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Abstract

We perform volume analysis of Multiplicative Weights Updates (MWU) and its
optimistic variant (OMWU) in zero-sum as well as coordination games. Our
analysis provides new insights into these game/dynamical systems, which seem
hard to achieve via the classical techniques within Computer Science and ML.
First, we examine these dynamics not in their original space (simplex of actions) but
in a dual space (aggregate payoffs of actions). Second, we explore how the volume
of a set of initial conditions evolves over time when it is pushed forward according
to the algorithm. This is reminiscent of approaches in evolutionary game theory
where replicator dynamics, the continuous-time analogue of MWU, is known
to preserve volume in all games. Interestingly, when we examine discrete-time
dynamics, the choices of the game and the algorithm both play a critical role. So
whereas MWU expands volume in zero-sum games and is thus Lyapunov chaotic,
we show that OMWU contracts volume, providing an alternative understanding for
its known convergent behavior. Yet, we also prove a no-free-lunch type of theorem,
in the sense that when examining coordination games the roles are reversed.

Using these tools, we prove two novel, rather negative properties of MWU in
zero-sum games. (1) Extremism: even in games with a unique fully-mixed Nash
equilibrium, the system recurrently gets stuck near pure-strategy profiles, despite
them being clearly unstable from game-theoretic perspective. (2) Unavoidability:
given any set of good states (with a rather relaxed interpretation of “good” states),
the system cannot avoid bad states indefinitely.

Figure 1: MWU (left) and OMWU (right) in Matching-Pennies game in the dual space. The origin is
the unique Nash equilibrium. In these 2-D systems, volume is area. MWU: The initial set is the tiny
red square around the equilibrium. When it is evolved via MWU, it rotates tornado-like and its area
increases. [L1] OMWU: The initial set is the outermost red square. When it is evolved via OMWU, it
shrinks toward the equilibrium and its area decreases.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



1 Introduction

In recent years, fuelled by Al applications such as Generative Adversarial Networks (GANs), there
has a been a strong push towards a more detailed understanding of the behavior of online learning
dynamics in zero-sum games and beyond. Even when focusing on the canonical case of bilinear
zero-sum games, the emergent behavior depends critically on the choice of the training algorithms.
Results can macroscopically be grouped in three distinct categories: convergence, divergence and
recurrence. Specifically, for most standard regret minimizing dynamics and online optimization
dynamics, such as Multiplicative Weights Updates (MWU) [3] or gradient descent [9]], although their
time averages converge [15], their day-to-day behavior diverges away from Nash equilibria [5 [10].
On the other hand, some game-theoretically inspired dynamics, such as Optimistic Multiplicative
Weights Updates (OMWU), converge [13}[12]]. (Numerous other convergent heuristics have also
been recently analysed, e.g. [22, 1819, 7, [1].) Finally, if we simplify learning into continuous-time
ordinary differential equations (ODEs), such as replicator dynamics (the continuous time analogue of
MWU), the emergent behavior becomes almost periodic (Poincaré recurrence) [24} 23] 18]]. This level
of complex case-by-case analysis just to understand bilinear zero-sum games seems daunting. Can
we find a more principled approach behind these results that is applicable to more general games?

One candidate is volume analysis, a commonly used tool in the area of dynamical systems.
Effectively what it does is to consider a set of starting points with positive volume (Lebesgue
measure), and analyse how the volume changes as the set evolves forward in time. As we shall see,
an advantage of volume analysis is its general applicability, for it can be used to analyse not just
ODE:s but different discrete-time algorithms such as MWU and OMWU in different types of games.

In evolutionary game theory volume analysis has been applied to continuous-time dynamical
systems (see [20, Section 11], [[L6} Section 3] and [25| Chapter 9]). Eshel and Akin [[14] showed that
replicator dynamics in any matrix game is volume preserving in the dual (aggregate payoff) space.
This result is in fact a critical step in the proof of Poincaré recurrence in zero-sum games. Intuitively,
if we think of the set of initial conditions as our uncertainty about where the starting point is, since
uncertainty does not decrease, asymptotic convergence to equilibrium is not possible. Instead, due to
physics-like conservation laws [6], the system ends up cycling.

