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Abstract

Combinatorial dimensions play an important role in the theory of machine learning.
For example, VC dimension characterizes PAC learning, SQ dimension character-
izes weak learning with statistical queries, and Littlestone dimension characterizes
online learning. In this paper we aim to develop combinatorial dimensions that
characterize bounded memory learning. We propose a candidate solution for the
case of realizable strong learning under a known distribution, based on the SQ
dimension of neighboring distributions. We prove both upper and lower bounds
for our candidate solution, that match in some regime of parameters. This is the
first characterization of strong learning under space constraints in any regime. In
this parameter regime there is an equivalence between bounded memory and SQ
learning. We conjecture that our characterization holds in a much wider regime of
parameters.

1 Introduction

Characterization of different learning tasks using a combinatorial condition has been investigated in
depth in machine learning. Learning a class in an unconstrained fashion is characterized by a finite
VC dimension [40, 9]], and weakly learning in the statistical query (SQ) framework is characterized
by a small SQ dimension [7]. Is there a simple combinatorial condition that characterizes learnability
with bounded memory? In this paper we propose a candidate condition, prove upper and lower
bounds that match in some of the regime of parameters, and conjecture that they match in a much
wider regime of parameters.

A learning algorithm that uses b bits of memory, m samples, and accuracy 1 — e is defined as follows:
the algorithm receives a series of m labeled examples one by one, while only preserving an internal
state in {0, 1} between examples. In this paper we focus our attention on the realizable setting: the
labeled examples are pairs (x;, ¢(z;)), where z; € X and ¢ : X — {—1, 1} is a concept in a concept
class C. The algorithm is supposed to return with constant probability a hypothesis h which matches
the unknown concept c on a 1 — € fraction of the underlying distribution. In this paper we further
assume that the underlying distribution P on X is known to the learner, similar to the setting in the
SQ framework.

There are two “trivial” algorithms for the problem which we now present. For ease of presentation,
we restrict our attention in the introduction to a small constant ¢, say e = 0.01. Without making
any additional assumptions, the following space complexity bounds are known when learning with
accuracy 0.99:

1. The ERM algorithm keeps in memory m = O (log |C|) samples, and outputs a hypothesis
that is consistent with the entire sample. This requires b = O (log |C| log | X|) bits.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



2. A learning algorithm that enumerates all possible concepts in C and the consistency of
each concept based on few random samples. This algorithms requires m = O(|C|log |C|)
samples and b = O(log |C|) bits.

We define a class C under a distribution P to be learnable with bounded memory if there is a “non-
trivial” learning algorithm with respect to both sample complexity and space complexity. A bit more
formally, if there is a learning algorithm that uses only m = |C|°(}) samples and b = o(log |C| log | X|)
bits (see Definition T)).

A crucial combinatorial measure that has been linked to bound-memory weak learning is the statistical
query (SQ) dimension (see Definition [3). Extending these results to strong learning requires the
following definition. We say that a distribution () is p-close to the distribution P (where p > 1) if
the ratio P(x)/Q(z) is between 1/ and p for all points  in the domain. We denote by P, (P) the
set of all distributions which are pi-close to P (see Definition [2)).

Our main results are upper and lower bounds on bounded memory learning, in terms of the SQ
dimension of distributions in the neighbourhood of the underlying distribution P. While deriving
tighter bounds that hold in a wider regime remains an important open question, these are the first
characterizations of the space complexity of strong learning using the SQ dimension.

1. Suppose that there is a parameter d > 1 such that for any distribution Q € P4(P) it holds that
SQq(C) < d. Then there exists an algorithm that learns the class C with accuracy 0.99 under
the distribution P using b = O(log(d) -1og |C|) bits and m = poly(d) -log(|C|) - log log(|C|)
samples.

2. If the class C is PAC-learnable under P with accuracy 0.99 using b bits and m samples,
then for every distribution @ € Pg(1)(P) its SQ dimension is bounded by SQq(C) <

max (poly(m), 20(V®).

In Section we give a more detailed account of the bounds for general e. We show that for
small enough €, the two conditions coincide and we in fact get a characterization of bounded
memory learning. We conjecture that the characterization holds for a larger range of parameters (see
Conjecture[I)). We also prove similar conditions for SQ learning, thus implying equivalence between
bounded memory learning and SQ learning for small enough e.

1.1 Problem setting

In this paper we consider two learning frameworks: a) The PAC model [39] and b) The Statistical
Query framework [21]]. See a recap of these frameworks in Appendix [Al

Bounded memory learning. A bounded memory learning algorithm observes a sequence of labeled
examples (21,41), (2, ¥2), ... in a streaming fashion, where z; € X,y; € {—1,1}. We assume
in this paper that the data is realizable, namely y; = ¢(x;) for some concept ¢ € C. The algorithm
maintains a state Z; € {0, 1}° after seeing the first t examples, and updates it after seeing the next
example t0 Z;11 = ¥1(Zs, (141, Y+1)) using some update function wtﬂ The parameter b is called
the bit complexity of the algorithm. Finally, after observing m samples (where m is a parameter tuned
by the algorithm), a hypothesis h = ¢(Z,,) is returned.

