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Figure 4: Evolution of MWU (left) and OMWU (right) in zero-sum (top) and coordination (bottom)
games in the dual space of Eshel and Akin. The initial set is the red square. The top two figures
were already shown and discussed in the first page. The bottom two figures correspond to MWU and
OMWU in the coordination game (A,A), where A is the 2× 2 identity matrix. The vector fields
associated with MWU and OMWU are very similar, and so does the two figures. However, when we
compute how the areas change, we observe that for MWU, the area is shrinking slowly (from red to
blue), while for OMWU, the area is increasing slowly.
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Figure 5: Let x,y denote respectively the mixed strategies of Players 1 and 2 in the classical Rock-
Paper-Scissors game. We plot the quantity

∑3
j=1(xj)

4 +
∑3
k=1(yk)4 against time steps between

1.97×106 to 2.00×106, when both players employ MWU with step-size ε = 0.005, and starting point
x0 ∝ (1, 1, exp(1/2)) and y0 ∝ (1, 1, exp(−1/2)). When the red curve is above the blue horizontal
line, extremism occurs, i.e., each player concentrate on one strategy, with some xj , yk ≥ 0.995.
Within the 30000 time steps, extremism occurs for 22 periods; each period has length around 350.

A Missing Examples and Proof in the Preliminary Section

We point out two facts.

(A) volume contraction in the dual space does not necessarily imply stability in either the dual
or the primal space;

(B) volume expansion in the dual space does not necessarily imply instability in the primal
space.

To see why (A) is true, consider the following parameterized rectangular set S(z) around the
origin in the dual space:

S(z) := {(p,q) ∈ R2 × R2
∣∣∣ |p1|, |q1| ≤ 1/z, |p2|, |q2| ≤

√
z}.

As z increases, the volume of S(z) = 1/z decreases, but its diameter and the quantities max{p2−p1},
max{q2 − q1} are Θ(

√
z) which increase with z. Also, since S contains the points

((0,
√
z), (0,

√
z)), ((0,−

√
z), (0,−

√
z)),

when the set S(z) is converted to the primal space, G(S) contains points close to

((0, 1), (0, 1)), ((1, 0), (1, 0))

as z →∞, so the diameter of G(S) increases to 2 as z →∞.
To see why (B) is true, consider the following parameterized set S(z) in the dual space:

S(z) := {(p,q) ∈ R2 × R2
∣∣∣ p2 ≥ p1 + z and q2 ≥ q1 + z, and 0 ≤ p1, p2, q1, q2 ≤ 3z}.

It is not hard to compute its volume 4z4 which increases with z, but its primal counterpart contracts
and converges to a single point ((0, 1), (0, 1)).

We also note that (B) remains true in the dual space used by Eshel and Akin. An example is

S(z) = {((p1−p3, p2−p3), (q1−q3, q2−q3))
∣∣ z ≤ p1−p3, q1−q3 ≤ 2z and−2z ≤ p2−p3, q2−q3 ≤ −z}.

The volume of S(z) is z4 which increases with z, but its primal counterpart converges to the primal
point ((1, 0, 0), (1, 0, 0)) as z →∞.

Proposition 1 follows directly from the following proposition.
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Proposition 9. Let S be a set in the dual space with Lebesgue volume v. Also, suppose there
exists j ∈ S1 and k ∈ S2 such that max(p,q)∈S pj − min(p,q)∈S pj ≤ Rj and max(p,q)∈S qk −

min(p,q)∈S qk ≤ Rk. Then for β := exp

((
v

RjRk

)1/(n+m−2)
)

, at least one of the followings

holds:

• There exists j′ ∈ S1 such that
(

max(p,q)∈S
xj′ (p)

xj(p)

)/(
min(p,q)∈S

xj′ (p)

xj(p)

)
≥ β. Further-

more, if there exists (p#,q#) ∈ S such that xj(p#), xj′(p
#) ≥ κ > 0, then the diameter

of G(S) w.r.t. `2 norm is at least
(
1− β−1/4

)
κ.

• There exists k′ ∈ S2 such that
(

max(p,q)∈S
yk′ (q)
yk(q)

)/(
min(p,q)∈S

yk′ (q)
yk(q)

)
≥ β. Further-

more, if there exists (p#,q#) ∈ S such that yk(q#), yk′(q
#) ≥ κ > 0, then the diameter

of G(S) w.r.t. `2 norm is at least
(
1− β−1/4

)
κ.

