβL)2h

2(β−1)
t +

3

2

κσ2

h2
t t

}
+

9κL̄2h2
t

8t

]
+

9κG2

α
d(log T + 1). (28)
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If σ > 0 then our choice of ht =
(

3κσ2

2(β−1)(κβL)2

) 1
2β

t−
1
2β is the minimizer of the main term (in curly

brackets in (28)). Plugging this ht in (28) and using the fact that
∑T
t=1 t

−1+1/β ≤ βT 1/β for β ≥ 2
we get (4). Inequality (5) follows from (4) in view of the convexity of f . If σ = 0 the stochastic
variability term in (28) disappears and one can choose ht as small as desired, in particular, such that
the sum in (28) is smaller than κG2

α d log T . This yields the bounds for σ = 0.

Theorem 4.1. Let the assumptions of Theorem 3.1 be satisfied. Let σ > 0 and assume that (ξ′′t )Tt=1
are independent random variables with E[ξ′′t ] = 0 and E[ξ′′t ] ≤ σ2 for t = 1, . . . , T . If f attains its
minimum at point x∗ ∈ Θ, then

E|M̂ − f(x∗)| ≤ σ

T
1
2

+
1

α

(
d2

(
A1

T
β−1
β

+
A2

T

)
+A3

d log T

T

)
. (9)

Proof. We have

E|M̂ − f(x∗)| ≤ E
∣∣∣ 1

T

T∑
t=1

ξ′′t

∣∣∣+ E
∣∣∣ 1

T

T∑
t=1

(f(xt)− f(x∗))
∣∣∣

= E
∣∣∣ 1

T

T∑
t=1

ξ′′t

∣∣∣+
1

T

T∑
t=1

E[f(xt)− f(x∗)]

≤ σ

T
1
2

+
1

T

T∑
t=1

E[f(xt)− f(x∗)]

and the theorem follows by using (4).

Theorem 3.2. (Upper Bounds, Unconstrained Case.) Let f ∈ Fα,β(L) with α,L > 0 and β ≥ 2.
Let Assumptions 2.1 and 2.2 hold. Assume also that α >

√
C∗d/T , where C∗ > 72κL̄2. Let xt’s be

the updates of Algorithm 1 with Θ = Rd, ht and ηt as in (6) and a non-random x1 ∈ Rd. Then the
estimator defined by (7) satisfies

E[f(x̄T0,T )− f(x∗)] ≤ CκL̄2 d

αT
‖x1 − x∗‖2 + C

d2

α

(
(κβL)2 + κ

(
L̄2 + σ2

))
T−

β−1
β (8)

where C > 0 is a constant depending only on β and x∗ = arg minx∈Rd f(x).

Proof. We start as in the proof of Theorem 3.1 to get (24). Then, using the strong convexity of f and
the fact that x∗ is the minimizer of f we get analogously to (25) that

dhβ−1
t ‖xt−x∗‖ ≤

1

2

(2κβL

α
d2h

2(β−1)
t +

α

2κβL
‖xt−x∗‖2

)
≤ κβL

α
d2h

2(β−1)
t +

f(xt)− f(x∗)

2κβL
.

Combining the last display and (24), using Lemma 2.4 and letting rt = E[‖xt − x∗‖2] we get

E[f(xt)− f(x∗)] ≤ rt − rt+1

ηt
−αrt + 2(κβL)2 d

2

α
h

2(β−1)
t +κηt

[
9L̄2

(
drt+

d2h2
t

8

)
+

3d2σ2

2h2
t

]
.

(29)
For t = 1, . . . , T0, since ht = T−

1
2β and ηt = (αT )−1 we have the following consequence of (29)

rt+1 ≤ rt
(

1− 1

T
+

9κL̄2

(αT )2
d

)
+ bT ≤ rt

(
1 +

9κL̄2

(αT )2
d

)
+ bT (30)

where

bT =
d2

α2T

(
2(κβL)2T−

β−1
β +

9

8
κL̄2T−

β+1
β +

3

2
κσ2T−

β−1
β

)
≤

≤ d2

α2T

(
2(κβL)2 +

9

8
κL̄2 +

3

2
κσ2

)
T−

β−1
β . (31)
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Letting C3 = 9κL̄2, inequality (30) is of the form rt+1 ≤ rtq + bT , with q = (1 + C3d
(αT )2 ). Then

rT0+1 ≤ r1q
T0 + bT

T0−1∑
j=1

qj ≤ r1q
T0 + bT

qT0

q − 1
≤
(
r1 +

(αT )2

C3d
bT

)
qT0 .