Recently volume analysis has been applied to discrete-time learning algorithms in a series of
games, including two-person zero-sum games, graphical constant-sum games, generalized Rock-
Paper-Scissors games and 2 x 2 bimatrix games [11]] (see Figure 2] for an illumination of volume
expansion of MWU in a graphical constant-sum game). Among other results, MWU in zero-sum
games was proven to be Lyapunov chaotic in the dual space. The proof relies on establishing that
the volume of any set is expanding exponentially fast. Lyapunov chaos is one of the most classical
notions in the area of dynamical systems that captures instability and unpredictability. More precisely,
it captures the following type of butterfly effect: when the starting point of a dynamical system is
slightly perturbed, the resulting trajectories and final outcomes diverge quickly. Such systems are
very sensitive to round-off errors in computer simulations, raising the need for new discretization
schemes, training algorithms [4].

Our Contributions, and Roadmap for This Paper. Our contributions can be summarized into
two categories, both stemming from volume analysis. First, besides the numerical instability and
unpredictability already mentioned, we discover two novel and unfavorable properties of MWU
in zero-sum games, which are consequences of exponential volume expansion. We call them
unavoidability and extremism. We have given informal descriptions of these two properties in the
abstract; we will give more details about them below.

Second, we carry out volume analysis on OMWU and discover that its volume-changing behavior
is in stark contrast with MWU. To understand why we should be interested in such an analysis, we
first point out that in the study of game dynamics, a primary goal is to find algorithms that behave well
in as many games as possible. Recently, OMWU was shown to achieve stability in zero-sum games,
despite its strong similarity with MWU, which is chaotic in zero-sum games. It is natural to ask
how whether this stability of OMWU generalizes to other games. We provide a negative answer, by
proving that OMWU is volume-expanding and Lyapunov chaotic in coordination games; see Figure[3]
for a summary of this no-free-lunch phenomenon. We show that volume is exponentially decreasing
for OMWU in zero-sum games, mirroring the recent stability results in the original (primal) space
(i.e. simplex of actions) [12, [13]].
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Figure 2: Volume expansion of MWU in a three-player graphical zero-sum game. Players are
numbered 0,1,2. Each player has two strategies, Head and Tail. Each edge-game is a Matching
Pennies game: Player ¢ wants to match with Player (¢ + 1) mod 3 but wants to mis-match with
Player (i — 1) mod 3. The initial set is a small rectangular box around a Nash equilibrium in
the dual space. The figures show snapshots of the initial set (top left), and its evolution after
4500 (top right), 9000 (bottom left) and 13500 (bottom right) steps. An animation is available at
http://cs.rhul.ac.uk/ cheung/mwu-graphical-matching-pennies.mp4.

We remark that the volume analysis of OMWU is technically more involved than that of MWU.
We define an ODE system that is the continuous-time analogue of OMWU. Our volume analysis
relies crucially on the observation that OMWU is an online Euler discretization of this ODE system.
See Sections 3] and [6] for the details about OMWU.

Zero-sum Games

Coordination Games

MWU + — (see supplementary material [E)
OMWU | — (see supplementary material [E) + (Theorem|8)

Figure 3: How volume changes in the dual space. “+” denotes exponential volume expansion,
unavoidability and extremism, while “—” denotes exponential volume contraction.

In Section 2} we discuss how volume analysis can be carried out on learning algorithms that are
gradual, i.e. controlled by a step-size e. We demonstrate that volume analysis can often be reduced
to analyzing a polynomial of € (see Eqn. (6))). This convincingly indicates that volume analysis can
be readily applicable to a broad family of learning algorithms. In the rest of this introduction, we
discuss extremism and unavoidability in more detail.

Extremism (Sectiond). Our extremism theorem (Theorem [3)) states that given any zero-sum game
that satisfies a mild regularity condition, there exists a dense set of starting points from which MWU
will lead to a state where both players concentrate their game-plays on only one strategy. More
precisely, let x, y denote the mixed strategies of the two players. For any § > 0, there is a dense set
of starting points (x°,y?), from which MWU with a suitably small step-size leads to (x*,y") for
some time ¢, at which there exists a strategy j with xé > 1— 6, and a strategy k with y} > 1 — 4.


http://cs.rhul.ac.uk/~cheung/mwu-graphical-matching-pennies.mp4

To understand how bizarre extremism is, consider the classical Rock-Paper-Scissors (RPS) game,
which has a unique fully-mixed Nash equilibrium. The extremism theorem indicates that there exists
a starting point arbitrarily close to the equilibrium, which will eventually lead to a situation where
each player essentially sticks with one strategy for a long timeﬂ As no pure Nash equilibrium exists,
the trajectory will recurrently approach and escape such extremal points infinitely often (Theorem [6),
demonstrating that the dynamic is rather unstable.