Proof. Without loss of generality, we assume that j = 1 and k = 1. Consider the mapping:

((p1, p2, · · · , pn) , (q1, q2, · · · , qm)) → ((p1, p2−p1, · · · , pn−p1) , (q1, q2−q1, · · · , qm−q1)).

This is a linear mapping, and it is easy to verify that the determinant of the matrix that describes this
linear mapping has determinant 1, so the mapping is volume-preserving.

Suppose that each of the quantities pj′ − p1 and qk′ − q1 is bounded by an interval of length at
most R within the set S, for a value of R to be specified later. Then S is a subset of a rectangular box
in Rn+m, with n+m− 2 sides of lengths at most R, and the remaining two sides of lengths at most
Rj and Rk. Thus, the volume of S after the above linear mapping is at most Rn+m−2RjRk. When
R < ( v

RjRk
)1/(n+m−2), this is a contradiction.

Thus, there exists one quantity pj′ − p1 or qk′ − q1 which is not bounded by an interval of
length at most ( v

RjRk
)1/(n+m−2). Then we are done by recalling that xj′ (p)

x1(p) = exp(pj′ − p1) and
yk′ (q)
y1(q) = exp(qk′ − q1).

If furthermore, there exists (p#,q#) ∈ S such that xj(p#), xj′(p
#) ≥ κ > 0, then there exists

(p∗,q∗) ∈ S such that either

xj(p
∗)

xj′(p∗)

/
xj(p

#)

xj′(p#)
≥ β1/2 or

xj(p
∗)

xj′(p∗)

/
xj(p

#)

xj′(p#)
≤ β−1/2.

We focus on the former case, as the latter case is similar. We have xj(p∗)− xj(p#) ≥ xj(p
#) ·(

xj′ (p
∗)

xj′ (p
#)
· β1/2 − 1

)
. If xj′ (p

∗)

xj′ (p
#)
≥ β−1/4, we have xj(p∗) − xj(p#) ≥ κ(β1/4 − 1) ≥ κ(1 −

β−1/4). Otherwise, xj′ (p
∗)

xj′ (p
#)

< β−1/4, and hence xj′(p#) − xj′(p∗) > xj′(p
#) ·

(
1− β−1/4

)
≥

κ(1− β−1/4).

B Unavoidability of MWU in Games

Proof of Lemma 4. We suppose the contrary, i.e., for all τ ≤ T , S(τ) ⊂ V , where T will be specified
later. We analyze how the volume of S(t) changes with t using formula (6). We rewrite it here:

vol(S(t+ 1)) =

∫
(p,q)∈S(t)

det (I + ε · J(p,q)) dV.

By Lemma 2, if S(t) ⊂ V , then the above inequality yields vol(S(t + 1)) ≥ vol(S(t)) ·(
1 + (C − ε)ε2

)
, and hence

∀t ≤ T + 1, vol(S(t)) ≥ vol(S) ·
(
1 + (C − ε)ε2

)t
. (17)

On the other hand, observe that in the update rule (3), each variable is changed by a value in the
interval [−ε, ε] per time step, since every entry in A,B is in the interval [−1, 1]. Consequently, the
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range of possible values for each variable in S(t) lies within an interval of length at most d(S) + 2εt,
and hence S(t) is a subset of a hypercube with side length d(S) + 2εt. Therefore,

∀t ≤ T + 1, vol(S(t)) ≤ (d(S) + 2εt)
n+m

. (18)

Note that the lower bound in (17) is exponential in t, while the upper bound in (18) is polynomial
in t. Intuitively, it is clear that the two bounds cannot be compatible for some large enough T , and
hence a contradiction. The rest of this proof is to derive how large T should be. Precisely, we seek T
such that

(d(S) + 2εT )
n+m

< vol(S) ·
(
1 + (C − ε)ε2

)T
.

First, we impose that T ≥ d(S)/(2ε) =: T1. Taking logarithm on both sides, to satisfy the above
inequality, it suffices that

(n+m) ln(4εT ) <
T · (C − ε)ε2

2
+ ln(vol(S)).

Since 4ε ≤ 1, it suffices that

(C − ε)ε2T − 2(n+m) lnT > 2 · ln 1

vol(S)
.