We now expand the “trivial” learning algorithms described earlier to accuracy 1 — € for any € > 0:

1. We can learn with accuracy 1 — € using m = O (log |C|poly(1/¢€)) samples and number of
bits equal to b = O (log |C|log | X| + log |C|log(1/€)). For constant accuracy parameter
this can be done by saving O(log|C|) examples and applying ERM. To achieve better
accuracy we can apply Boosting-By-Majority [15] as we describe in Section 3]

2. One can always learn with m = O(|C|log|C|e~!) samples and b = O(log|C|) bits, by
going over all possible hypothesis and testing if the current hypothesis is accurate on a few
random samples.

"Following the model of branching programs (e.g., [29])), the maps 1, 12, . . . are not considered towards
the space complexity of the algorithm.



We define a class C to be bounded memory learnable if there is a learning algorithm that beats both
of the above learning algorithms. Bounded-memory algorithms should be allowed to save at least a
hypothesis and an example in memory. But in extreme cases saving one hypothesis means allowing
saving the entire training data in memory. Thus, the definition is most appropriate for the case that
|C| is about the same as | X'|.

Definition 1 (Bounded memory learnable classes). A class C under a distribution P is learnable with

bounded memory with accuracy 1 — € if there is a learning algorithm that uses only m = (|C\/e)o(1)
samples and b = o(log |C|(log | X'| + log(1/e))) bits]

To illustrate this, consider the case where the number of concepts and points are polynomially
related, |C|, |X'| = poly(NN), and where the desired error in not too tiny, ¢ > 1/poly(/N). Then a
non-trivial learning algorithm is one that uses a sub-polynomial number of samples m = N°(1) and a
sub-quadratic number of bits b = o(log2 N). There are classes that can not be learned with bounded
memory.

Example 1 (Learning parities). Consider the task of learning parities on n bits. Concretely, let
N =2" X =C ={0,1}", P be the uniform distribution over X, and let the label associated with a
concept ¢ € C and point x € X be {(c, z) (mod 2). It was shown by [29] [26]] that achieving constant
accuracy for this task requires either b = Q(n?) = Q(log2 N) bits of memory or an exponential in n
many samples, namely m = 2%(") = N2 samples.

Close distributions. An important ingredient in this work is the notion of nearby distributions,
where the distance is measured by the multiplicative gap between the probabilities of elements.

Definition 2 (u-close distributions). We say that two distributions P, Q) on X are p-close for some

w>1ifp tP(x) < Q(x) < uP(z) for all x € X. Note that the definition is symmetric with
respect to P, Q). We denote the set of all distributions that are pi-close to P by P,,(P).

1.2 Main results

Bounded memory PAC learning. We state our main results for a combinatorial characterization of
bounded memory PAC learning in terms of the SQ dimension of distributions close to the underlying
distribution.

Theorem 1. Let ¢ € (0,1), d € N and denote by n = ©(max{d,1/e3}). Suppose that the
distribution P satisfies the following condition: for any distribution Q) € P,,(P), SQq(C) < d. Then
there exists an algorithm that learns the class C with accuracy 1 — € under the distribution P using
b= O(log(d/e) - log |C|) bits and m = poly(d/e) - log(|C|) - loglog(|C|) samples.

Theorem 2. If a class C is strongly PAC-learnable under P with accuracy 1 — 0.1€ using b bits and
m samples, then for every distribution Q € Py ,(P), its SQ-dimension is bounded by SQq(C) <

max (poly(m/e)7 20(‘@))

There is a regime of parameters where the upper and lower bounds match. Let |C|, | X'| = poly (V) and
that e = N —°(1), Recall that the class is bounded memory learnable if there is a learning algorithm
with sample complexity m = N°(1) and space complexity b = o(log2 N). Let pu,d = N°(M). We
have the following equivalence, which we conjecture holds for any e:

C is bounded memory learnable under P with accuracy 1 — €

)
VQ S Ppol)'(l/e)(P)’ SQQ(C) < poly(l/e) .
Conjecture 1. For any ¢, the class C is bounded memory learnable under distribution P with
accuracy 1 — € <= YQ € Pyop(1/6)(P), SQg(C) < poly(1/e).

SQ learning. Next, we give our secondary results for SQ learning, which are very similar to
our results for bounded memory learning. Conceptually, it shows that the two notions are tightly
connected.

?Formally, the o(-) factors are in terms of the size of the class C. Hence this definition applies to families
of distributions {C,, } of growing size, for example parities on n bits. However, in the main theorems we give
quantitative bounds and hence can focus on single classes instead of families of classes.



Theorem 3. Let € € (0,1), d € N and denote by n = O(max{d,1/€3}). Suppose that the
distribution P satisfies the following condition: for any distribution Q € P,,(P), SQg(C) < d. Then
there exists an SQ-learner that learns the class C with accuracy 1 — € under the distribution P using
q = poly(d/e) statistical queries with tolerance T > poly(e/d).