Now, assuming

T0 =

⌊
4C3d

α2

⌋
(32)

we obtain

qT0 = exp

[
T0 log

(
1+

C3d

(αT )2

)]
≤ exp

[
4C3d

α2
log

(
1+

C3d

(αT )2

)]
≤ exp

(
4C2

3d
2

α4T 2

)
≤ exp

(
4C2

3

C2
∗

)
=: C4

where in the last inequality we have used the assumption that, for C∗ > 0 large enough,

α >

√
C∗d

T
. (33)

As we shall see, this also guarantees that T0 < T . In conclusion, we obtain

rT0+1 ≤ C4

(
r1 +

(αT )2

C3d
bT

)
≤ C4

(
r1 +

(αT )2

C3d

d2

α2T

(
2(κβL)2 +

9

8
κL̄2 +

3

2
κσ2

)
T−

β−1
β

)
= C4

(
r1 +

d

C3

(
2(κβL)2 +

9

8
κL̄2 +

3

2
κσ2

)
T

1
β

)
. (34)

We now go back to inequality (29). Recalling the definition of x̄T0,T and the fact that ht = t−
1
2β and

ηt = 2
αt for t ∈ {T0 + 1, . . . T}, we deduce from (29) that

(T − T0)E[f(x̄T0,T )− f(x∗)] ≤
T∑

t=T0+1

(rt − rt+1)
αt

2
− αrt + 18κ

L̄2

αt
drt

+
d2

α

T∑
t=T0+1

(
2(κβL)2t−

β−1
β +

9

4
κL̄2t−

β+1
β + 3κσ2t−

β−1
β

)
.

Since 9κL̄2 = C3 condition (32) implies that 18κL̄2

αt d ≤ α
2 for t ≥ T0 + 1. Thus

(T − T0)E[f(x̄T0,T )− f(x∗)] ≤ α

2

T∑
t=T0+1

[
(rt − rt+1)t− rt

]
+ UT ,

where

UT =
d2

α

(
2(κβL)2 +

9

4
κL̄2 + 3κσ2

) T∑
t=T0

t−
β−1
β ≤ d2

α

(
2(κβL)2 +

9

4
κL̄2 + 3κσ2

)
βT

1
β .

On the other hand
T∑

t=T0+1

[
(rt − rt+1)t− rt

]
≤ rT0+1(T0 + 1− 1) +

T∑
t=T0+2

rt(t− (t− 1)− 1) = T0rT0+1.
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Using inequality (34) and condition (32) we get

αT0

2
rT0+1 ≤ 2C3C4d

α

(
r1 +

d

C3

(
2(κβL)2 +

9

8
κL̄2 +

3

2
κσ2

)
T

1
β

)
= 2C4

(
9κL̄2 d

α
r1 +

d2

α

(
2(κβL)2 +

9

8
κL̄2 +

3

2
κσ2

)
T

1
β

)
.

These bounds imply

(T − T0)E[f(x̄T0,T )− f(x∗)] ≤ 18C4κL̄
2 d

α
r1 + (2C4 + β)

d2

α

(
2(κβL)2 +

9

4
κL̄2 + 3κσ2

)
T

1
β .

Since C∗ > 8C3 = 72κL̄2 it follows from (32) and (33) that T ≥ 2T0. Thus

E[f(x̄T0,T )− f(x∗)] ≤ 36C4κL̄
2 d

αT
r1 +

(
4C4 + 2β

)d2

α

(
2(κβL)2 +

9

4
κL̄2 + 3κσ2

)
T−

β−1
β .

Theorem 5.1. Let f ∈ Fα,2(L) with α,L > 0. Let Assumption 2.1 hold and let Θ be a convex
compact subset of Rd. Assume that maxx∈Θ ‖∇f(x)‖ ≤ G. If σ > 0 then for Algorithm 1 with ĝt

defined in (10) and parameters ht =
(

3d2σ2

4Lαt+9L2d2

)1/4

and ηt = 1
αt we have

∀x ∈ Θ : E
T∑
t=1

(
f(xt)− f(x)

)
≤ min

(
GBT, 2

√
3Lσ

d√
α

√
T +A4

d2

α
log T

)
, (11)

where B is the Euclidean diameter of Θ and A4 = 6.5Lσ + 22G2/d. Moreover, if x∗ =

arg minx∈Θ f(x) the optimization error of averaged estimator x̄T = 1
T

∑T
t=1 xt is bounded as

E[f(x̄T )− f(x∗)] ≤ min

(
GB, 2

√
3Lσ

d√
αT

+A4
d2

α

log T

T

)
. (12)

Finally, if σ = 0, then the cumulative regret of Algorithm 1 with any ht chosen small enough and
ηt = 1

αt and the optimization error of its averaged version are of the order d2

α log T and d2

α
log T
T ,

respectively.

