
Hamiltonian Monte Carlo using an adjoint-
differentiated Laplace approximation: Bayesian
inference for latent Gaussian models and beyond

Charles C. Margossian
Department of Statistics

Columbia University
New York, NY 10027

charles.margossian@columbia.edu

Aki Vehtari
Department of Computer Science

Aalto University
02150 Espoo, Finland

Finnish Center for Artificial Intelligence

Daniel Simpson
Department of Statistical Sciences

University of Toronto
ON M5S, Canada

Raj Agrawal
CSAIL

Massachusetts Institute of Technology
Cambridge, MA 02139

Abstract

Gaussian latent variable models are a key class of Bayesian hierarchical models
with applications in many fields. Performing Bayesian inference on such models
can be challenging as Markov chain Monte Carlo algorithms struggle with the
geometry of the resulting posterior distribution and can be prohibitively slow.
An alternative is to use a Laplace approximation to marginalize out the latent
Gaussian variables and then integrate out the remaining hyperparameters using
dynamic Hamiltonian Monte Carlo, a gradient-based Markov chain Monte Carlo
sampler. To implement this scheme efficiently, we derive a novel adjoint method
that propagates the minimal information needed to construct the gradient of the
approximate marginal likelihood. This strategy yields a scalable differentiation
method that is orders of magnitude faster than state of the art differentiation
techniques when the hyperparameters are high dimensional. We prototype the
method in the probabilistic programming framework Stan and test the utility of
the embedded Laplace approximation on several models, including one where the
dimension of the hyperparameter is ∼6,000. Depending on the cases, the benefits
can include an alleviation of the geometric pathologies that frustrate Hamiltonian
Monte Carlo and a dramatic speed-up.

1 Introduction

Latent Gaussian models observe the following hierarchical structure:

φ ∼ π(φ), θ ∼ Normal(0,K(φ)), y ∼ π(y | θ, φ).

Typically, single observations yi are independently distributed and only depend on a linear combi-
nation of the latent variables, that is π(yi | θ, φ) = π(yi | aTi θ, φ), for some appropriately defined
vectors ai. This general framework finds a broad array of applications: Gaussian processes, spatial
models, and multilevel regression models to name a few examples. We denote θ the latent Gaussian
variable and φ the hyperparameter, although we note that in general φmay refer to any latent variable
other than θ. Note that there is no clear consensus in the literature on what constitutes a “latent
Gaussian model”; we use the definition from the seminal work by Rue et al. [34].

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

We derive a method to perform Bayesian inference on latent Gaussian models, which scales when φ is
high dimensional and can handle the case where π(φ | y) is multimodal, provided the energy barrier
between the modes is not too strong. This scenario arises in, for example, general linear models with
a regularized horseshoe prior [13] and in sparse kernel interaction models [1]. The main application
for these models is studies with a low number of observations but a high-dimensional covariate, as
seen in genomics.

The inference method we develop uses a gradient-based Markov chain Monte Carlo (MCMC) sampler,
coupled with a Laplace approximation to marginalize out θ. The key to successfully implementing this
scheme is a novel adjoint method that efficiently differentiates the approximate marginal likelihood.
In the case of a classic Gaussian process (Section 4), where dim(φ) = 2, the computation required to
evaluate and differentiate the marginal is on par with the GPstuff package [40], which uses the popular
algorithm by Rasmussen and Williams [33]. The adjoint method is however orders of magnitude
faster when φ is high dimensional. Figure 1 shows the superior scalability of the adjoint method on
simulated data from a sparse kernel interaction model. We lay out the details of the algorithms and
the experiment in Section 3.

1.1 Existing methods

benchmarkbenchmarkbenchmarkbenchmarkbenchmark

adjoint methodadjoint methodadjoint methodadjoint methodadjoint method

0.0

0.5

1.0

1.5

0 50 100 150 200
dim(φ)

di
ffe

re
nt

ia
tio

n
tim

e
(s

)

Figure 1: Wall time to differentiate the marginal
density using the adjoint method (Algorithm 2)
and, as a benchmark, the method by Rasmussen
and Williams [33] (Algorithm 1).