Theorem 4. If a class C is strongly SQ-learnable under P with accuracy 1 — 0.1¢, q statistical
queries, and tolerance T, then for every distribution Q € Py ;(P), SQq(C) < poly(q/e7).

Note that for any class C, underlying distribution and accuracy 1 — €, one can SQ-learn the class with
q = |C| statistical queries and tolerance 7 = O(¢), by going over all the hypotheses. Thus a class
is non-trivially SQ-learnable if one can learn it with ¢ = |C|°(!) queries and tolerance 7 > poly(e).
Focusing on the case that |C|, |X| = poly(N) and u,d,q,1/¢,1/7 = N°1), we get that bounded
memory learning is equivalent to SQ learning.

1.3 Related work

Characterization of bounded memory learning. Many works have proved lower bounds under
memory constraints (34} 29, 23| 25126/ 30, 117, [12, 14,135, 18] [11]]. Some of these works even provide
a necessary condition for learnability with bounded memory. As for upper bounds, not many works
have tried to give a general property that implies learnability under memory constraints. One work
suggested such property [27] but this did not lead to a full characterization of bounded memory
learning.

Statistical query learning. After Kearns’s introduction of statistical query [21]], Blum et al. [[7]
characterized weak learnability using SQ dimension. Specifically, if SQp(C) = d, then poly(d)
queries are both needed and sufficient to learn with accuracy 1/2 + poly(1/d). Note that the
advantage is very small, only poly(1/d). Subsequently several works [3][36] 38, [13] suggested a few
characterizations of strong SQ learnability.

Bounded memory and SQ dimension. In this paper we prove an equivalence, in some parameters
regime, between bounded memory learning and SQ learning. There were a few indications in the
literature that such an equivalence exists. The work [37] showed a general reduction from any SQ
learner to a memory efficient learner. Alas, they gave an example that suggests that an equivalence is
incorrect, which we now address.

Example 2 (Learning sparse parity). Consider the concept class of parity on the first k bits of an
n-bit input for k < n, for example k = \/n. That is, X = {0,1}" and C = {0,1}* - {0}" % isa
subset of all possible parities. Naively, an ERM algorithm would need to store O (k) examples, each
requiring n bits, and hence need b = O(kn). However, it suffices to store only the first k bits of each
example, and hence only use b = ©(k?) bits. As this is significantly less than the naive bound of
©(kn) we consider the class to be bounded memory learnable. On the other hand, the SQ dimension
of C is maximal, namely 2%, and hence [37)] suggest that this example separates bounded memory
learning and SQ learning.

Relating to our results, it shows two things: when the sizes of the concept classes C and example
set X are polynomially related, there is no such separation (we prove this for small enough ¢ and

conjecture for all €). Moreover, the 200Y9) term in Theorem |2)is tight.

The work [17]] showed that high SQ dimension implies non-learnability with bounded memory when
the learner returns the exact answer. However, learnability is usually inexact and this does not relate
to strong learnability.

Littlestone dimension. Online learnability without memory constraints is characterized using
Littlestone dimension [24]. This dimension is not suited for bounded memory learning as it does
not take into account the structure of the class which determines whether the class is learnable with
bounded memory or not. Specifically, there are problems that have similar Littlestone dimension
(e.g., parity and discrete thresholds on the line), where the former (thresholds) is easy to learn under
memory constraints and the latter (parity) is hard.

Learning under a known distribution. In SQ framework most works focused on learning under
known distributions [7, [10} 143} 144} 13| 136} [13], 38]. However, PAC learning research under known



distribution is scarce but exists, e.g., [0, 15,141, 31]]. In particular, Benedek et al. [6] showed that
unconstrained learning under known distribution is characterized by covering.

Smooth distributions. A key idea in this paper is to use close distributions which are upper and
lower bounded by a distribution. A one sided closeness, namely the upper bound, is referred in the
literature as a smooth distribution, see for example [L0]. Smooth distributions were also used to show
equivalence between boosting and hard-core sets [22, [19].

Paper organization. We begin in Section [2| with a presentation of known results in boosting
and statistical queries that we will need. In Section [3] we construct learning algorithms based on
the assumption that close distributions have bounded SQ dimensions, and prove Theorem |1| and
Theorem 3] In Section ] we establish the reverse direction and prove Theorem [2]and Theorem [4]
Onmitted proofs can be found in the appendix.

2 Preliminaries

Weak learning and boosting. It is often conceptually easier to design an algorithm whose accuracy
is slightly better than an educated guess, and then attempt to boost its accuracy.

Consider first the PAC model. We say that a learning algorithm W is a v-weak learner if there exists
an integer m such that for any target concept ¢ € C and any n > m, with probability at least 2/3 over
the draw of an i.i.d. labeled sample S = ((z1,c(x1)), ..., (Zn, c(x,))) according to the underlying
distribution P, the hypothesis returned by A is (1/2 — -y)-accurate. We refer to the minimal integer m
satisfying the above as the sample complexity of the weak learner. The notion of y-weak learning in
the SQ framework is defined analogously, where the query complexity of the weak learner is denoted
by q, (where T is the tolerance parameter).