Proof. Fix x ∈ Θ. Due to the α-strong convexity of f̂t (cf. Lemma A.3) we have

f̂t(xt)− f̂t(x) ≤ 〈∇f̂t(xt), xt − x〉 −
α

2
‖xt − x‖2 .

Using (18) and Lemma A.2(ii) we obtain

f(xt)− f(x) ≤ Lh2
t + 〈∇f̂t(xt), xt − x〉 −

α

2
‖xt − x‖2 .

Using this property and exploiting inequality (22) we find, with an argument similar to the proof of
Theorem 3.1, that

∀x ∈ Θ : E
[
f(xt)− f(x)

]
≤ Lh2

t +
rt − rt+1

2ηt
− α

2
rt +

ηt
2
E[‖ĝt‖2]. (35)

By assumption, ηt = 1
αt . Summing up from t = 1 to T and reasoning again analogously to the proof

of Theorem 3.1 we obtain

∀x ∈ Θ : E
T∑
t=1

(
f(xt)− f(x)

)
≤

T∑
t=1

(
Lh2

t +
1

2αt
E[‖ĝt‖2]

)
. (36)

Now, inspection of the proof of Lemma 2.4 shows that it remains valid with κ = 1 when K(·) ≡ 1 in
Algorithm 1. This yields

E[‖ĝt‖2] ≤ 9

(
G2d+

L2d2h2
t

2

)
+

3d2σ2

2h2
t

.
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Thus,

∀x ∈ Θ : E
T∑
t=1

(
f(xt)− f(x)

)
≤

T∑
t=1

[(
L+

9L2d2

4αt

)
h2
t +

3d2σ2

4h2
tαt

+
9G2d

2αt

]
. (37)

The chosen value ht =
(

3d2σ2

4Lαt+9L2d2

)1/4

minimizes the r.h.s. and yields

∀x ∈ Θ : E
T∑
t=1

(
f(xt)− f(x)

)
≤ 3

2

T∑
t=1

d2σ2

αt

(
4Lαt+ 9L2d2

3d2σ2

)1/2

+
9G2

2

d

α
(1 + log T )

≤
T∑
t=1

√
3
[dσ√L√

αt
+

3Ld2σ

2αt

]
+ 9G2 d

α
(1 + log T )

≤ 2
√

3Lσ
d√
α

√
T +

(3
√

3

2
σL+

9G2

d

)d2

α
(1 + log T ).

As 1 + log T ≤ ((log 2)−1 + 1) log T for any T ≥ 2, we obtain (11). On the other hand, we have
the straightforward bound

∀x ∈ Θ : E
T∑
t=1

(
f(xt)− f(x)

)
≤ GBT. (38)

The remaining part of the proof follows the same lines as in Theorem 3.1.

Theorem 6.1. Let Θ = {x ∈ Rd : ‖x‖ ≤ 1}. For α,L > 0,β ≥ 2, let F ′α,β denote the set of func-
tions f that attain their minimum over Rd in Θ and belong to Fα,β(L) ∩ {f : maxx∈Θ ‖∇f(x)‖ ≤
G}, where G > 2α. Then for any strategy in the class ΠT we have

sup
f∈F ′α,β

E
[
f(zT )−min

x
f(x)

]
≥ C min

(
max(α, T−1/2+1/β),

d√
T
,
d

α
T−

β−1
β

)
, (14)

and

sup
f∈F ′α,β

E
[
‖zT − x∗(f)‖2

]
≥ C min

(
1,

d

T
1
β

,
d

α2
T−

β−1
β

)
, (15)

where C > 0 is a constant that does not depend of T, d, and α, and x∗(f) is the minimizer of f on Θ.

Proof. We use the fact that supf∈F ′α,β is bigger than the maximum over a finite family of functions in
F ′α,β . We choose this finite family in a way that its members cannot be distinguished from each other
with positive probability but are separated enough from each other to guarantee that the maximal
optimization error for this family is of the order of the desired lower bound.

We first assume that α ≥ T−1/2+1/β .

Let η0 : R→ R be an infinitely many times differentiable function such that

η0(x) =


= 1 if |x| ≤ 1/4,

∈ (0, 1) if 1/4 < |x| < 1,

= 0 if |x| ≥ 1.

Set η(x) =
∫ x
−∞ η0(τ)dτ . Let Ω =

{
− 1, 1

}d
be the set of binary sequences of length d. Consider

the finite set of functions fω : Rd → R, ω ∈ Ω, defined as follows:

fω(u) = α(1 + δ) ‖u‖2 /2 +

d∑
i=1

ωirh
βη(uih

−1), u = (u1, . . . , ud),

where ωi ∈ {−1, 1}, h = min
(
(α2/d)

1
2(β−1) , T−

1
2β
)

and r > 0, δ > 0 are fixed numbers that will
be chosen small enough.