Unavoidability (Section [3). The extremism theorem is actually an indirect consequence of an
unavoidability theorem of MWU in zero-sum games. Unavoidability is a notion first introduced in a
subarea of (automatic) control theory called “avoidance control” [21]], which addresses the following
type of problems: for dynamical/automatic systems, analyze whether they can always avoid reaching
certain bad states, e.g. collisions of robots/cars, or places with severe weather conditions.

To explain unavoidability of MWU in general games, we need the notion of uncontrollability. Let
U be a region in the interior of the primal simplex, and let V' be the corresponding set of U in the dual
space. Informally, we say U is uncontrollable if any subset of V' is exponentially volume-expanding
in the dual space. As the volume of a set S C V expands quickly, it turns out to be impossible for V'
to fully contain the evolution of .S after a long enough time. When converting to the primal space,
this implies that primal correspondence of S evolves to escape from U (Theorem 3). When U is
thought of as a set of good points and its complement contains bad points, the punchline is:

When a good set is uncontrollable, the bad set is unavoidable.

Note that the above discussion concerns general games. When we narrow down to zero-sum
games, the results in [[11]] indicate that under mild regularity conditions, any set U in the strict interior
of the primal simplex is uncontrollable. Thus, for MWU in zero-sum games, one can liberally choose
an interpretation of “good” states, but the corresponding bad set is unavoidable.

Some ideas behind the proof of unavoidability theorem come from [11]], which demonstrated
several negative properties of MWU in specific games such as generalized RPS games. Our key
contribution is to formulate and prove the fully generalized statement about this property.

2 Preliminary

Games. In this paper, we focus on two-person general normal-form games. The strategy set
of Player 7 is S;. Let n = |S1| and m = |Sz|. We assume n,m > 2 throughout this pa-
per. Let A and B be two S7 x Sy matrices, which represent the payoffs to Players 1 and
2 respectively. We assume all payoffs are bounded within the interval [—1,1]. Let A4 :=
{(z1,22,~-- ,2q) € R4 | Zj:l zj =1, and Vj, z; > O}. We call A := A™ x A™ the primal
simplex or primal space of the game, which contains the set of all mixed strategy profiles of the
two players. When a zero-sum game is concerned, only the matrix A needs to be specified, as
B = —A. We say a zero-sum game (A, —A) is trivial if there exist real numbers ay, az,- - ,ap
and by, ba, - -+ , by, such that A;, = a; + by. A trivial game is not interesting as each player has a
clear dominant strategy; for Player 1 it is arg max;c g, a;, while for Player 2 it is arg min,c g, bg.
Following [[11]], we measure the distance of a zero-sum game A from triviality by

A) = i Ajp—a;—b)— min (A —a;—by)|. @
c(A) a1, sam b bm€R | jESh RS, (Asi = a5 = br) jeSkes, (Aje —a; = b)) . (1)

Observe that if A’ is a sub-matrix of A, then ¢(A’) < ¢(A). If one of the two dimensions of A is
one, then ¢(A) = 0. By setting all a;, by, to zero, we have the trivial bound c¢(A) < 2.

For a coordination game, i.e. a game with payoff matrices in the form of (A, A), we also measure
its distance from triviality using Equation (T}

MWU and OMWU Update Rules in Dual and Primal Spaces. As is well-known, MWU and
OMWU can be implemented either in the primal space, or in a dual space. The dual space is D :=
R™ x R™, in which MWU with positive step size ¢ generates a sequence of updates (p°, q°), (p*, q'),
(p?,q2),- -, where pz- — pg? is € times the cumulative payoff to Player 1’s strategy j up to time ¢, and

qi — g\ is € times the cumulative payoff to Player 2’s strategy & up to time ¢. At each time step, a

"When x§ < 4, it takes (% In %) time before z; can possibly resume a “normal” value, say above 1/20.



point (p?, q*) € D is converted to a point (x*,y*) = (x(p?),y(q’)) € A by the following rules:
af = x;(p") = exp(p) / (X ses, exp(ph)) & i = yr(d") = exp(qi) /(X ies, exp(qh) - ()