Next, observe that when T ≥ 8(n+m)

(C−ε)ε2 ln 4(n+m)

(C−ε)ε2 =: T2, we have (C− ε)ε2T − 2(n+m) lnT ≥
(C − ε)ε2T/2. (We will explain why in the next paragraph.) Then it is easy to see that T ≥

4
(C−ε)ε2 ln 1

vol(S) =: T3 suffices. Overall, we need T = max{T1, T2, T3}.

Lastly, we explain why the inequality in the last paragraph holds. Observe that it is equivalent to
T

lnT ≥
4(n+m)

(C−ε)ε2 =: γ. Then it suffices to know that T
lnT is an increasing function of T when T ≥ 3,

and
T2

lnT2
=

2γ ln γ

ln 2 + ln γ + ln ln γ
≥ 2γ ln γ

2 ln γ
= γ,

where the only inequality sign in the above expression holds because ln γ ≥ ln ln γ + ln 2 > 0 when
γ ≥ 3.

Proof of Theorem 3. Let U ′ denote the set of points in U which, when taken as a starting point, will
eventually reach a point outside U . Suppose the theorem does not hold, i.e., U ′ is not dense. Then
we can find a primal open set B ⊂ U such that its flow must stay in U forever.

Let V := G−1(U), S′ := G−1(B). Due to the discussion immediately after (7) and the assump-
tion that U is uncontrollable in the primal space, V is uncontrollable in the dual space. On the other
hand, S′ is open and unbounded; but it is easy to find a subset S ⊂ S′ which is open and bounded.
Thus, S has positive and finite volume. We apply Lemma 4 with the sets V, S given above, to show
that Φ(τ, S) at some time τ contains a point (pτ ,qτ ) /∈ V . By definition of V , G(pτ ,qτ ) /∈ U .

Let (p0,q0) denote a point in S such that its flow at time τ is (pτ ,qτ ). Since S is a subset of
S′, G(p0,q0) ∈ B. Due to the equivalence between the primal update rule (4) and the dual update
rule (3), we can conclude that when G(p0,q0) ∈ B is used as the starting point of the primal update
rule (4), at time τ its flow is G(pτ ,qτ ) which is not in U , a contradiction.

C Extremism of MWU in Zero-Sum Games

Lemma 10. Suppose an agent has m options which she use MWU with step-size ε to decide the
mixed strategy yt = (yt1, · · · , ytm) in each time step. Suppose at each round t, the payoff to each
option k is ak + δtk, where

• each ak ∈ [−1, 1];

• there exists a positive number α2 > 0, such that for any 2 ≤ k ≤ m, ak−1 − ak ≥ α2;

• there exists a positive number δ ≤ α2/8, such that δtk ∈ [−2δ, 2δ].

Let k̂(t) denote the strategy min{k ∈ [m] | ytk > δ/(m−1)}. Then for T :=
⌈

2
ε(α2−4δ) · ln

m−1
δ

⌉
, (i)

if yτ+T has more than one entries larger than δ/(m− 1) for some τ ≥ 0, then k̂(τ +T ) ≤ k̂(τ)− 1,
and (ii) for some t ≤ (m− 1)T , yt has an entry which is larger than or equal to 1− δ.

15



Proof. For part (i), we prove the contrapositive statement instead: if k̂(τ + T ) ≥ k̂(τ), then yτ+T

has exactly one entry larger than δ/(m− 1).

Let k = k̂(τ). For any ` > k, due to the definition of the MWU update rule (4) and our
assumptions, for t ≥ τ ,

yt+1
`

yt+1
k

=
yt`
ytk
· exp

(
ε(a` + δt` − ak − δtk)

)
≤ yt`

ytk
· exp (−ε(α2 − 4δ)) .

Since k = k̂(τ), we have yτk > δ/(m− 1). Also, ytk, y
τ
` ≤ 1 trivially. Thus, for any t ≥ τ ,

yt` ≤ ytk ·
yτ`
yτk
· exp (−ε(α2 − 4δ)(t− τ)) <

m− 1

δ
· exp (−ε(α2 − 4δ)(t− τ)) .

When exp (−ε(α2 − 4δ)(t− τ)) ≤ δ2/(m− 1)2, or equivalently t ≥ τ +
⌈

2
ε(α2−4δ) · ln

m−1
δ

⌉
=

τ + T , we have yt` ≤ δ/(m− 1).