19



Let us prove that fω ∈ F ′α,β for r > 0 and δ > 0 small enough. It is straightforward to check that if
r is small enough the functions fω are α-strongly convex and belong to Fβ(L).

Next, the components of the gradient∇fω have the form

(∇fω(u))i = α(1 + δ)ui + ωirh
β−1η0(uih

−1).

Thus,

‖∇fω(u)‖2 ≤ 2α2(1 + δ)2 ‖u‖2 + 2r2α2

and the last expression can be rendered smaller than G2 uniformly in u ∈ Θ by the choice of δ and r
small enough since G2 > 4α2.

Finally, we check that the minimizers of functions fω belong to Θ. Notice that we can choose r small
enough to have α−1(1 + δ)−1rhβ−2 < 1/4 and that under this condition the equation ∇fω(x) = 0
has the solution

x∗ω = (x∗(ω1), . . . , x∗(ωd)),

where x∗(ωi) = −ωiα−1(1 + δ)−1rhβ−1. Using the definition of h we obtain

‖x∗ω‖ ≤ d1/2α−1(1 + δ)−1rhβ−1 ≤ d1/2α−1(1 + δ)−1r(α2/d)1/2 ≤ (1 + δ)−1r < 1

for r > 0 small enough, which means that x∗ω belongs to the interior of Θ.

Combining all the above remarks we conclude that the family of functions {fω, ω ∈ Ω} is a subset of
F ′α,β for r > 0 and δ > 0 small enough.

For any fixed ω ∈ Ω, we denote by Pω,T the probability measure corresponding to the joint
distribution of (z1, y1, . . . , yT ) where yt = fω(zt) + ξt with independent identically distributed ξt’s
such that (13) holds and zt’s chosen by a sequential strategy in ΠT . We have

dPω,T (z1, y1, . . . , yT ) = dF
(
y1 − fω(z1)

) T∏
i=2

dF
(
yi − fω

(
Φi(z1, y1, . . . , yi−1)

))
.

Without loss of generality, we omit here the dependence of Φi on z2, . . . , zi−1 since zi, i ≥ 2, is a
Borel function of z1, y1, . . . , yi−1. Let Eω,T denote the expectation w.r.t. Pω,T .

Consider the statistic

ω̂ ∈ arg min
ω∈Ω

‖zT − x∗ω‖ .

Since ‖x∗ω̂ − x∗ω‖ ≤ ‖zT − x∗ω‖+ ‖zT − x∗ω̂‖ ≤ 2 ‖zT − x∗ω‖ for all ω ∈ Ω we obtain

Eω,T
[
‖zT − x∗ω‖

2 ] ≥ 1

4
Eω,T

[
‖x∗ω − x∗ω̂‖

2 ]
= α−2r2h2β−2Eω,T ρ(ω̂, ω),

where ρ(ω̂, ω) =
∑d
i=1 I(ω̂i 6= ωi) is the Hamming distance between ω̂ and ω. Taking the maximum

over Ω and then the minimum over all statistics ω̂ with values in Ω we obtain

max
ω∈Ω

Eω,T
[
‖zT − x∗ω‖

2 ] ≥ α−2r2h2β−2 inf
ω̂

max
ω∈Ω

Eωρ(ω̂, ω).

By [34, Theorem 2.12], if for some γ > 0 and all ω, ω′ ∈ Ω such that ρ(ω, ω′) = 1 we have
KL(Pω,T ,Pω′,T ) ≤ γ, where KL(·, ·) denotes the Kullback-Leibler divergence, then

inf
ω̂

max
ω∈Ω

Eω,T ρ(ω̂, ω) ≥ d

4
exp(−γ).
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Now for all ω, ω′ ∈ Ω such that ρ(ω, ω′) = 1 we have

KL(Pω,T ,Pω′,T ) =

∫
log
( dPω,T
dPω′,T

)
dPω,T

=

∫ [
log
( dF (y1 − fω(z1))

dF (y1 − fω′(z1))

)
+

+

T∑
i=2

log

(
dF (yi − fω

(
Φi(z1, y

i−1
1 )

)
)

dF (yi − fω′
(
Φi(z1, y

i−1
1 )

)
)

)]

dF
(
y1 − fω(z1)

) T∏
i=2

dF
(
yi − fω

(
Φi(z1, y

i−1
1 )

))
≤ TI0 max

u∈R
|fω(u)− fω′(u)|2 = I0r

2η2(1),

where the last inequality is granted if r < v0/η(1) due to (13). Assuming in addition that r satisfies
r2 ≤ (log 2)/

(
I0η

2(1)
)

we obtain KL(Pω,T ,Pω′,T ) ≤ log 2. Therefore, we have proved that if
α ≥ T−1/2+1/β then there exist r > 0 and δ > 0 small enough such that

max
ω∈Ω

Eω,T
[
‖zT − x∗ω‖

2 ] ≥ 1

8
dα−2r2h2β−2 =

r2

8
min

(
1,

d

α2
T−

β−1
β

)
. (39)

This implies (15) for α ≥ T−1/2+1/β . In particular, if α = α0 := T−1/2+1/β the bound (39) is of
the order min

(
1, dT−

1
β

)
. Then for 0 < α < α0 we also have the bound of this order since the

classes F ′α,β are nested: F ′α0,β
⊂ F ′α,β . This completes the proof of (15).