We let G denote the function that converts a dual point to a primal point, i.e. G(p,q) = (x(p),y(q)).
For MWU in a general-sum game, the payoffs to Player 1’s all strategies in round (¢ + 1) is
represented by the vector A - y(q'), while the payoffs to Player 2’s all strategies in round (¢ + 1) is

represented by the vector BT - x(p?). Accordingly, the MWU update rule in the dual space is
Pt =p'te-A-y(d) and g =q +e-BTx(p). 3)

The above update rule in the dual space is equivalent to the following MWU update rule in the primal
space with starting point G(p°, q°), which some readers might be more familiar with:

§+1 _ .13; : eXp(€ . [A : yt}]) and yt+1 _ y/tc . EXp<E . [BT . Xt]k) )
J > tes; zh - exp(e- [A-yt]) k >res, yt - exp(e - BT - x]y)

For OMWU in a general-sum game with step-size e, its update rule in the dual space starts with
(P°,q°) = (p',q"), and for t > 1,

p'tt =p'+e2A y(d') — A y(d')] &gt =qg'+e [2BT -x(p") - BT -x(p" )], (5

. t—2
where x(p?), y(q") are as defined in (2). Note that for the rule §)), for ¢t > 2, p' —p® =¢(>." 7 A -
y(q7) + 2-A-y(q‘~1t)), which is € times the cumulative payoff to strategy j from time 2 to time ¢,
but with a double weight on the last-iterate payoff.

T

“4)

Relationships between Primal and Dual Spaces. Here, we clarify some facts about primal and dual
spaces and their relationships. Equation (2)) provides a conversion from a dual point in D to a point in
the interior of the primal space, i.e. int(A). It is not hard to see that there exist infinitely many points
in D which convert to the same point in int(A). By [11} Proposition 1], if (p, q), (p’,q’) € D, then
(x(p),y(q)) = (x(p'),y(d’)) ifand only if p—p’ = ¢; - Land q — q' = ¢5 - 1 for some ¢q, ¢ € R.
For any S C int(A), let G1(.9) denote the set of points (p,q) € D such that G(p, q) € S.

Since the primal and dual spaces are not in one-one correspondence, some readers might argue
that the reduced dual space used by Eshel and Akin [14] (in which its (n + m — 2) dual variables
denote the quantities p; — P, P2 —Pny s Pn—1—Pn>q1 — Gm>92 — Gm, " " * , dm—1 — Gm) 18 a better
choice. Our reason for choosing D as the dual space to work with is simply because we are unable to
establish the same type of results (like Lemma [2]below) for the reduced dual space.

While we use dual volume as the mean for analysis, when measuring instability, what we really
care is the diameter of the dual set or its corresponding primal set. (The diameter of a set is the
maximum {5-distance between any two points in the set.) The following proposition shows that
volume expansion in the dual space implies large diameter in the primal space, if there is a primal
point bounded away from the simplex boundary.

Proposition 1. Let S be a set in the dual space with Lebesgue measure (i.e. volume) v. Suppose
there exists j € S1,k € Sz such that max(p q)es Pj — MiN(p q)es Pj < Rj and max, q)es qx —
ming, q)es @ < Ri. Also, suppose that for some r > 0, there exists a point (x,y) € G(S) such
that either every entry of X is at least K or every entry of y is at least k. Then the diameter of G(S) is
at least [1 — exp (—(1/4) - (v/R;Rp)V/ (" tm=2)] - k.

In the supplementary material [A] we present concrete examples to show that (A) volume contrac-
tion in the dual space does not necessarily imply stability in either the dual or the primal space; and
(B) volume expansion in the dual space does not necessarily imply instability in the primal space if
the primal set is near the simplex boundary.

Dynamical System, Jacobian, and Volume of Flow. We consider discrete-time dynamical systems
in R?. Such a dynamical system is determined recursively by a starting point s(0) € R and an
update rule of the form s(¢ + 1) = G(s(t)), for some function G’ : R? — R<. Here, we focus on the
special case when the update rule is gradual, i.e. it is in the form of s(t + 1) = s(¢) + € - F(s(¢)),
where F : R? — R? is a smooth function and step-size ¢ > 0. When F and e are given, the flow
of the starting point s(0) at time ¢, denoted by ®(¢,s(0)), is simply the point s(¢) generated by the
above recursive update rule; the flow of a set S C R? at time ¢ is ®(¢, S) := {®(¢,s) | s € S}. Since
F does not depend on time ¢, ®(t1 + t2,.5) = ®(ta, P(¢1,5)) forall t1,t5 € N.