Bayesian computation is, broadly speaking, split
between two approaches: (i) MCMC methods
that approximately sample from the posterior,
and (ii) approximation methods in which one
finds a tractable distribution that approximates
the posterior (e.g. variational inference, ex-
pectation propagation, and asymptotic approx-
imations). The same holds for latent Gaussian
models, where we can consider (i) Hamiltonian
Monte Carlo (HMC) sampling [30, 5] and (ii)
approximation schemes such as variational in-
ference (VI) [10] or marginalizing out the latent
Gaussian variables with a Laplace approxima-
tion before deterministically integrating the hy-
perparameters [38, 34].

Hamiltonian Monte Carlo sampling. When using MCMC sampling, the target distribution is

π(θ, φ | y) ∝ π(y | θ, φ)π(θ | φ)π(φ),

and the Markov chain explores the joint parameter space of θ and φ.

HMC is a class of MCMC algorithms that powers many modern probabilistic programming languages,
including Stan [12], PyMC3 [36], and TensorFlow Probability [16]. Its success is both empirically
and theoretically motivated (e.g. [9]) and, amongst other things, lies in its ability to probe the
geometry of the target distribution via the gradient. The algorithm is widely accessible through a
combination of its dynamic variants [22, 5], which spare the users the cumbersome task of manually
setting the algorithm’s tuning parameters, and automatic differentiation, which alleviates the burden
of calculating gradients by hand (e.g. [27, 2, 21]). There are known challenges when applying HMC
to hierarchical models, because of the posterior distribution’s problematic geometry [7]. In the case
of latent Gaussian models, this geometric grief is often caused by the latent Gaussian variable, θ, and
its interaction with φ. Certain samplers, such as Riemannian HMC [19, 4] and semi-separable HMC
[44], are designed to better handle difficult geometries. While promising, these methods are difficult
to implement, computationally expensive, and to our knowledge not widely used.

Variational inference. VI proposes to approximate the target distribution, π(θ, φ | y), with a
tractable distribution, q(θ, φ), which minimizes the Kullback-Leibler divergence between the approx-
imation and the target. The optimization is performed over a pre-defined family of distributions, Q.
Adaptive versions, such as black-box VI [32] and automatic differentiation VI (ADVI) [25], make
it easy to run the algorithm. VI is further made accessible by popular software libraries, including
the above-mentioned probabilistic programming languages, and others packages such as GPyTorch
for Gaussian processes [18]. For certain problems, VI is more scalable than MCMC, because it can

2

be computationally much faster to solve an optimization problem than to generate a large number
of samples. There are however known limitations with VI (e.g. [10, 43, 23, 15]). Of interest here is
that Q may not include appropriate approximations of the target: mean field or full rank Gaussian
families, for instance, will underestimate variance and settle on a single mode, even if the posterior is
multimodal (e.g. [43]).

Marginalization using a Laplace approximation. The embedded Laplace approximation is a
popular algorithm, and a key component of the R packages INLA (integrated nested Laplace
integration, [34, 35]) and TMB (template model builder, [24]), and the GPstuff package [40]. The
idea is to marginalize out θ and then use standard inference techniques on φ.

We perform the Laplace approximation

π(θ | φ, y) ≈ πG(θ | y, φ) := Normal(θ∗,Σ∗),

where θ∗ matches the mode and [Σ∗]−1 the curvature of π(θ | φ, y). Then, the marginal posterior
distribution is approximated as follows:

π(φ | y) ≈ πG(φ | y) := π(φ)
π(θ∗ | φ)π(y | θ∗, φ)

πG(θ∗ | φ, y)π(y)
.

Once we perform inference on φ, we can recover θ using the conditional distribution πG(θ | φ, y)
and effectively marginalizing φ out. For certain models, this yields much faster inference than
MCMC, while retaining comparable accuracy [34]. Furthermore the Laplace approximation as a
marginalization scheme enjoys very good theoretical properties [38].

In the R package INLA, approximate inference is performed on φ, by characterizing π(φ | y) around
its presumed mode. This works well for many cases but presents two limitations: the posterior must be
well characterized in the neighborhood of the estimated mode and it must be low dimensional, “2–5,
not more than 20” [35]. In one of the examples we study, the posterior of φ is both high dimensional
(∼6000) and multimodal.