Due to the conclusion of the last paragraph, we have k̂(τ + T ) ≤ k. But we also have the
assumption k̂(τ+T ) ≥ k̂(τ) = k. Thus, k̂(τ+T ) = k, and hence for any k′ < k, yτ+T

k′ ≤ δ/(m−1).
This, together with the conclusion of the last paragraph, shows that yτ+T

k is the only entry in yτ+T

which is larger than δ/(m− 1). This completes the proof of part (i).
We prove part (ii) by contradiction. Suppose that for all t ≤ (m − 1)T , yt has more than

one entries larger than δ/(m − 1). First of all, k̂(0) 6= m, for otherwise y0
m is the only entry

in y0 which is larger than δ/(m − 1). Next, we apply part (i) for (m − 1) times to yield that
k̂((m − 1)T ) ≤ k̂(0) − (m − 1) ≤ 0, a contradiction. Thus, for some yt with t ≤ (m − 1)T , it
has exactly one entry which is larger than δ/(m − 1). The entry has to be larger than or equal to
1− (m− 1)(δ/(m− 1)) = 1− δ.

Let Eδa,b be the collection of all points (x,y), such that at least a entries in x are larger than δ,
and at least b entries in y are larger than δ.

Proof of Theorem 5. The proof comprises of three steps.

Step 1. We show that for any κ > 0, Eκ2,2 is an uncontrollable primal set with

inf
(x,y)∈Eκ2,2

C(x,y) ≥ κ2(α1)2/2. (19)

Recall Lemma 2 that C(x,y) is the variance of a random variable X , which is equal to
E
[
(X − E [X])2

]
. For any point (x,y) ∈ Eκ2,2, each of x,y has at least two entries larger than κ.

Suppose xj1 , xj2 , yk1 , yk2 > κ. Then

C(x,y) ≥
∑

j∈{j1,j2}

∑
k∈{k1,k2}

κ2

(Ajk − [Ay]j − [ATx]k
)
− E [X]︸ ︷︷ ︸

A′jk


2

. (20)

Due to Condition (A) and Equation (1), we are guaranteed that among the four possible values
of A′jk, the maximum and minimum values differ by at least α1, for otherwise we can choose
aj = [Ay]j +E [X] and bk = −[ATx]k in (1) to show that the 2× 2 sub-matrix of A corresponding
to strategies {j1, j2} × {k1, k2} has distance from triviality strictly less than α1. Consequently,
C(x,y) ≥ κ2(α1/2)2 · 2 = κ2(α1)2/2.

Step 2. Then we apply Theorem 3 to show that for any step-size ε < min
{

1
32n2m2 ,

κ2(α1)2

2

}
,

there exists a dense subset of points in int(∆) such that the flow of each such point must eventually
reach a point outside Eκ2,2. Let (x̂, ŷ) denote the point outside Eκ2,2. At (x̂, ŷ), one of the two
players, which we assume to be Player 1 without loss of generality, concentrates her game-play on
only one strategy, which we denote by strategy ĵ. Precisely, for any j 6= ĵ, x̂j ≤ κ, and hence∑
j∈S1\{ĵ} x̂j ≤ (N − 1)κ.
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Step 3. Now, we consider the flow starting from (x̂, ŷ). Since xt+1
j /xtj ≤ exp(2ε) always, we are

sure that for the next T1 :=
⌊

1
2ε ln δ

(N−1)κ

⌋
time steps,

∑
j∈S1\{ĵ} x

t
j ≤ δ. Thus, within this time

period, the payoff to strategy k of Player 2 in each time step is −Aĵk plus a perturbation term in
the interval [−2δ, 2δ]. Then by Lemma 10 part (ii) (a sanity check on the conditions required by
the lemma is easy and thus skipped), if (N − 1) ·

⌈
2

ε(α2−4δ) · ln
N−1
δ

⌉
≤ T1, we are done. A direct

arithmetic shows that this inequality holds if κ ≤ (δ/(N − 1))4(N−1)/(α2−4δ)+1/3.

Proof of Theorem 6. By Theorem 5, we are guaranteed that there exists a dense subset of starting
points such that the flow of each of them must eventually reach the extremal domain with threshold δ.
When we apply Theorem 5, This is our starting point to prove Theorem 6.