We now prove (14). From (39) and α-strong convexity of f we get that, for α ≥ T−1/2+1/β ,

max
ω∈Ω

Eω,T
[
f(zT )− f(x∗ω)

]
≥ r2

16
min

(
α,

d

α
T−

β−1
β

)
. (40)

This implies (14) in the zone α ≥ T−1/2+1/β since for such α we have

min
(
α,

d

α
T−

β−1
β

)
= min

(
max(α, T−1/2+1/β),

d√
T
,
d

α
T−

β−1
β

)
.

On the other hand,

min
(
α0,

d

α0
T−

β−1
β

)
= min

(
T−1/2+1/β ,

d√
T

)
,

and the same lower bound holds for 0 < α < α0 by the nestedness argument that we used to prove
(15) in the zone 0 < α < α0. Thus, (14) follows.

C Comments on [3]

In this section we comment on issues with some claims in the paper of Bach and Perchet [3], which
presents a number of valuable results and provides a motivation for our work. We wish to clarify such
issues for the sake of understanding, as otherwise a comparison to the results presented here would
be misleading.

Bach and Perchet [3] introduce Algorithm 1 in the current form and provide upper bounds for its
optimisation error and online regret when f ∈ Fβ(L) with integer β. The setting where f is strongly
convex is considered in Propositions 4,6-8 and 9 of that paper. Propositions 4, 6,9 give the rates
decaying in T not faster than T−

β−1
β+1 , which is slower than the optimal rate T−

β−1
β . Proposition 8

dealing with asymptotic results is problematic. It is stated as bounds on ‖xN − x∗‖ but the authors
presumably mean bounds on E ‖xN − x∗‖2. The proof relies on the last inequality of Lemma 2 in
[3], where factor d is missing. The right-hand side of this inequality should be of the order dδβ−1

and not δβ−1 (this is analogous to our Lemma 2.3). This leads to too optimistic dependency of the
bounds in Proposition 8 on the dimension d. The same issue arises in Proposition 5 (the second line
of its proof uses a bound on the norm of ζn with missing factor d). A dependency of the bound
on the initial value of the algorithm is missing in the part of Proposition 8 entitled "unconstrained
optimization of strongly convex mappings". This remark also concerns Proposition 7.
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D Additional results

In this appendix, we provide refined versions of Theorems 3.1 and 5.1. First we state a non-asymptotic
version of Chung’s lemma [11, Lemma 1]. It allows us to obtain in Theorem D.2 upper bounds for
E{‖xt − x∗‖2}, where xt is generated by a constrained version of Algorithm 1 (i.e., with compact Θ)
under the assumptions of Theorems 3.1 and 5.1. By using this result and considering averaging from
bT/2c+ 1 to T rather than from 1 to T , in Theorems D.3 and D.4 we provide finer upper bounds
for the optimization error than in Theorems 3.1 and 5.1. The refinement consists in the fact that we
get rid of the logarithmic factors appearing in (5) and (12). Finally, in Theorem D.5 we show that
the term d2

α log T in the bound on the cumulative regret in Theorem 5.1 can be improved to d
α log T

under a slightly more restrictive assumption (we assume that the norm ‖∇f‖ is uniformly bounded
by G on a large enough Euclidean neighborhood of Θ rather than only on Θ).
Lemma D.1. Let {bt} be a sequence of real numbers such that for all integers t ≥ 2,

bt+1 <

(
1− 1

t

)
bt +

N∑
i=1

ai
tpi+1

, (41)

where 0 < pi < 1 and ai ≥ 0 for 1 ≤ i ≤ N . Then for t ≥ 2 we have

bt <
2b2
t

+

N∑
i=1

ai
(1− pi)tpi

. (42)

Proof. For any fixed t > 0 the convexity of the mapping u 7→ g(u) = (t + u)−p implies that
g(1)− g(0) ≥ g′(0), i.e.,

1

tp
− 1

(t+ 1)p
≤ p

tp+1
.