By equipping R? with the standard Lebesgue measure, the volume of a measurable set S, denoted
by vol(S), is simply its measure. Given a bounded and measurable S C RY, if the discrete flow in one
time step maps S to S’ = ®(1, .5) injectively, then by integration by substitution for multi-variables,

27 F1(s) 595 F1(s) - 525 Fi(s)
vol(S') = / det (I+¢€-J(s)) dV, where J(s) = , (6)
scS %Fd(s) 832 Fy(s) - agd Fu(s)

and I is the identity matrix. J(s) is called the Jacobian matrix.

Clearly, analyzing the determinant in the integrand in (6) is crucial in volume analysis; we call it
the volume integrand. When the determinant is expanded using the Leibniz formula, it becomes a
polynomial of ¢, in the form of 1 + C(s) - €" + O(e"*+1) for some integer & > 1. Thus, when the
step-size e is sufficiently small, the sign of C(s) dictates on whether the volume expands or contracts.

In our case, s refers to a cumulative payoff vector (p, q). For the MWU update rule (3] in the
dual space, the volume integrand can be written as 1 + Ca B)(P,q) - €2 + O(e*) [T, where

Cap(P:a) = —Xics, Zres, T(P)-wn(a)- (A —[A-y(@)l;)- (Bjx — [BT-x(p)]x). (7)

Note that C s B)(P, q) depends on the primal variables x(p), y(q) but not explicitly on p, q. Thus,
it is legitimate to refer to this value using the primal variables as input parameters to Cz B), i.€., We
can refer to its value by Cz B) (x,y) too. [11] showed the following lemma.

Lemma 2. [|/]| Lemma 3, Section 4.1 and Appendix B] The following hold: (1) In any two-person
zero-sum game (A, —A), at any point (x,y) € A, C(a,—a)(X,y) > 0. Indeed, Cia _a)(X,y)
equals to the variance of the random variable X such that X = (Aj, — [Ay]; — [ATx]x) with
probability x;y, for all (j, k) € S1 x Sa. (2) When ¢ < 1/4, the update rule (3)) in the dual space is
injective. (3) When € < min {1/(32n?m?),C(a B)(P,q)}, the volume integrand at point (p, q) is
lower bounded by 1 + (C(a B)(P,q) — €)€. Thus, in @), if C := inf (5 q)es Ca,B(P,q) > 0, then
forall 0 < e < min {1/(32n*m?),C}, vol(S’) > [1+ (C —¢) €] - vol(S).

By the definition of C'(a B), it is straightforward to see that

Can)(P,a) = —Ca,—a(p;q) ®)
Thus, for any coordination game (A, A ), and for any (p,q) € D, C(a a)(P,q) < 0dueto Lemma

Lyapunov Chaos. In the study of dynamical systems, Lyapunov chaos generally refers to the
phenomenon where a tiny difference in the starting points can yield widely diverging outcomes
quickly. A classical measure of chaos is the Lyapunov time, defined as: when the starting point
is perturbed by a distance of tiny 7, for how long will the trajectories of the two starting points
remain within a distance of at most 2. [11] showed that if the volume of a set increases at a rate of
Q((1 + B)h), its diameter increases at a rate of at least Q((1 + 3/d)?), where d is the dimension of
the system, thus indicating that the Lyapunov time is at most O(d/(3).

3 Unavoidability of MWU in Games

The result in this section holds for MWU in general games. Recall the definition of C (s B)(P,q) in
Equation (7)), and the discussion on extending its definition to the primal space (i.e. Cap)(xY))
below Equation (7). To avoid clutter, when the underlying game (A, B) is clear from context, we
write C(-) for C(a B)(-). Theorem[3|is the unavoidability theorem, the main theorem in this section.

Definition 1. A set U is called a primal open set if it is an open set, and it is a subset of int(A). A
primal open set U is uncontrollable if inf  y)epy C(x,y) > 0. Given a primal open set U, we say
U’ is a dense subset of U if for any open ball B C U, BN U’ is non-empty.

Theorem 3. Let U be an uncontrollable primal open set with C := inf x yyev C(x,y) > 0. If the

step-size € in the update rule {@) satisfies ¢ < min {m, 6}, then there exists a dense subset of
U such that the flow of each such point must eventually reach a point outside U.