Step 1. We show that: for each such starting point y, we prove that its flow cannot remain in the
extremal domain forever.

First, observe that the extremal domain is the union of small neighbourhoods of extremal points,
and each such neighbourhood is far from the other neighbourhoods.

Suppose the contrary that there exists a starting point such that its flow remains in the extremal
domain forever. Due to the above observation, its flow must remain in the small neighbourhood of
one extremal point forever. Suppose the utility values at this extremal point is (u,−u); recall that by
assumption, |u− v| ≥ r. Since the flow remains near this extremal point, in the long run, the average
utility gained by Player 1 must lie in the interval (1− δ)u± δ, which is a subset of the interval u± 2δ.

On the other hand, due to a well-known regret bound of MWU (see, for instance, [10, Lemma
9]), in the long run, the average utility gained by Player 1 must lie in the interval v ± 3ε. When
3ε + 2δ ≤ r/2, this is incompatible with the interval derived in the previous paragraph, thus a
contradiction.

Step 2. Indeed, we have a stronger version of the result in Step 1. Recall that the complement of the
extremal domain is an open set. Since the MWU update rule is a continuous mapping, it preserves
openness, and hence we not only one point y that visits and leaves the extremal domain, but we have
an open neighbourhood O1 around y, such that the flow of O1 visits and leaves the extremal domain.
Let O′ denote the flow of O1 at the moment when the flow leaves the extremal domain. O′ is open,
and hence has positive Lebesgue measure.

Then we construct a closed subset C1 ⊂ O1 with positive Lebesgue measure. This is easy as
follows. First, we take an arbitrary point z ∈ O′. Since O′ is open, there exists an open ball around
z with some radius r > 0 which is contained in O′. Since the MWU update rule is a continuous
mapping, its inverse for arbitrary finite time preserves closeness, the inverse (back to the starting
time) of the closed ball around z with radius r/2 is a closed set, which we take as C1; C1 ⊂ O1 since
the closed ball around z with radius r/2 is a subset of O′, and the inverse (back to the starting time)
of O′ is O1.

Step 3. Since C1 has positive Lebesgue measure, we can reiterate the arguments in Steps 1 and 2, and
construct open set O2 ⊂ C1 and closed set C2 ⊂ O2 that visit and leave the extremal domain again.

By iterating these arguments repeatedly, we get a sequence of closed (and indeed compact) sets
C1 ⊃ C2 ⊃ C3 ⊃ · · · . By the Cantor’s intersection theorem, the intersection of this sequence of
closed sets must be non-empty. Then any point in this intersection is a starting point that visits and
leaves the extremal domain infinitely often.

C.1 Classical Rock-Paper-Scissors Game

The standard Rock-Paper-Scissors game is the zero-sum game (A,−A) with the following payoff

matrix: A =
[

0 −1 1
1 0 −1
−1 1 0

]
. There are two types of 2 × 2 sub-matrices of A. Consider such a sub-

matrix which corresponds to strategy set Qi ⊂ {R,P, S} for Players i = 1, 2. The first type is when
Q1 = Q2, then the sub-matrix is A′ =

[
0 −1
1 0

]
, which is trivial, i.e., c(A′) = 0. The second type is

when |Q1 ∩Q2| = 1, then the sub-matrix is A′′ =
[

0 1
1 −1

]
; it is easy to show that c(A′′) = 3/2. Due

to the existence of the first type of sub-matrices, Theorem 5 cannot be applied. We provide a separate
proof to show that the same conclusion of Theorem 5 holds for this specific game.
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Theorem 11. Suppose the underlying game is the standard Rock-Paper-Scissors game. For any
0 < δ < 1/20, if both players use MWU with step-size ε satisfying ε < δ22/(34× 106), then there
exists a dense subset of points in int(∆), such that the flow of each such point must eventually reach
a point (x,y) where each of x,y has exactly one entry larger than or equal to 1− δ.

Proof. To start, we define a new family of primal set Eκ. To define it, let (x,y) be a point in int(∆),
and let Qi denote the set of strategies of Player 1 with probability density larger than κ. Then
(x,y) ∈ Eκ if and only if |Q1|, |Q2| ≥ 2, and furthermore, there exists Q′1 ⊂ Q1, Q′2 ⊂ Q2 such
that |Q′1|, |Q′2| = 2 and |Q′1 ∩Q′2| = 1.

