
We thank reviewers for appreciating the originality of our work and providing constructive feedback. All typos and1

grammatical mistakes will be corrected in the final version. We address specific concerns below.2

Review 1: 1. Yes, no algorithm can be minimax optimal for all α without additional assumptions. 2. Minimax3

optimality could still be achieved by Alg. 3 with µ? being mis-specified up to error O(1/
√
T ); and similar empirical4

performance is obtained under mis-specification. 3. Maintaining O(log T ) subroutines hurts the empirical performance5

of Alg. 3. Designing an empirically superior algorithm that uses knowledge of µ? remains an open question.6

Review 2: 1. For any chosen hyper-parameter β ∈ [1/2, 1], Alg. 1 is Pareto optimal, and no algorithm can be strictly7

better in terms of adaptivity. 2. Our setting can be generalized to case with n being infinite with a bit care (thanks for8

pointing this out): in the infinite arm setting, m is infinite as well (what matters is the ratio n/m: one can consider em-9

bedding arms into [0, 1] with the set of best arms having positive measure, but without additional structure assumptions).10

3. The algorithm is valid in the sense that it selects an arm At for any t ∈ [T ], i.e., it does not terminate before time T .11

Review 3: 1. If n is infinite, then there are indeed cases where the maximum is undefined. To avoid the potential12

problem of empty S?, we advocate defining S? in terms of ε-good arms. 2. Although T was incorporated in lower13

bounds, to the best of our knowledge, we are the first to incorporate T into the cumulative regret minimization problem14

R(n,m, T ), and quantify corresponding hardness level α. Previous work [4, 30] developed hardness parameters in15

terms of the reservoir distribution of arms (T not included; they additionally require those parameters to be known)16

and thus cannot be directly related to α. 3. We defined ψ as in Section 2 to avoid the trivial case with all best arms:17

any algorithm is optimal in such case and achieves 0 regret. 4. Random selection in Alg. 1 means sampling uniformly18

at random without replacement. 5. The virtual arm could be mathematically defined as ν̃i =
∑n
j=1 p̂i(j) · νj , where19

p̂i(j) denotes the j-th element of the empirical sampling frequency p̂i. 6. The intuition behind Thm. 2 in explained20

in the paragraph above it. But to interpret Thm. 2 alone: for any algorithm considered, if B (or more precisely21

supω∈HT (α′)RT ) is large, we directly know that the algorithm is not optimal on the easy problem within HT (α′);22

if B is small, the RHS of Eq.(2) is large and then the algorithm cannot be optimal on the hard problem withinHT (α).23

7. Whether sharper lower bounds are possible when given extra information about the optimal mean value is an open24

problem, as is the question of the minimal additional assumption/information needed to fully adapt to α. All we know25

is no algorithm is simultaneously minimax optimal for all values of α without additional assumptions, and that given26

the optimal mean value it is possible to be more adaptive to α than without it. 8. We use ∆Ti to represent the length27

of the i-th iteration within the total horizon T , and it really should have been defined as ∆Ti = min{2p+i, T} so that28

∆Ti ≤ T always holds. 9. We assume T ≥ 2 on line 139. 10. There is no missing factor of 2 in Eq.(28) and Eq.(26)29

is correct since we focus on the (1/4)−sub-Gaussian case. 11. The factor of 2−5 in the definition of ∆ on line 54430

is to make sure
√

2∆B/K ≤ 1/4 in Eq.(31) so that we can lower bound the averaged regret. 12. Note that β in the31

proof of Thm. 3 is really just a symbol, and one could replace β with θ(0). Another way to understand the proof of32

Thm. 3 is as following: for any Pareto optimal rate θ, it satisfies the lower bound in Eq.(35); meanwhile, the rate on33

the RHS of Eq.(35) is achieved by Alg. 1 with input β = θ(0). Alg. 1 is thus Pareto optimal.34

Review 4: 1. Although Alg. 1 uses MOSS (explained in detail in [2, 14]) as a subroutine, it is very different from simply35

fine-tuning MOSS , which fails arbitrarily when n is large, or applying MOSS on a subset, which will not lead to Pareto36

optimal algorithms, as discussed in Remark 2. The innovative core of Alg. 1 lies in summarizing information obtained in37

iteration i as a virtual arm ν̃i. 2. The setting with (1/4)−sub-Gaussian is only for convenience in calculations and could38

be generalized to the σ2−sub-Gaussian case, for any σ. 3. Eq. after line 115 defines the hardness level of a given problem,39

and Eq. after line 120 classifies problems in terms of their hardness levels. 4. Alg. 1 is different from the Distilled40

Sensing by Haupt et al 2009 since the latter only applies to very special sparse settings where optimal arms are those41

with non-zero means and all other arms have zero means. 5. Our algorithms achieves the state-of-the-art performance in42

adapting to unknown α. 6. RestartingEmp (on line 256-259) represents the empirical version of Alg. 1 by allowing the43

reuse of statistics. Note that we are also comparing to an algorithm, i.e., QRM2, that allows the reuse of statistics [12].44

Review 5: 1. Our setting could be generalized to the case with multiple ε-good arms without modification in algorithms45

and (as long as ε ≤ 1/
√
T ) the theoretical results hold up to negligible factors (see line 98-103; ε ≤ 1/

√
T ⇒ εT ≤46 √

T ). 2. The lower bound in Section 2 is in the minimax sense, so it suffices to reduce to the single-best arm case. A47

lower bound of the order Ω(
√
T (n−m)/m) (≈ Ω(T (1+α)/2) as long as Tα ≥ 2) for the m-best arms case could be48

obtained following similar analysis in Chapter 15 of [21]. 3. Our results in Thm. 3 show that, in the minimax sense over49

HT (α), suffering a rate of 1 over a certain range of α is unavoidable for algorithms on the Pareto frontier. Better bounds50

might be obtained when restricting ourselves on a subset ofHT (α), but not in general. 4. When prior knowledge on α51

is unavailable, we recommend setting β = 0.5 and applying RestartingEmp in practice since it achieves performance52

very close to the oracle algorithm with known hardness level. Increasing β provides worse performance on small α but53

better performance on larger α. 5. The setting with knowledge of the value µ? was previously studied in [23]. Besides,54

we allow mis-specification in µ? (see point 2 in response to Reviewer 1). 6. Similar experimental results are obtained55

after averaging over 500 trials. T = 50000 is intentionally chosen to create the tension between n,m and T . 7. The56

algorithm is valid in the sense that it selects an arm At for any t ∈ [T ], i.e., it does not terminate before time T .57