One perspective to think about the unavoidability theorem is to consider U as a collection of good
points, while A \ U is the set of bad points that we want to avoid. We desire the game dynamic to



stay within U forever, when the starting point is in U. The theorem then presents a negative property,
which states that if U is uncontrollable, then there is a dense subset of U such that if we start from
any point in the dense subset, the game dynamic must eventually reach a point that we want to avoid.

In particular, when the underlying game is a zero-sum game, due to Lemma [2]
inf(x yyer C(x,y) > 0 for any U. With some mild assumptions on U and the underlying game, it
is foreseeable that the infimum becomes strictly positive, for which Theorem [3]is applicable. For
instance, if the zero-sum game (A, —A) is not trivial (i.e. the measure ¢(A) in (I)) is positive) and U
collects all points (x,y) such that all z;, y, > ¢ for some fixed § > 0, then the infimum is strictly
positive due to Lemma[2|Part (1); see [11]] for a detailed explanation. Thus, for quite general scenarios,
MWU in zero-sum game cannot avoid bad states, regardless of what “good” or “bad” really mean.

Next, we discuss the proof of Theorem In Definition |1} we have defined uncontrollability of a
set in the primal space. In the dual space, the definition of uncontrollability is similar: an open set
V' C Dis uncontrollable if inf , gy C(p, q) > 0. Lemma|below is the key to proving Theorem
Its statement is a bit technical, so we give an informal description of it. Suppose V' is uncontrollable
in D, and S is a bounded subset of V' with positive volume. Then the volume of the flow ®(¢,.5)
increases exponentially with ¢ so long as ®(¢, S) remains in V. Then we use the observation that
this quick exponential volume growth cannot occur indefinitely to show that eventually ®(¢, S) must
escape from V, i.e. ®(7,5) ¢ V for some large enough 7. Theorem [3| follows quite readily by
considering V as the dual correspondence set of U, i.e. V = G~1(U).

Lemma 4. Let V be an uncontrollable open set in the dual space, with C := inf (v C (p,q) > 0.

Assume that the step-size € in the update rule (3)) satisfies 0 < € < min {m, C’}. Let S C V be
a measurable set with positive volume, and let d(S) denote the {-diameter of S. Then there exists
d(s) 8(ntm) 4(n+m) _ 4 In 1
2e 7 (C—e)e? (C—e€)e2 7 (C—e)e? vol(.S)
i.e. ®(1,S), contains a point which is notin V.

T with 7 < max { } such that the flow of S at time T,

4 Extremism of MWU in Zero-Sum Games

Here, we focus on MWU in zero-sum games. [5[10] showed that the dynamic converges to the
boundary of A and fluctuates bizarrely near the boundary, by using a potential function argument.
However, the potential function has value +oco at every point on the boundary, so it cannot provide
useful insight on how the dynamic behaves near the boundary. In general, the behavior near boundary
can be highly unpredictable, as suggested by the “chaotic switching” phenomena found in [2f],
although more regular (yet still surprising) patterns were found in lower-dimensional systems [[17].

A central discouraging message in [} [10] is that convergence towards the boundary of A is
inevitable even when the underlying zero-sum game has a fully-mixed Nash equilibrium. What can
we still hope for after this? Will (x¢, y?) remain within a somewhat reasonable range forever? We
give a strikingly negative answer to this question for almost all zero-sum games with the theorems
below.

Definition 2. The extremal domain with threshold § consists of all points (x,y) such that each of
X,y has exactly one entry of value at least 1 — 6.

Theorem 5. Let (A, —A) be a two-person zero-sum game. Suppose the following two conditions
hold: (A) Every 2 x 2 sub-matrix of A is non-trivial. Let oy > 0 denote the minimum distance from
triviality of all 2 x 2 sub-matrices of A (recall the distance measure (1).); and (B) No two entries in
the same row or the same column have exactly the same value. Let ccg > 0 be the minimum difference
between any two entries of A in the same row or same column.

Let N := max{n,m}. For any 0 < as/4, if both players use MWU with step-size € satisfying
2 8(N—-1)/(a2—46)+2
1 (a1) . ( ) )
32nZm? * 18 N-1

€ < min , then there is a dense subset of int(A), such

that the flow of each such point eventually reaches the extremal domain with threshold é.