The definition of Eκ deliberately avoids us from deriving a lower bound of C(x,y) in the manner
of (20) when {j1, j2} = {k1, k2}, which corresponds to a trivial sub-matrix. Then by following Step
1 in the proof of Theorem 5, we have infx,y∈Eκ ≥ κ2c(A′′)2/2 = 9κ2/8. By following Step 2 in the

proof of Theorem 5, when ε < min
{

1
32n2m2 ,

9κ2

8

}
, there exists a dense subset of points in int(∆)

such that the flow of each such point must reach a point (x̂, ŷ) outside Eκ.
Below, we assume the time is reset to zero with starting point (x̂, ŷ). We proceed on a case

analysis below.

Case 1: either |Q1| = 1 or |Q2| = 1. For this case, we can simply follow Step 3 in the proof of
Theorem 5. κ ≤ δ11/6144 suffices.

Case 2: Q1 = Q2, and |Q1| = 2. Without loss of generality, we assume Q1 = Q2 = {R,P}. In
the sub-game corresponding to Q1 × Q2, each player has a strictly dominant strategy, namely P .
Intuitively, the probability of choosing strategy P must strictly increase with time (when we ignore
the tiny effect of strategy S).

More formally, starting from time zero, for the next T1 :=
⌊

1
2ε ln δ

2κ

⌋
time steps, xtS , y

t
S ≤ δ/2,

and hence xtP + xtR, y
t
P + ytR ≥ 1− δ/2. Then

(the payoff to strategy P of Player 1 in round t)− (the payoff to strategy R of Player 1 in round t)

=
[
ytP · 0 + ytR · 1 + ytS · (−1)

]
−
[
ytP · (−1) + ytR · 0 + ytS · 1

]
≥ ytP + ytR − δ ≥ 1− 2δ.

Thus, x
t+1
P

xt+1
R

≥ xtP
xtR
· exp (ε(1− 2δ)), and hence

xtP
xtR
≥ x̂P · exp (ε(1− 2δ)t) . (21)

The above inequality holds also when all x’s are replaced by y’s.

• Case 2(a): at (x̂, ŷ), each of the two players have one strategy with probability larger
than or equal to 1− δ. Then we are done.

• Case 2(b): at (x̂, ŷ), each of the two players have all strategies with probability less
than 1 − δ. Then we know that x̂P , ŷP ≥ 1 − (1 − δ) − δ/2 = δ/2. By (21), when
exp (ε(1− 2δ)t) ≥ 4/δ2, we have xtP /x

t
R, y

t
P /y

t
R ≥ 2/δ. And since we still have xtS , y

t
S ≤

δ/2, it is easy to show that xtP , y
t
P ≥ 1− δ.

• Case 2(c): at (x̂, ŷ), exactly one of the two players have one strategy with probability
larger than or equal to 1− δ. Without loss of generality, we assume the player is Player
2. Then we know that x̂P , x̂R ≥ δ/2. Similar to the argument for Case 2(b), when
exp (ε(1− 2δ)t) ≥ 4/δ2, we have xtP ≥ 1− δ.
If at this time t, we have either ytP ≥ 1 − δ or ytR ≥ 1 − δ, we are done. Otherwise, we
have ytP ≥ δ/2. Thus, after another period of time t′ such that exp (ε(1− 2δ)t′) ≥ 4/δ2,
we have yt+t

′

P ≥ 1− δ, while xt+t
′

P ≥ 1− δ still.

For the arguments for Cases 2(b),(c) to hold, we need

2 ·
⌈

1

(1− 2δ)ε
ln

4

δ2

⌉
≤ T1,

A direct arithmetic shows that κ ≤ δ10/2845 suffices.
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D Continuous Analogue of OMWU

D.1 Some Alternative Approaches for Volume Analysis of OMWU, and Their Drawbacks

Recall that OMWU update rule (5) at time t+ 1 depends on the past updates at times t and t− 1, so
we cannot apply (6) directly for its volume analysis.