A boosting algorithm A uses an oracle access to a weak learner YV and aggregates the predictions of W
into a satisfactory accurate solution. The celebrated works of Freund and Schapire (32} 33| [14}[15/(16]
provide several successful boosting algorithms for the PAC model. The work of [2] extended some of
these results to the SQ framework.

Known SQ-dimension bounds for weak learning. The following upper and lower bounds are
known. The first upper bound is a folklore lemma whose proof can be found in [38].

Proposition 1. Ler C be a concept class, P an underlying distribution, such that SQp(C) < d. Then
there is a (1/d)-weak SQ-learner with query complexity ¢ = d and tolerance T = 1/3d.

The next lower bound was initially proved by [8]. A simplified proof was given later by [38]].

Proposition 2. Let C be a concept class, P an underlying distribution, and let d = SQp(C). Any
learning algorithm that uses tolerance parameter lower bounded by T > 0 requires in the worst case
at least (dT% — 1) /2 queries for learning C with accuracy at least 1/2 + 1/d.

Finally, the next proposition shows that SQ learnability (weak or strong) implies learning with
bounded memory.

Proposition 3 (Theorem 7 in [37]). Assume that a class C can be learned using q statistical queries

with tolerance . Then there is an algorithm that learns C using m = O(‘“()Ti;c‘ (log(q)+loglog(|C]))
samples and b = O(log |C| - log(q/T)) bits.

3  From bounded SQ dimension to bounded memory learning

In this section we prove our upper bounds: Theorem [I]and Theorem[3] A schematic illustration of
the proof is given in Fig.[T}

Overview. To prove Theorem [I| we apply an extension of the Boosting-By-Majority (BBM) al-
gorithm [[15]] to the SQ framework due to [2]. Similarly to other popular boosting methods (e.g.
AdaBoost [16])), the algorithm operates by re-weighting the input sample and feeding the weak learner
with sub-samples drawn according to the re-weighed distributions. The main challenge is to bound
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Figure 1: Proof outline (with asymptotic terms): from bounded SQ dimension under close distribu-
tions to strong learnability.

the SQ-dimension of the probability distributions maintained by the boosting algorithm. This will
allow us to obtain a bound on the query complexity of the boosting process using Proposition [I]and
thus conclude Theorem[I] Consequently, we deduce Theorem [3|using Proposition [3]

SQ-Boost-By-Majority. Following [2l] we describe how BBM can be carried out in the SQ model.
Instead of having an access to a sampling oracle, the booster .4 has an access to an SQ oracle with
respect to the distribution P and the target concept c. Similarly to BBM, the booster re-weights the
points in X in iterative fashion, thereby defining a sequence of distributions, Py, ..., Pr. The weak
learner W itself also works in the SQ model. That is, instead of requiring samples S, . .., ST drawn
according to Py, ..., Pr, it submits statistical queries to the boosting algorithm. The guarantee of the
weak learner remains intact; provided that it gets sufficiently accurate answers (as determined by the
tolerance parameter 7), VV should output a weak classifier whose correlation with the target concept
is at least .

Therefore, the challenging part in translating BBM to the SQ model is to enable simulating answers
to statistical queries with respect to the distributions P4, ..., Pr given only an access to an SQ oracle
with respect to the initial distribution P. Fortunately, the BBM’s re-weighting scheme makes it rather
easy. It follows from the definition of the distributions maintained by BBM (see Eq. (I)) and Eq. (2))
that in the beginning of round ¢, the space X partitions into ¢ regions such that the probability of
points in each region is proportional to their initial distribution according to P. This allows simulating
an exact SQ query with respect to P;; using O(t) exact SQ queries to P. Furthermore, as shown in
[2], the fact that P;(x) < (C'/€3) - P(z) allows us to perform this simulation with suitable tolerance
parameters. This is summarized in the next proposition.

Proposition 4 ([2]). Any statistical query with respect to the distribution P, with tolerance T can be
simulated using O(t) statistical queries with respect to the original distribution P with tolerance
parameter (7 - poly(e)).

Upper bounding the SQ-dimension of SQ-BBM’s distributions. In this part we derive an upper
bound on the SQ-dimension of the distribution P, ..., Pr maintained by SQ-BBM. To this end we
use our assumption that for all Q € P, (P), SQg(C) < d where i = max{C/e*, 4d}. While we
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Figure 2: Proof outline (with asymptotic terms): from strong learnability to bounded SQ-dimension
under close distributions in PAC and SQ models.

cannot make sure that the distributions P, ..., Pr belong to P,,(P), we will still be able to derive
an upper bound on their SQ-dimension.

Lemma 1. Let P, ..., Py be the distributions maintained by SQ-BBM. For everyt = 1,...T,
SQp,(C) < 4d.