Hybrid methods. Naturally we can use a more flexible inference method on φ such as a standard
MCMC, as discussed by Gómez-Rubio and Rue [20], and HMC as proposed in GPstuff and TMB,
the latter through its extension TMBStan and AdNuts (automatic differentiation with a No-U-Turn
Sampler [28]). The target distribution of the HMC sampler is now πG(φ | y).

To use HMC, we require the gradient of log πG(y | φ) with respect to φ. Much care must be taken
to ensure an efficient computation of this gradient. TMB and GPstuff exemplify two approaches to
differentiate the approximate marginal density. The first uses automatic differentiation and the second
adapts the algorithms in Rasmussen and Williams [33]. One of the main bottlenecks is differentiating
the estimated mode, θ∗. In theory, it is straightforward to apply automatic differentiation, by brute-
force propagating derivatives through θ∗, that is, sequentially differentiating the iterations of a
numerical optimizer. But this approach, termed the direct method, is prohibitively expensive. A much
faster alternative is to use the implicit function theorem (e.g. [3, 27]). Given any accurate numerical
solver, we can always use the implicit function theorem to get derivatives, as notably done in the Stan
Math Library [11] and in TMB’s inverse subset algorithm [24]. One side effect is that the numerical
optimizer is treated as a black box. By contrast, Rasmussen and Williams [33] define a bespoke
Newton method to compute θ∗, meaning we can store relevant variables from the final Newton step
when computing derivatives. In our experience, this leads to important computational savings. But
overall this method is much less flexible, working well only when φ is low dimensional and requiring
the user to pass the tensor of derivatives, ∂K/∂φ.

2 Aim and results of the paper

We improve the computation of HMC with an embedded Laplace approximation. Our implementation
accommodates any covariance matrix K, without requiring the user to specify ∂K/∂φ, efficiently
differentiates log πG(y | φ), even when φ is high dimensional, and deploys dynamic HMC to perform
inference on φ. We introduce a novel adjoint method to differentiate log πG(y | φ), build the algorithm
in C++, and add it to the Stan language. Our approach combines the Newton solver of Rasmussen
and Williams [33] with a non-trivial application of automatic differentiation.

3

Equipped with this implementation, we test dynamic HMC with an embedded Laplace approximation
on a range of models, including ones with a high dimensional and multimodal hyperparameter. We
do so by benchmarking our implementation against Stan’s dynamic HMC, which runs MCMC on
both the hyperparameter and the latent Gaussian variable. For the rest of the paper, we call this
standard use of dynamic HMC, full HMC. We refer to marginalizing out θ and using dynamic HMC
on φ, as the embedded Laplace approximation. Another candidate benchmark is Stan’s ADVI. Yao
et al. [43] however report that ADVI underestimates the posterior variance and returns a unimodal
approximation, even when the posterior is multimodal. We observe a similar behavior in the models
we examine. For clarity, we relegate most of our analysis on ADVI to the Supplementary Material.

Our computer experiments identify cases where the benefits of the embedded Laplace approximation,
as tested with our implementation, are substantial. In the case of a classic Gaussian process, with
dim(φ) = 2 and dim(θ) = 100, we observe an important computational speed up, when compared
to full HMC. We next study a general linear regression with a sparsity inducing prior; this time
dim(φ) ≈ 6, 000 and dim(θ) ≈ 100. Full HMC struggles with the posterior’s geometry, as indicated
by divergent transitions, and requires a model reparameterization and extensive tuning of the sampler.
On the other hand, the embedded Laplace approximation evades many of the geometric problems and
solves the approximate problem efficiently. We observe similar results for a sparse kernel interaction
model, which looks at second-order interactions between covariates [1]. Our results stand in contrast
to the experiments presented in Monnahan and Kristensen [28], who used a different method to
automatically differentiate the Laplace approximation and reported at best a minor speed up. We do
however note that the authors investigated different models than the ones we study here.