Theorem 6. Let v := maxyean Minycam x" Ay denote the game value of the zero-sum game
(A, —A). In addition to the conditions required in Theorem|5| if (i) minjcs, res, |4jx —v| > 1 >0,
and (ii) 6e + 46 < r, then there exists a dense subset of int(A), such that the flow of each such point
visits and leaves extremal domain with threshold § infinitely often.

To see the power of the Theorem 5] consider a zero-sum game with a fully-mixed Nash Equilib-
rium. The theorem implies that in any arbitrarily small neighbourhood of the equilibrium, there is a



starting point such that its flow eventually reaches a point where each player concentrates her game-
play on only one strategy. We call this extremism of game-play, since both players are single-minded
at this point: they concentrate on one strategy and essentially ignoring all other strategies.

There are two assumptions on the matrix A. If the matrix is drawn uniformly randomly from the
space [—1,+1]™>*™, it satisfies assumptions (A) and (B) almost surely. Unfortunately, the classical
Rock-Paper-Scissors game does not satisfy assumption (A). In the supplementary material [C.1} we
provide a separate proof which shows a similar result to Theorem 5] for this specific game.

5 Continuous Analogue of OMWU

As the OMWU update rule (3) at time ¢ + 1 depends on the past updates at times ¢ and ¢ — 1, we
cannot apply (6) directly for its volume analysis. There are some alternative approaches for this
situation, but as we explain in supplementary material that they do not provide a satisfactory
solution. To bypass the issue, we first derive a continuous analogue of OMWU in games as an ODE
system. We will use it to derive a clean volume analysis for OMWU in the next section.

Continuous Analogue of OMWU in General Contexts. We focus on Player 1 who uses the
OMWU (@). To set up for general contexts, we replace A - y(q?) by u(t), which represents the utility
(or payoff) vector at time t. We assume u(t) is C-differentiable. We rewrite the rule as below:
1 — pt u(t) —u(t—1

P E p:u(t)Jre.(() 6( ) ©)
Recall that for any smooth function f : R — R, its first derivative is lim._,o(f(z + €) — f(z))/e.
For readers familiar with Euler discretization and finite-difference methods, the above discrete-time

— dv.

rule naturally motivates the following differential equation, where for any variable v, v = ¢

P =u-+e€-u (10)

To numerically simulate @]) note that in some contexts, only oracle access to u(t) is available,
but () is not directly accessible. For instance, in the context of online learning, at time N - At, the
players have only observed u(0), u(At),--- ,u(N - At), but they do not have any knowledge on
the future values of u. Due to this constraint on information, we have to settle with the backward
finite-difference method to approximate u(N - At):

N -At)—u((N—-1)-At
a(v - Ay = X ) Z(t( 2D L oan.
Euler method with step-size A¢ = € which makes use of the above approximation gives the rule (9),
by identifying p(¢ + €) as p‘*!. Due to an error that occurs when we approximate 1 as above,

e-u(t)+e-(u(t)—u(t—1)) = elu(t) +e-u(t)] + O(e), (11)
where the LHS is the quantity p’*! — p? in the update rule (9)), and the first term in the RHS is the
standard Euler discretization of (I0).

Proposition 7. For ODE system (I0), when only online value oracle for a C?-differentiable function
u is given, the OMWU rule (3)) is obtained by first using backward finite-difference with step-size € to
approximate W, then applying the Euler discretization with step-size €. Also, Equation (1)) holds.

In supplementary material we discuss some other contexts of computing/approximating w(t).

Continuous Analogue of OMWU in Games. Next, we use to derive an ODE analogue for
OMWU in general-sum games. In these and also many other learning contexts, u, i depend on the
driving variables p, q. In (T0), for Player 1, we replace u(t) by A - y(q"). By the chain rule,

d[A -y(q)];

5y = [A-y(@), + e YD [A-y<q>1j+e-k;2W-qk
Recall from [[I1}, Equation (7)] that W =yr(q) - (Ajr — [A-y(q)];). Thus,
pj=[A-y(@)]j + € pes,ve(@) - (Ajr — [A-y(Q)])) - G- (12)
Analogously,  gx = [BT-x(p)lx+€Xcs, ;(P)-(Bjx—[BT-x(p)]x)-p;- (13)

Formally, the above two formulae, which are in a recurrence format, have not yet formed an ODE
system. To settle this issue, in supplementary material [D.3] we show that when € is small enough,
they can be reduced to a standard ODE system. This formally permits us to use (12) and (I3) in the
analysis below, as is standard in formal power series when dealing with generating functions.