Putting it all together. We now complete the proofs of Theorem [3|and Theorem I}

Proof of Theorem 3] From Proposition[1|we conclude that for any Q € P,,(P) there exists a (1/d)-
weak learner with query complexity d and tolerance 1/(3d). Using this weak learner we apply
SQ-BBM as described above. From Lemma [I] we know that for every distribution P, maintained by
SQ-BBM, SQp, (C) = O(d). Combining Proposition@and Proposition we conclude that SQ-BBM
reaches a 1 — € accurate prediction after ' = O(poly(d) log(1/e)) iterations while using at most
poly(d/e) statistical queries with tolerance at least poly(e/d). O

Proof of Theorem([l] Proposition[3]tells us that if a class C can be learned using ¢ statistical queries

with tolerance 7, then there is a PAC algorithm that learns C using m = O(ql%‘cl(log(q) +
log log(|C|)) samples and b = O(log |C| - log(£)) bits. Theoremgives an SQ learning algorithm
g = poly(d/e) and T > poly(e/d), which gives a bounded memory learning algorithm with
m = poly(d/e) - log |C| - loglog |C| samples and b = O(log |C| - log(d/€)) bits.

O
4 From bounded memory learning to bounded SQ dimension

In this section we prove our lower bounds: Theorem [2Jand Theoremd] A schematic illustration of
the proof is given in Fig. 2}

Overview. We use the rejection sampling technique to transform a given strong learner with respect
to distribution P into a weak learner with respect to any close distribution (). This can be established



both in the PAC learning framework and the SQ framework. By virtue of Proposition 2] this implies
Theorem[d] To prove Theorem 2] we would like to use a recent result by [17] that establishes an upper
bound on SQ,(C) given memory-efficient learner. Unfortunately, the derivation in [17] requires
the learner to return the exact target concept. Our weak learner does not necessarily satisfy this
requirement. In fact, it is even not necessarily proper, i.e., it might return a hypothesis h ¢ C. To
get around this obstacle, we first show how to transform any improper weak learning rule into a
proper learning rule. Then, we focus on the hypotheses H C C that constituents that SQ dimension,
ie, SQqo(H) = SQqo(C). We ensure that the exact target concept c is returned, as large SQq(H)
implies that all hypotheses in H are far a part.

From strong learning to weak learning of close distributions. The next claim shows that if a
class is strongly learnable under distribution P, then it is weakly learnable under any close distribution
Q. The idea is to utilize the closeness assumption in order to perform rejection sampling from () to
simulate sampling from P.

Lemma 2. Let P be a distribution over X. Assume that the concept class C can be learned with
accuracy 1 — 0.1€¢, m samples, and b bits under distribution P. Then, any probability distribution )
that is (1/¢€)-close to P can be learned with accuracy 0.9, O(m/€?) samples, and b bits.

Rejection sampling algorithm in the SQ model. Analogously to Lemma [2] we can show that
also under the SQ framework, strong learning implies weak learning of close distributions. The proof
uses the same rejection sampling technique as in Lemma 2]

Lemma 3. Let P be a distribution over X. Assume the concept class C can be learned with accuracy
1 —0.1¢, q queries and tolerance T under distribution P. Then, any probability distribution Q) that is
(1/€)-close to P can be SQ-learned with accuracy 0.9 using O(q/eT) queries with tolerance e /2.

From weak learning to low SQ-dimension. The next few claims establish the fact that if a class
C is learnable with bounded memory under distribution @, the statistical dimension SQ¢(C) is low.

Proposition 5 (Corollary 8 in [17]). Let H = {h1,...,hq} a class and Q a distribution with
SQq(H) = d. Any learning algorithm that uses m samples, b bits and returns the exact correct

hypothesis with probability at least Q(1/m) must use at least m = d*") samples or Q(log? d) bits.

The algorithm described in the previous section will not return the exact hypothesis, and more
generally will not even be a proper learner (i.e., it will not necessarily return a hypothesis from the
class). Fortunately, we can transform any improper learner into a proper learner without significantly
increasing the neither the sample nor the space complexity.

Lemma 4. Fix a class C. Let A be an improper learning algorithm for C that uses b bits, m samples,
and accuracy 1 — €. Then there is an (1 — 3¢)-accurate proper learning algorithm that uses O(m)

samples and b + O(log(|C|/€)) bits.

Lemma 5. Fix a class C and a distribution Q. If C is learnable with accuracy 0.9 under Q using m
samples and b bits, then

5Q0(C) < max(mPM 200y,

Putting it all together. We now complete the proofs of Theorem [2]and Theorem 4]

Proof of Theorem[2] Assume the concept class C can be learned with accuracy 1 — 0.1¢, m samples,
and b bits under distribution P. Lemma states that any distribution () that is (1/€)-close to P can
be learned with accuracy 0.9, O(m/e?) samples, and b bits. Lemmacompletes the claim. O

Proof of Theorem ] Assume that the concept class C can be learned with accuracy 1 —0.1¢, ¢ queries
and tolerance 7 under distribution P. Lemma [3|states that any distribution ) € P;,.(P) can be
SQ-learned with accuracy 0.9, O(m/er) queries, and tolerance €7 /2. Proposition [2]completes the
claim.