In all the studied cases, the likelihood is log-concave. Combined with a Gaussian prior, log-concavity
guarantees that π(θ | φ, y) is unimodal. Detailed analysis on the error introduced by the Laplace
approximation for log-concave likelihoods can be found in references (e.g. [26, 39, 14, 41]) and are
consistent with the results from our computer experiments.

3 Implementation for probabilistic programming

In order to run HMC, we need a function that returns the approximate log density of the marginal
likelihood, log πG(y | φ), and its gradient with respect to φ,∇φ log πG(y | φ). The user specifies the
observations, y, and a function to generate the covariance K, based on input covariates x and the
hyperparameters φ. In the current prototype, the user picks the likelihood, π(y | θ, φ), from a set of
options1: for example, a likelihood arising from a Bernoulli distribution with a logit link.

Standard implementations of the Laplace approximation use the algorithms in Rasmussen and
Williams [33, chapter 3 and 5] to compute (i) the mode θ∗ and log πG(y | φ), using a Newton solver;
(ii) the gradient∇φ log πG(y | φ) (Algorithm 1), and (iii) simulations from πG(θ | y, φ). The major
contribution of this paper is to construct a new differentiation algorithm, i.e. item (ii).

3.1 Using automatic differentiation in the algorithm of Rasmussen and Williams [33]

The main difficulty with Algorithm 1 from Rasmussen and Williams [33] is the requirement for
∂K/∂φj at line 8. For classic problems, where K is, for instance, an exponentiated quadratic kernel,
the derivatives are available analytically. This is not the case in general and, in line with the paradigm
of probabilistic programming, we want a method that does not require the user to specify the tensor
of derivatives, ∂K/∂φ.

Automatic differentiation allows us to numerically evaluate ∂K/∂φ based on computer code to
evaluate K. To do this, we introduce the map K

K : Rp → Rn(n+1)/2

φ→ K,

where p is the dimension of φ and n that of θ. To obtain the full tensor of derivatives, we require
either p forward mode sweeps or n(n + 1)/2 reverse mode sweeps. Given the scaling, we favor
forward mode and this works well when p is small. However, once p becomes large, this approach is
spectacularly inefficient.

1More likelihoods can be implemented through a C++ class that specifies the first three derivatives of the
log-likelihood.

4

Algorithm 1 Gradient of the approximate marginal density, πG(y | φ), with respect to the hyperpa-
rameters φ, adapted from algorithm 5.1 by Rasmussen and Williams [33, chapter 5]. We store and
reuse terms computed during the final Newton step, algorithm 3.1 in Rasmussen and Williams [33,
chapter 3].

input: y, φ, π(y | θ, φ)

2: saved input from the Newton solver: θ∗, K, W
1
2 , L, a

Z = 1
2a
T θ∗ + log π(y | θ∗, φ)−

∑
log(diag(L))

4: R = W
1
2LT \ (L \W 1

2)

C = L \ (W
1
2K)

6: s2 = − 1
2diag(diag(K)− diag(CTC))∇3

θ log π(y | θ∗, φ)
for j = 1 ... dim(φ)

8: K ′ = ∂K/∂φj
s1 = 1

2a
TK ′a− 1

2 tr(RK ′)
10: b = K ′∇θ log π(y | θ, φ)

s3 = b−KRb
12: ∂

∂φj
π(y | φ) = s1 + sT2 s3

end for
14: return∇φ log πG(y | φ)

3.2 Adjoint method to differentiate the approximate log marginal density

To evaluate the gradient of a composite map, it is actually not necessary to compute the full Jacobian
matrix of intermediate operations. This is an important, if often overlooked, property of automatic
differentiation and the driving principle behind adjoint methods (e.g. [17]). This idea motivates
an algorithm that does not explicitly construct ∂K/∂φ, a calculation that is both expensive and
superfluous. Indeed, it suffices to evaluate wT∂K/∂φ for the correct cotangent vector, wT , an
operation we can do in a single reverse mode sweep of automatic differentiation.