At first sight, it might seem necessary to perform volume analysis in the product space ∆×∆
that contains ((pt,qt), (pt−1,qt−1)). However, this raises a number of technical difficulties. First,
since the initialization sets (p1,q1) as a function of (p0,q0), the initial set has to lie in a proper
manifold in ∆×∆, thus it has zero Lebesgue measure w.r.t. ∆×∆, making volume analysis useless,
as the volume must remain zero when the initial set is of measure zero. In some cases, it might be
possible to define a useful volume form in a proper manifold, but the corresponding volume analysis
will require some heavy machinery from calculus of manifold, which we do not see a simple way to
implement.

Second, even if we permit p1,q1 to be unrelated to p0,q0 so that we can permit an initial set with
positive measure, the OMWU update rule is not of the same type that is presumed by the formula (6).
We will need to use the more general form of integration by substitution, and the volume integrand
there will not be of the form I + ε · J, hence the determinant is not a polynomial of ε with constant
term 1. We tried this approach, but were not able to make any meaningful observation from it.

D.2 Informational Contexts and Constraints for Approximating u̇(t)

We list three relevant contexts for computing or approximating u̇(t), which is then used in OMWU
update rule. The last context is what we have used in this paper.

1. If the function u is explicitly given and it is a simple function of time (e.g. a polynomial),
the function u̇ can be explicitly computed. Euler method with step-size ∆t = ε is the update
rule

p(t+ ε) = p(t) + ε · u(t) + ε2 · u̇(t).

2. However, in some scenarios, u is a rather complicated function of t, so computing explicit
formula for u̇ might not be easy. Yet, we have full knowledge of values of u(0),u(∆t),u(2 ·
∆t),u(3 ·∆t), · · · . Then a common approach to approximately compute u̇(N ·∆t) is to
use the central finite-difference method:

u̇(N ·∆t) =
u((N + 1) ·∆t)− u((N − 1) ·∆t)

2 ·∆t
+ O((∆t)2).

Euler method with step-size ∆t = ε which makes use of the above approximation gives the
update rule

p(t+ ε) = p(t) + ε · u(t) + ε · u(t+ ε)− u(t− ε)
2

.

3. Even worse, in the context of online learning or game dynamics, at time N · ∆t, the
players have only observed u(0),u(∆t),u(2 ·∆t), · · · ,u(N ·∆t), but they do not have
any knowledge on the future values of u. Due to the more severe constraint on information,
we have to settle with the backward finite-difference method to approximately compute
u̇(N ·∆t):

u̇(N ·∆t) =
u(N ·∆t)− u((N − 1) ·∆t)

∆t
+ O(∆t),

which has a higher-order error when compared with the central finite-difference method.
Euler method with step-size ∆t = ε which makes use of the above approximation gives the
rule (9), by identifying p(t+ ε) as pt+1. Due to an error that occurs when we approximate
u̇ as above,

ε · u(t) + ε · (u(t)− u(t− 1)) = ε [u(t) + ε · u̇(t)] +O(ε3),

where the LHS is the quantity pt+1 −pt in the OMWU update rule (9), and the first term in
the RHS is the standard Euler discretization of (10).
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D.3 From Recurrence of ODE to Standard ODE

In Equations (12) and (13), observe that each dpj
dt is expressed as an affine combination of various

dqk
dt , while each dqk

dt is expressed as an affine combination of various dpj
dt . Thus, we may rewrite all

these expressions into a matrix-form differential equation. Let v(p,q) denote the following vector in
Rn+m:

v(p,q) = ([A · y(q)]1, · · · , [A · y(q)]n , [BT · x(p)]1, · · · , [BT · x(p)]m)T ,

and let M(p,q) denote the (S1 ∪ S2)× (S1 ∪ S2) matrix
[

0 M1

M2 0

]
, where M1 ≡M1(p,q) is a

S1 × S2 sub-matrix and M2 ≡M2(p,q) is a S2 × S1 sub-matrix defined as below:

M1
jk = yk(q) · (Ajk − [A · y(q)]j) and M2

kj = xj(p) · (Bjk − [BT · x(p)]k).