3In [[I7]) they consider the case where Q is the uniform distribution. By creating a few copies of the examples
in X we can transform a general known distribution to be as close as to uniform as needed. Note that the size of
the domain X is not a relevant parameter here.



Broader Impact

Algorithms with bounded memory are extensively studied ([[L],[42],[28]). But bounded memory
learning algorithms were only recently been investigated. In machine learning we have a good
understanding of PAC learning using the VC dimension; weak learning with statistical queries
using the SQ dimension; and online learning using the Littlestone dimension. An understanding of
bounded-memory learning is missing. There are many works showing lower bounds, but none that
shows both upper and lower bounds.

We are the first to (1) give a characterization of bounded-memory learning in some regime, (2) in this
regime we show equivalence to a different and known framework, statistical queries.

Our impact is two-fold: for the general ML community we give an understanding of the capabilities
and limitations of bounded-memory learning and we show its equivalence to a known framework.
Second, for the theory researchers, we leave many open problems:

1. Proving a characterization for the entire regime.

2. Utilizing the equivalence between statistical queries and bounded memory to gain a better
understanding of these two frameworks.

3. Our work focused on the case that |C|, | X| are polynomially related. We leave for future
research to investigate the regimes of |C| = | X[°(") and | X| = |C|°™).
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A Background

PAC model. In PAC learning [39]] we consider the task of binary classification over an instance
space X . Denote by C C {—1, 1} a concept class of functions mapping instances to binary labels,
and let ¢ € C be the farget (a.k.a. true) concept. Also, let P be the underlying probability distribution
over X. We assume that P is known to the learner whereas the target concept c is not known.

The input to the learning algorithm A consists of a labeled sample S =
((x1,¢(x1)), .., (®m, c(xy,))) such that Sx := (z1,...,%,) ~ P™. Tts output has the
form of a hypothesis h € {—1,1}*. We measure the success of the algorithm according to its
expected error Lp.(h) = Prp.p(h(z) # c(z)). We say that h is e-accurate if Lp.(h) < e.
The sample complexity of A under the distribution P, denoted m/(¢) : (0,1) — N, is a function
mapping a desired accuracy e to the minimal positive integer m(¢) such that for any target concept
¢ € C and any m > m(e), with probability at least 2/3 over the drawn of an i.i.d. sample
S = ((x1,¢(21))s- -+ s (T, c(Tm))), the output A(S) is e-accurate[]

The statistical query framework. The statistical query (SQ) framework has been introduced by
[21] to handle random noise in the PAC setting. In this model, instead of having access to an i.i.d.
sequence of labeled instances, the learner has access to a statistical query oracle (a.X.a. correlation
oracle). Each call to the oracle has the form of a pair (h, 7), where h € {—1,1}* is a hypothesis
and 7 > 0 is called a folerance parameter. The oracle has to answer such a query with a scalar v
satisfying)|

[(h,e)p —v| <71 where (h,c)p:=E,;wp[h(z)c(x)].

As was shown in [21], any approximately accurate algorithm in the SQ model can be efficiently
transformed into an approximately accurate PAC algorithm, i.e. an algorithm that has access to
i.i.d. labeled examples. The resulted PAC is also robust to noise. We refer to [38]] for additional
background.

Analogously to the definition of sample complexity, the query complexity of a learning algorithm in
the SQ model, denoted ¢ (¢), is the minimal number of queries with tolerance parameter 7 required
for achieving e-accurate prediction (for any target concept ¢ € C).

SQ dimension. The SQ-dimension defined below is useful for characterizing weak learnability in
the statistical query framework, as was proved in [7] (see Proposition [I]and Proposition 2).

Definition 3 (Statistical query dimension). Fix a probability distribution P over X. The SQ-
dimension of the class C with respect to the distribution P, denoted SQp(C), is the maximal integer
d such that there exist hq, ..., hq € C satisfying |(h;, h;)p| < 1/d foralli # j € [d].

Additional notation We denote the density and the cumulative binomial distribution by
Binom(m, r, p) and Binom(m, < r,p), which respectively refer to the probability of observing
exactly (at most) r heads in m independent and identical trials where the probability of “head” in
each single trial is pE]

4Given a confidence parameter § > 2 /3, standard amplification techniques can be used to ensure that the
probability error is at most d, while increasing the sample complexity by at most a log(1/d) multiplicative factor.

5 According to the original framework of Kearns, (seemingly) more general queries are allowed. Namely,
each query is a pair (x, 7) where x : X x {—1,1} — {—1, 1}. The oracle has to answer the query with a scalar
v satisfying

[Eznpx(z,c(2)] —v| < 7.

Note that x(z, c(z)) can be written as a polynomial in z and c(z), and since c(z) is either 1 or —1, this
polynomial is linear in ¢(x). In other words, x(z, c(z)) = g1(z)c(x) + g2(x). given that the distribution P is
known, Eq~ p[g2(z)] can be calculated. Thus, one can simulate the seemingly more general query X using the
correlation query applied to g;.