Theorem 1 Let log πG(y | φ) be the approximate log marginal density in the context of a latent
Gaussian model. Let a be defined as in the Newton solver by Rasmussen and Williams [33, chapter 3],
and let R and s2 be defined as in Algorithm 1. Then

∇φ log πG(y | φ) = wT
∂K

∂φ
,

where the gradient is with respect to φ and

wT =
1

2
aaT − 1

2
R+ (s2 +RKs2)[∇θ log π(y | θ, φ)]T .

The proof follows from Algorithm 1 and noting that all the operations in ∂K/∂φj are linear. We
provide the details in the Supplementary Material. Armed with this result, we build Algorithm 2, a
method that combines the insights of Rasmussen and Williams [33] with the principles of adjoint
methods.

Algorithm 2 Gradient of the approximate marginal log density, log πG(y | φ), with respect to the
hyperparameters, φ, using reverse mode automatic differentiation and theorem 1.

input: y, φ, π(y | θ, φ)
2: Do lines 2 - 6 of Algorithm 1.

Initiate an expression graph for automatic differentiation with φv = φ.
4: Kv = K(φv)
wT = 1

2aa
T − 1

2R+ (s2 +RKs2)[∇θ log π(y | θ, φ)]T

6: Do a reverse sweep over K, with wT as the initial cotangent to obtain∇φ log πG(y | φ).
return: ∇φ log πG(y | φ).

Figure 1 shows the time required for one evaluation and differentiation of log πG(y | φ) for the sparse
kernel interaction model developed by Agrawal et al. [1] on simulated data. The covariance structure

5

α ρ θ1 θ2

0.5 1.0 1.5 2.0 0 50 100 150 −0.20 −0.15 −0.10 −0.05 0.00 0.0 0.2 0.4 0.6
0

100

200

300

400

0

100

200

300

0
250
500
750

1000

0
100
200
300
400

value

co
un

t method
(full) HMC
HMC + Laplace

α ρ θ1 θ2

10−1 100 101 102 10−1 100 101 102 10−1 100 101 102 10−1 100 101 102
10−5

10−4

10−3

10−2

10−6

10−5

10−4

10−110−1

100100

101101

102102

10−310−3

10−210−2

time (s)

sq
ua

re
d

er
ro

r

Figure 2: (Up) Posterior samples obtained with full HMC and the embedded Laplace approximation
when fitting the disease map. (Down) Error when estimating the expectation value against wall time.
Unreported in the figure is that we had to fit full HMC twice before obtaining good tuning parameters.

of this model is nontrivial and analytical derivatives are not easily available. We simulate a range of
data sets for varying dimensions, p, of φ. For low dimensions, the difference is small; however, for
p = 200, Algorithm 2 is more than 100 times faster than Algorithm 1, requiring 0.009 s, instead of
1.47 s.

4 Gaussian process with a Poisson likelihood

We fit the disease map of Finland by Vanhatalo et al. [39] which models the mortality count across
the country. The data is aggregated in n = 911 grid cells. We use 100 cells, which allows us to fit
the model quickly both with full HMC and HMC using an embedded Laplace approximation. For
the ith region, we have a 2-dimensional coordinate xi, the counts of deaths yi, and the standardized
expected number of deaths, yie. The full latent Gaussian model is

(ρ, α) ∼ π(ρ, α), θ ∼ Normal(0,K(α, ρ, x)), yi ∼ Poisson(yiee
θi),

where K is an exponentiated quadratic kernel, α is the marginal standard deviation and ρ the
characteristic length scale. Hence φ = (α, ρ).

Fitting this model with MCMC requires running the Markov chains over α, ρ, and θ. Because the
data is sparse — one observation per group — the posterior has a funnel shape which can lead to
biased MCMC estimates [29, 7]. A useful diagnostic for identifying posterior shapes that challenge
the HMC sampler is divergent transitions, which occur when there is significant numerical error in
the computation of the Markov chain trajectory [5].

To remedy these issues, we reparameterize the model and adjust the target acceptance rate, δa.
δa controls the precision of HMC, with the usual trade-off between accuracy and speed. For well
behaved problems, the optimal value is 0.8 [8] but posteriors with highly varying curvature require
a higher value. Moreover, multiple attempts at fitting the model must be done before we correctly
tune the sampler and remove all the divergent transitions. See the Supplementary Material for more
details.