6 Volume Analysis of OMWU in Games

Iterating the recurrence and yields
i = [A-y(@ + Xyes, vu(@) - (Aje — [A - y(@)y) - BT -x(p)lx + O(*);
ge = BT-x(p)lk + € jes, 7(P) - (Bjx — BT -x(p)lk) - [A - y(q)]; + O(e2). (14

Proposition[7]establishes that in general contexts, (3) is the online Euler discretization of (I0). As
a special case in games, (3) is the online Euler discretization of the recurrence system (12) and (13),
and hence of the ODE system (14). Via Equations (I4) and (TT)), we can rewrite (3)) as

P =0l 4 e[Ay(Q)]j + €Y hes, yr(a’) - (A — [Ay(ah)]y) - BTx(0")]k + O(€%);
¢ = ai + BTk + €Y e, 2501 - (Bjr — [BTx(p")]k) - [Ay(a)]; + O(e). (15)

Update rule (3) can be implemented by the players in a distributed manner, but it is hard to be
used for volume analysis. In contrast, update rule cannot be implemented by the players in
distributed manner, since Player 1 does not know the values of y; and [BTx(p)].. However, it
permits us to perform a clean volume analysis, since its RHS involves only pt, q* but not p*~%, q*~!.
In supplementary material [E] we compute the volume integrand (recall (6)) of system (I3)), and show
that it is

1 — Ciam(p.a) - + O(). (16)

Lyapunov Chaos of OMWU in Coordination Games. At this point, it is important to address
the similarity of MWU in zero-sum game (A, —A) and OMWU in coordination game (A, A).
Recall from [11] that the volume integrand for MWU in the zero-sum game is 1 + C(a,_a)(P; Q) -
€2 + O(e*), while by and (8), the volume integrand for OMWU in the coordination game is
1-Can)(p,q) -+ 0(€€) =1+ Ca_a)(p;q) - €+ O(e*). When e is sufficiently small,
their volume-changing behavior are almost identical. Thus, we can deduce all the Lyapunov chaos,
unavoidability and extremism results in Section [3]for OMWU in coordination games. We also have
volume contraction results for OMWU in zero-sum game and MWU in coordination game in the full
paper. Let 5572 be the collection of all points (x,y), such that at least two entries in x are larger than
0, and at least two entries in y are larger than §.

Theorem 8. Suppose the underlying game is a non-trivial coordination game (A, A), and the
parameter o as defined in TheoremE]is strictly positive. For any 1/2 > § > 0, for any sufficiently
small 0 < € < € where the upper bound depends on §, and for any set S = S(0) C G_1(€§,2) in the

dual space, if S is evolved by the OMWU update rule (3)) and if its flow remains a subset of G~* (6’3’2)

forallt <T —1, thenvol(®(T, S)) > (1+ 62(52(a1)2/4)T -vol(S). Consequently, the system is
Lyapunov chaotic within G=1 (5512) of the dual space, with Lyapunov time O((n +m)/(e262(a1)?)).

Negative Consequences of Volume Expansion of OMWU in Coordination Game. In Sections
and [ the unavoidability and extremism theorems are proved via volume expansion. For the
extremism theorem, it requires several additional arguments that seem specific to MWU, but these
additional arguments work for OMWU too (with very minor modifications). Thus, the unavoidability
and extremism theorems hold for OMWU too, after suitably modifying the condition needed for
volume expansion and upper bounds on step-sizes.

Suppose a coordination game has a non-pure Nash equilibrium (i.e. a Nash equilibrium (x*, y*)
in which the supports of x*, y* are both of size at least 2). By the OMWU analogue of Theorem 3] for
any tiny open ball B around the equilibrium, there is a dense subset of int(A) N B such that the flow
of this point eventually reaches close to an extremal point. In other words, there are points arbitrarily
close to the equilibrium with their flows reaching extremal points, i.e. the flows not only move away
from the equilibrium locally, but they move away for a big distance. This kind of global instability
result can be applied quite broadly, as many coordination games have non-pure Nash equilibria. For
instance, consider a two-player coordination game where each player has n strategies. When both
players choose strategy 4, they both earn $A;; otherwise they both lose $Z, where A; > 0 and Z > 0.

Then the game has a non-pure Nash equilibrium (x*, x*), where 2} = 42— / (ZJ ﬁ) , which
is strictly positive for all 4. '
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