Thus,
ai
tp+1

≤ ai
1− p

(
1

(t+ 1)p
−
(

1− 1

t

) 1

tp

)
. (43)

Using (41), and (43) and rearranging terms we get

bt+1 −
N∑
i=1

ai
(1− pi)(t+ 1)pi

≤
(

1− 1

t

)[
bt −

N∑
i=1

ai
(1− pi)tpi

]
.

Letting τt = bt −
∑N
i=1

ai
(1−pi)tpi we have τt+1 ≤ (1 − 1

t )τt. Now, if τ2 ≤ 0 then τt ≤ 0 for any
t ≥ 2 and thus (42) holds. Otherwise, if τ2 > 0 then for t ≥ 3 we have

τt ≤ τ2
t−1∏
i=2

(
1− 1

i

)
≤ 2τ2

t
≤ 2b2

t
,

where we have used the inequalities
∑t−1
i=2 log

(
1 − 1

i

)
≤ −

∑t−1
i=2

1
i ≤ − log(t − 1) ≤ log(2/t).

Thus, (42) holds in this case as well.

Theorem D.2. Let f ∈ Fα,β(L) with β ≥ 2, α,L > 0, σ > 0, and let Assumption 2.1 hold. Consider
Algorithm 1 where Θ is a convex compact subset of Rd and assume that maxx∈Θ ‖∇f(x)‖ ≤ G.

(i) If Assumption 2.2 holds, ht =
(

3κσ2

2(β−1)(κβL)2

) 1
2β

t−
1
2β and ηt = 2

αt then for t ≥ 1 we have

E
[
‖xt − x∗‖2

]
<

2G2

α2t
+A5

d2

α2
t−

β−1
β (44)

where x∗ = arg minx∈Θ f(x) and A5 > 0 is a constant that does not depend on d, α, t.

(ii) If β = 2, ht =
(

3d2σ2

4Lαt+9L2d2

)1/4

and ηt = 1
αt then for t ≥ 1 we have that

E
[
‖xt − x∗‖2

]
<

2G2

α2t
+A6

d

α
3
2 t

1
2

+A7
d2

α2t
, (45)

where A6, A7 > 0 are constants that do not depend on d, α, t.
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Proof. Let rt = E ‖xt − x∗‖2. To prove the theorem, we will show that under the assumptions of
the theorem {rt} satisfies (41) with suitable ai and pi, and then use Lemma D.1.

We start by noticing that, in view of the α-strong convexity of f and the fact that f is Lipschitz
continuous with constant G in Θ for any t ≥ 1 we have

‖xt − x∗‖2 ≤
G2

α2
. (46)

Thus, (44) and (45) hold for t = 1 and it suffices to prove the theorem for t ≥ 2. The definition of
Algorithm 1 gives that, for t ≥ 1,

‖xt+1 − x∗‖2 ≤ ‖xt − x∗‖2 − 2ηt〈ĝt, xt − x∗〉+ η2
2 ‖ĝt‖

2
.

Taking conditional expectation of both sides of this inequality given xt we obtain

E[‖xt+1 − x∗‖2 |xt] ≤ ‖xt − x∗‖2 − 2ηt〈E[ĝt|xt], xt − x∗〉+ η2
tE[‖ĝt‖2 |xt].

Using this inequality and Lemmas 2.3 and 2.4(ii) we find

E[‖xt+1 − x∗‖2 |xt] ≤ ‖xt − x∗‖2 − 2ηtα ‖xt − x∗‖2 + 2ηtκβLdh
β−1
t ‖xt − x∗‖+

+η2
t

[(
9κ

(
G2d+

L2d2h2
t

2

)
+

3κd2σ2

2h2
t

)]
. (47)

On the other hand, for λ > 0, we have

dhβ−1
t ‖xt − x∗‖ ≤

1

2

(
κβL

αλ
d2h

2(β−1)
t +

αλ

κβL
‖xt − x∗‖2

)
. (48)

Combining (48) and (47) we get

E[‖xt+1 − x∗‖2 |xt] ≤ (1− (2− λ)ηtα) ‖xt − x∗‖2 +
(κβL)2

αλ ηtd
2h

2(β−1)
t +

+η2
t

[(
9κ
(
G2d+

L2d2h2
t

2

)
+ 3κd2σ2

2h2
t

)]
.

(49)

Substituting ht =
(

3κσ2

2(β−1)(κβL)2

) 1
2β

t−
1
2β , ηt = 2

αt , λ = 3
2 in (49), and taking the expectation over

xt we obtain

rt+1 ≤
(

1− 1

t

)
rt +

4(κβL)2

3α2
d2

(
3κσ2

2(β − 1)(κβL)2

) β−1
β

t−
2β−1
β +

+
18κL2d2

α2

(
3κσ2

2(β − 1)(κβL)2

) 1
β

t−
2β+1
β +

36κ

α2t2
G2d+

+
6κd2σ2

α2

(
3κσ2

2(β − 1)(κβL)2

)− 1
β

t−
2β−1
β .