SIf 7 > m or r < 0 then both terms are equal to zero.
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B Omitted Proofs

B.1 From bounded SQ dimension to bounded memory learning

Reviewing Boost-By-Majority (BBM). Let WV be a y-weak learner with respect to the distribution
P with sample complexity mg. Similarly to most boosting algorithms, BBM operates by iteratively
re-weighting and feeding a given y-weak learner with 7" i.i.d. samples S, ..., St of size mg. The
outputs hq, ..., hy of the weak learner are then aggregated into a majority vote classifier:

1 Ztht(x) >0 )

h(z) =Majority(hi(x),...,hr(z)) := {_1 Stherwise

To make the algorithm memory-efficient [[15] suggests to implement the re-weighting using rejection
sampling. Let hq, ..., hy be the weak classifiers collected during the first ¢ rounds. At the beginning
of round ¢ + 1, the algorithm draws an example x ~ P and keeps it with probability

wy41(z) = Binom (T —t, {Tgr(z)J 1/2+ ’y) where 7 (x) := Z hi(z). (1)

Therefore, the induced probability distribution on time ¢ is
Py (2) = w1 (2) P(2) /2 2

where Z is a normalization factor. It repeats this step until either collecting m( samples or rejecting
O(e2log T') consecutive examples. In the former scenario it feeds the weak learner with the resulted
sample, whereas in the latter scenario it aborts the boosting process and returns the hypothesis
h =Majority(hi(z), ..., h(z))]]

Proposition 6. [[[5]] Let € > 0. With probability at least 2/3, the following hold:
1. BBM reaches an e-accurate hypothesis after at most T = O(y~2log(1/e)) rounds.

2. There exists a global constant C' > 0 such that for every round t, the probability distribution
P, satisfies Py(z) < (C/€®) - P(x) for all x.

Proof of Lemmall] Let§ = 1/p. Consider the mixed distribution P; = § P+(1—4)P;. Proposition@
implies that for all z, P;(z) < pP(x). It follows that

(V) Pi(z) <dP(x)+ (1 — 0)pP(x) < uP(z).
Also, clearly we have that
(Vz)  Py(z) > 6P(x) = p~ P(z).
Hence, P; € P,(P), and by our assumption we have SQp,(C) < d.
Assume by contradiction that there exist m > 4d hypotheses hq, .. ., k., € C such that
[(hishj)p| < 1/m - (Vi# j € [m]).
Therefore, for all i # j € [m)],
1 1 1

1
[(his hj) p, | = 10(hi, hy)p + (1= 0)(hi, hy)p,| < 6+ (1 —0) < ot =5

In particular, it follows that |(h;, h;) 5| < 55 forall i # j € [2d]. This contradicts the fact that
SQp,(C) < d. O

"In [[13]], the algorithm does not actually abort but proceeds by drawing random hypotheses for T' — ¢ rounds.
It was shown in [20], Lemma 5.2, that (with the above rejection criteria) the algorithm can actually abort and
return a majority vote.
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B.2 From bounded memory learning to bounded SQ dimension

Proof of Lemma[2] Fix a distribution P, a class C and assume that there is an algorithm A that learns
C under P with accuracy 1 — 0.1¢, m samples, and b bits. We want to show that for any (1/€)-close
distribution Q € Py (P) there is an algorithm that learns the class C under distribution @ with

accuracy 0.9, O(m/€?) samples, and b bits.
At a high level, our analysis involves two steps. First, given a close distribution () we apply the
rejection sampling technique to simulate sampling from the original distribution P. This enables us

to run the algorithm 4. Then we translate the accuracy guarantee of .4 with respect to P into a an
accuracy guarantee with respect to Q.

Rejection sampling. In Algorithm [I] we detail the rejection sampling step mentioned above.

Algorithm 1 Learning from examples distributed by Q

1: Get a labeled example = from Q.

2: Accept x with probability ggz;

3: Call algorithm A with the accepted examples.

€.

We first note that the rejection sampling is well defined. Namely, by the closeness assumption,

gg‘:; e € [0, 1]. The distribution induced by the rejection sampling is proportional to P since

Strong learning with respect to P = weak learning with respect to (). By our assumption on
A, with probability at least 2/3, it outputs a hypothesis h with accuracy at least 1 — 0.1e. We next
prove that h forms a weak classifier with respect to (). Denoting the target hypothesis by ¢ € C, we
have that

1
Loe(h = 3, Q@< Y~ Pl@)=_ Lech)<
z:h(z)#c(z) z:h(x)#c(z)

-0.1e =0.1.

a |

Thus, the accuracy is at least 0.9.

So far we proved that the we indeed designed a learning algorithm for Q). Let’s analyze the parameters
of the algorithm. The rejection sampling technique does not require additional bits, thus number of
bits is the same as number of bits used in .A. We next bound the number of samples needed.

We first note that the probability to accept an example z is %e > €2, as is (1/e)-close to P.