Then we can rewrite the recurrence system (12) and (13) as
(

dp
dt ,

dq
dt

)T
= v(p,q) + ε ·M(p,q) ·(

dp
dt ,

dq
dt

)T
. This can be easily solved to a standard (non-recurring) system of ODE:(

dp

dt
,
dq

dt

)T

= (I− ε ·M(p,q))
−1 · v(p,q),

if the inverse of the matrix (I− ε ·M(p,q)) exists.
We proceed by using the following identity: if a square matrix R satisfies sup‖z‖=1 ‖Rz‖ < 1,

then (I−R)−1 = I+
∑∞
`=1 R

`. In our case, we desire sup‖z‖=1 ‖ε·M(p,q)·z‖ < 1. Observe that
for each row of M(p,q), its `2-norm is at most 2‖x‖ or 2‖y‖, which are upper bounded by 2. Thus,
each entry in ε ·M(p,q) · z is absolutely bounded by 2ε, and hence ‖ε ·M(p,q) · z‖ ≤ 2ε

√
n+m.

Consequently, ε < 1/(2
√
n+m) suffices to guarantee that the inverse of (I− ε ·M(p,q)) exists,

and the identity mentioned above holds for its inverse:(
dp

dt
,
dq

dt

)T

=

(
I +

∞∑
`=1

ε` ·M(p,q)`

)
· v(p,q).

E Volume Analysis of Discrete-Time OMWU

Proof of Equation (16). For the moment, we ignore theO(ε3) terms in (15). To use (6) for computing
volume change, we need to derive ε · J(p,q) in the volume integrand:

∀j1, j2 ∈ S1, εJj1j2 = ε2
∑
k∈S2

yk(q) · (Aj1k − [A · y(q)]j1) · xj2(p) · (Bj2k − [BT · x(p)]k) ;

∀k1, k2 ∈ S2, εJk1k2 = ε2
∑
j∈S1

xj(p) · (Bjk1 − [BT · x(p)]k1) · yk2(q) · (Ajk2 − [A · y(q)]j) ;

∀j ∈ S1, k ∈ S2, εJjk = ε · yk(q) · (Ajk − [A · y(q)]j) + O(ε2) ;

∀k ∈ S2, j ∈ S1, εJkj = ε · xj(p) · (Bjk − [BT · x(p)]k) + O(ε2) .

With the above formulae, we expand det(I + ε · J(p,q)) via the Leibniz formula. The determinant
is of the form 1 + C ′(p,q) · ε2 +O(ε3), where C ′(p,q) is the coefficient of ε2 in the expression∑

j∈S1

εJjj +
∑
k∈S2

εJkk −
∑
j∈S1
k∈S2

(εJjk)(εJkj).

A straight-forward arithmetic shows the above expression equals to −ε2 ·C(A,B)(p,q) +O(ε3), and
hence Equation (16) follows.

Recall from [11] that the volume integrand for MWU is

1 + C(A,B)(p,q) · ε2 + O(ε4),
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while by (16), the volume integrand for OMWU is

1 − C(A,B)(p,q) · ε2 + O(ε3).

By (19), within G−1(Eδ2,2),C(A,−A)(p,q) ≥ δ2(α1)2/2, thusC(A,A)(p,q) = −C(A,−A)(p,q)≤
−δ2(α1)2/2. Therefore, when ε is sufficiently small, the volume integrands for MWU in coordination
game and OMWU in zero-sum game are both at most 1− ε2δ2(α1)2/4.
Corollary 12. Suppose the underlying game is a non-trivial zero-sum game (A,−A) and the
parameter α1 as defined in Theorem 5 is strictly positive. For any 1/2 > δ > 0, for any sufficiently
small 0 < ε ≤ ε̄ where the upper bound depends on δ, and for any set S = S(0) ⊂ G−1(Eδ2,2) in the
dual space, if S is evolved by the OMWU update rule (5) and if its flow remains a subset of G−1(Eδ2,2)

for all t ≤ T − 1, then vol(S(T )) ≤
(

1− ε2δ2(α1)2

4

)T
· vol(S).

Corollary 13. Suppose the underlying game is a non-trivial coordination game (A,A) and the
parameter α1 as defined in Theorem 5 is strictly positive. For any 1/2 > δ > 0, for any sufficiently
small 0 < ε ≤ ε̄ where the upper bound depends on δ, and for any set S = S(0) ⊂ G−1(Eδ2,2) in the
dual space, if S is evolved by the MWU update rule (3) and if its flow remains a subset of G−1(Eδ2,2)

for all t ≤ T − 1, then vol(S(T )) ≤
(

1− ε2δ2(α1)2

4

)T
· vol(S).
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