Thus, we have

rt+1 <
(

1− 1

t

)
rt + C

d2

α2
t−

2β−1
β ,

where

C =
4(κβL)2

3

(
3κσ2

2(β − 1)(κβL)2

) β−1
β

+ 18κL2

(
3κσ2

2(β − 1)(κβL)2

) 1
β

+

+
36κ

d
G2 + 6κσ2

(
3κσ2

2(β − 1)(κβL)2

)− 1
β

.

This is a particular instance of (41). Therefore, we can apply Lemma D.1, which yields that, for all
t ≥ 2,

rt <
2G2

α2t
+ βC

d2

α2
t−

β−1
β .
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Thus, (44) follows.

We now prove (45). Since β = 2, using Lemmas 2.3, 2.4(ii), and A.3 we obtain

E[‖xt+1 − x∗‖2 |xt] ≤ (1−ηtα) ‖xt − x∗‖2 +2ηtLh
2
t +η2

t

[(
9

(
G2d+

L2d2h2
t

2

)
+

3d2σ2

2h2
t

)]
.

Setting here ht =
(

3d2σ2

4Lαt+9L2d2

)1/4

, ηt = 1
αt , and taking the expectation over xt we get

rt+1 ≤
(

1− 1

t

)
rt +

(
(4Lαt+ 9L2d2)1/2

α2

) √
3dσ

t2
+

9G2d

α2t2

≤
(

1− 1

t

)
rt +A′6

d

α
3
2 t

3
2

+A′7
d2

α2t2
,

where A′6 = 2
√

3Lσ and A′7 = 3
√

3Lσ + 9G2

d . Applying Lemma D.1 for t ≥ 2 we get

rt <
2G2

α2t
+ 2A′6

d

α
3
2 t

1
2

+ 2A′7
d2

α2t
.

Consider the estimator

x̂T =
1

T − bT/2c

T∑
t=bT/2c+1

xt. (50)

The following two theorems provide bounds on the optimization error of this estimator.
Theorem D.3. Let f ∈ Fα,β(L) with β ≥ 2, α,L > 0, σ > 0, and let Assumptions 2.1 and
2.2 hold. Consider Algorithm 1 where Θ is a convex compact subset of Rd and assume that

maxx∈Θ ‖∇f(x)‖ ≤ G. If ht =
(

3κσ2

2(β−1)(κβL)2

) 1
2β

t−
1
2β and ηt = 2

αt then the optimization error
of the estimator (50) satisfies

E[f(x̂T )− f(x∗)] ≤ min

(
GB,

1

α

(
d2
( A′1

T
β−1
β

+
A′2
T

)
+
A′3d

T

))
,

where x∗ = arg minx∈Θ f(x). Here A′1, A
′
2 and A′3 are positive constants that do not depend on

d, α, T , and B is the Euclidean diameter of Θ.

Proof. With the same steps as in the proof of Theorem 3.1 (see (28)) but taking now the sum over
t = bT/2c+ 1, . . . , T rather than over t = 1, . . . , T we obtain

T∑
t=bT/2c+1

E[f(xt)− f(x∗)] ≤ rbT/2c+1
bT/2cα

2
+

1

α

T∑
t=bT/2c+1

(
(κβL)2d2h

2(β−1)
t +

+
1

t

[
9κ
(
G2d+

L̄2d2h2
t

8

)
+

3κd2σ2

2h2
t

])
≤ rbT/2c+1

bT/2cα
2

+
9κG2d

α

T∑
t=bT/2c+1

1

t

+
1

α

T∑
t=1

(
(κβL)2d2h

2(β−1)
t +

L̄2d2h2
t

8t
+

3κd2σ2

2h2
t t

)
.

For the last sum here, we use exactly the same bound as in the proof of Theorem 3.1. Moreover, it
follows from Theorem D.2 that

rbT/2c+1 <
4G2

α2T
+A′5

d2

α2
T−

β−1
β ,
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where A′5 = 2(β−1)/βA5. Combining these remarks and using the fact that
∑T
t=bT/2c+1

1
t ≤

log(T/bT/2c) ≤ 2 for all T ≥ 2 (recall that we assume T ≥ 2 throughout the paper), as well as the
the convexity of f we get

E[f(x̂T )− f(x∗)] ≤ 1

α

(
d2
( A′1

T
β−1
β

+
A′2
T

)
+
A′3d

T

)
,

whereA′1 = 2A1 +
A′5
2 , A′2 = 2c̄L̄2(σ/L)

2
β with constant c̄ as in Theorem 3.1 andA′3 = 2G2(18κ+

1/d). On the other hand we have the straightforward bound

E[f(x̂T )− f(x∗)] ≤ GB.