From Hoeffding’s inequality, we know that if we get at least 2m /€2 samples, then the probability that
the algorithm does not accept at least m samples is smaller than e~"™. Thus, with probability at least
1 — me~™, the number of samples used by the new algorithm is O(m/€?).

The confidence of the algorithm is at least 2/3 — e~™ - m > 7/12 for large enough m. Standard
amplification techniques can be used to ensure that the probability error is at most 2/3, while
increasing the sample complexity by at most a constant multiplicative factor. O

Proof of Lemma[3] Fix a distribution P, a class C and assume that there is an algorithm A that learns
C under P with accuracy 1 — 0.1¢, m queries, and tolerance 7. Denote the correct hypothesis by
c € C. We want to show that for any (1/¢)-close distribution @ € Py /(P) there is an algorithm that
weakly learns the class C' under distribution () in the SQ framework.

Fix a query 1 that is used by A. Ideally, we would like to replace it with a query v’ of the form

w'(x):{§§i§ () Q) #0

0 otherwise

since querying ¢ under P is the same as querying ¢’ under @, as Eg[¢' (x)c(z)] = Ep[(z)c(z)].
The problem is that the range of ¢’ is not {—1, 1}. To fix it, we will replace ¢ with several queries
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Y1, ..., 1, that their range is {—1,1} and their average, 1 >""" | ¢;, approximately returns the
correct query, i.e., ¢ &~ L 3 4.

For every x € X we would like to use Lemma@below in order to define v;(z). The first step will
be to make sure that ¢’ (z) is in [—1, 1]. To achieve that we focus on €)’(x), because it is equal to

Ple) () and

Q)
0<6.P(a:) Se-lzl
Q(x) €
Using Lemmal6] there are n = O(1/er) queries 1; such that for every « € X’ it holds that
LS ) — ()| <
n < ! -2

From this we can deduce that

% ) %ZEQ [Wi(z)c(x)] — Ep[tp(x)c(x))]
i=1

.
< —.
-2

To summarize, the new learning algorithm .4’ that learns under distribution @) will simulate algorithm
A and whenever a query 1) will be needed, it will take O(1/e7) queries created by Lemma E] and
return their average times 1/e. Thus, A uses O(m/eT) queries and its tolerance is e7/2.

O

Proof of Lemma] Fix a class C and an improper learning algorithm A for C. Denote the number of
bits it uses by b, the number of samples by m, and the accuracy by 1 — €. Define the algorithm A’ as
follows:

1. Run algorithm A that outputs hypothesis h as its answer.

2. Go over all hypothesis in C and return one that agrees with & on 1 — 2¢ of the examples by
testing consistency on O(log |C|/€?) random examples.

Note that the second step does not use new samples and requires only log |C| + O(log(log |C|/€)) =
O(log(|C|/¢)) additional bits. The algorithm .A’ functions correctly, because by the definition of the
algorithm A there must be hypothesis in C that agrees on (1 — ¢) of the examples. By Hoeffding’s
inequality, the probability that there is a hypothesis that deviates by more than € in approximating its
loss is small and standard amplification techniques can be used to ensure that the probability error is
at most 2/3, while increasing the sample complexity by at most a constant multiplicative factor. The
accuracy of A’ is at least 1 — 3e. O

Proof of Lemmal3] Fix a class C and a distribution Q). Assume C is learnable under @ with m
samples, b bits, and accuracy 0.9. Assume also that SQ¢g(C) = d. Thus, there are d hypotheses
H = {h1,...,hq} such that [(h;,h;)g| < 1/d. Since H C C and by our assumption on the
learnability of C, we get that 7{ is learnable under ) with m samples, b bits, and accuracy 0.9. From
Lemmal] we get that H is properly learnable under @ with O(m) samples, b 4+ O(log |H|) bits, and
accuracy 0.7.

We can deduce that there is a learning algorithm for H that returns the exact hypothesis, as the
hypotheses in H are far apart from each other. Specifically, we know that between any two hypotheses
i # j there is at least § — 55 disagreement. If £ — 55 > 0.3, then learning exactly is equivalent to

properly learning up to accuracy 0.7. The equation % - i > 0.3 is equivalent to d = (1).

Since the hypotheses in # are far apart from each other, the number of bits A uses is lower bounded
by b > log |H|, as the hypothesis in A returned by the algorithm must be computed from its internal
state. Thus the memory requirement of the proper learning algorithm is O(b) bits.

Now we can apply Proposition [3] as for large enough constant M, for m > M, the probability to
succeed, 2/3, is Q(1/m). We get that m = d*() or b = Q(log® d). Equivalently, d = m®®") or
d = 2°V9)_In other words, SQq(C) < max(m®W), 20(V0)), O
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Lemma 6. Forany~ € [—1,1] and T € (0,1], there aren = O(1/T) numbers y1,...,y, € {—1,1}
such that |23, y; — 4| < 7.

Proof. Take n suchthat 1/n < 7. Letk € {0,1,...,n} be such that (n — 2k)/n is 1/n close to 7.
Takeyy =...=ypy=—landypr1 =... =y, =1 O
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