Theorem D.4. Let f ∈ Fα,2(L) with α,L > 0, σ > 0, and let Assumption 2.1 hold. Consider the
version of Algorithm 1 as in Theorem 5.1 where Θ is a convex compact subset of Rd and assume that

maxx∈Θ ‖∇f(x)‖ ≤ G. If ht =
(

3d2σ2

4Lαt+9L2d2

)1/4

and ηt = 1
αt then the optimization error of the

estimator (50) satisfies

E[f(x̂T )− f(x∗)] ≤ min

(
GB,A8

d√
αT

+A9
d2

αT

)
, (51)

where x∗ = arg minx∈Θ f(x). Here A8 and A9 are positive constants that do not depend on d, α, T ,
and B is the Euclidean diameter of Θ.

Proof. Arguing as in the proof of Theorem 5.1 but taking the sum over bT/2c+ 1, . . . , T rather than
over 1, . . . , T we obtain

T∑
t=bT/2c+1

E
[
f(xt)− f(x∗)

]
≤ rbT/2c+1

bT/2cα
2

+

T∑
t=bT/2c+1

[(
L+

9L2d2

4αt

)
h2
t +

3d2σ2

4h2
tαt

+
9G2d

2αt

]

≤ rbT/2c+1
bT/2cα

2
+

T∑
t=bT/2c+1

[√
3
dσ
√
L√

αt
+

3
√

3Ld2σ

2αt
+

9G2d

2αt

]

≤ rbT/2c+1
bT/2cα

2
+ 2
√

3Lσ
d√
α

√
T +

3d

2α
(
√

3Ldσ + 3G2)

T∑
t=bT/2c+1

1

t

≤ rbT/2c+1
bT/2cα

2
+ 2
√

3Lσ
d√
α

√
T +

3d

α
(
√

3Ldσ + 3G2),

where we have used the inequality
∑T
t=bT/2c+1

1
t ≤ log(T/bT/2c) ≤ 2 for all T ≥ 2 (recall that

we assume T ≥ 2 throughout the paper). It follows from Theorem D.2, that

rbT/2c+1 <
4G2

α2T
+
√

2A6
d

α
3
2T

1
2

+ 2A7
d2

α2T
.

Combining the last two displays yields

T∑
t=bT/2c+1

E
[
f(xt)− f(x∗)

]
≤ G2

α
+A6

d

2
√

2
√
α

√
T +A7

d2

2α
+ 2
√

3Lσ
d√
α

√
T +

3d

α
(
√

3Ldσ + 3G2).

From this inequality, using the fact that f is a convex function, we obtain

E[f(x̂T )− f(x∗)] ≤ A8
d√
αT

+A9
d2

αT
,

where A8 = A6√
2

+ 4
√

3Lσ and A9 = A7 + 2(3
√

3Lσ + (9d+ 1)G2/d2).
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Theorem D.5. Let f ∈ Fα,2(L) with α,L > 0, and let Assumption 2.1 hold. Consider the version

of Algorithm 1 as in Theorem 5.1 where Θ is a convex compact subset of Rd, and ht =
(

3d2σ2

4Lαt

) 1
4

,

ηt = 1
αt . If f is Lipschitz continuous with Lipschitz constant G on the Euclidean h1-neighborhood of

Θ, then for σ > 0 we have the following bound for the cumulative regret:

∀x ∈ Θ :

T∑
t=1

E[f(xt)− f(x)] ≤ min

(
GBT, 2

√
3Lσ

d√
α

√
T +

C∗G2

2

d

α
(1 + log T )

)
, (52)

where B is the Euclidean diameter of Θ.

If σ = 0, then the cumulative regret for any ht chosen small enough and ηt = 1
αt satisfies

∀x ∈ Θ :

T∑
t=1

E[f(xt)− f(x)] ≤ min

(
GBT,C∗G2 d

α
(1 + log T )

)

Proof. The argument is analogous to the proof of Theorem 5.1. The difference is only in the bound
on E[‖ĝt‖2]. To evaluate this term, we now use Lemma A.1 (noticing that when K(·) ≡ 1 this lemma
is satisfied with κ = 1). This yields

∀x ∈ Θ : E
T∑
t=1

(
f(xt)− f(x)

)
≤

T∑
t=1

[
Lh2

t +
1

2αt

(
C∗G2d+

3d2σ2

2h2
t

)]
. (53)

The chosen value ht =
(

3d2σ2

4Lαt

) 1
4

minimizes the r.h.s. and together with (38) yields (52). The
remaining part of the proof follows the same lines as in Theorem 3.1.
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