An immediate benefit of the embedded Laplace approximation is that we marginalize out θ and only
run HMC on α and ρ, a two-dimensional and typically well behaved parameter space. In the case of
the disease map, we do not need to reparameterize the model, nor adjust δa.

We fit the models with both methods, using 4 chains, each with 500 warmup and 500 sampling
iterations. A look at the marginal distributions of α, ρ, and the first two elements of θ suggests the
posterior samples generated by full HMC and the embedded Laplace approximation are in close
agreement (Figure 2). With a Poisson likelihood, the bias introduced by the Laplace approximation is
small, as shown by Vanhatalo et al. [39]. We benchmark the Monte Carlo estimates of both methods
against results from running 18,000 MCMC iterations. The embedded Laplace approximations
yields comparable precision, when estimating expectation values, and is an order of magnitude faster
(Figure 2). In addition, we do not need to tune the algorithm and the MCMC warmup time is much
shorter (∼10 seconds against ∼200 seconds for full HMC).

6

Table 1: Top six covariate indices, i, with the highest 90th quantiles of log λi for the general linear
model with a regularized horseshoe prior. The first two methods are in good agreement; ADVI
selects different covariates, in part because it approximates the multimodal posterior with a unimodal
distribution (see the Supplementary Material).

(full) HMC 2586 1816 4960 4238 4843 3381

HMC + Laplace 2586 1816 4960 4647 4238 3381

ADVI 1816 2416 4284 2586 5279 4940

5 General linear regression model with a regularized horseshoe prior

Consider a regression model with n observations and p covariates. In the “p � n” regime, we
typically need additional structure, such as sparsity, for accurate inference. The horseshoe prior
[13] is a useful prior when it is assumed that only a small portion of the regression coefficients are
non-zero. Here we use the regularized horseshoe prior by Piironen and Vehtari [31]. The horseshoe
prior is parameterized by a global scale term, the scalar τ , and local scale terms for each covariate,
λj , j = 1, . . . , p. Consequently the number of hyperparameters is O(p).

To use the embedded Laplace approximation, we recast the regularized linear regression as a latent
Gaussian model. The benefit of the approximation is not a significant speedup, rather an improved
posterior geometry, due to marginalizing θ out. This means we do not need to reparameterize the
model, nor fine tune the sampler. To see this, we examine the genetic microarray classification data
set on prostate cancer used by Piironen and Vehtari [31] and fit a regression model with a Bernoulli
distribution and a logit link. Here, dim(θ) = 102 and dim(φ) = 5, 966.

We use 1,000 iterations to warm up the sampler and 12,000 sampling iterations. Tail quantiles, such
as the 90th quantile, allow us to identify parameters which have a small local shrinkage and thence
indicate relevant covariates. The large sample size is used to reduce the Monte Carlo error in our
estimates of these extreme quantiles.

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Probability (full HMC)

P
ro

ba
bi

lit
y

(H
M

C
 +

 L
ap

la
ce

)

Figure 3: Expectation value for the prob-
ability of developing prostate cancer, as
estimated by full HMC and HMC using an
embedded Laplace approximation.

Fitting this model with full HMC requires a fair amount
of work: the model must be reparameterized and the
sampler carefully tuned, after multiple attempts at a fit.
We use a non-centered parameterization, set δa = 0.999
(after attempting δa = 0.8 and δa = 0.99) and do some
additional adjustments. Even then we obtain 13 diver-
gent transitions over 12,000 sampling iterations. The
Supplementary Material describes the tuning process in
all its thorny details. By contrast, running the embed-
ded Laplace approximation with Stan’s default tuning
parameters produces 0 divergent transitions. Hence the
approximate problem is efficiently solved by dynamic
HMC. Running ADVI on this model is also straightfor-
ward.

Table 1 shows the covariates with the highest 90th quan-
tiles, which are softly selected by full HMC, the embed-
ded Laplace approximation and ADVI. For clarity, we
exclude ADVI from the remaining figures but note that it
generates, for this particular problem, strongly biased in-
ference; more details can be found in the Supplementary
Material. Figure 3 compares the expected probability of
developing cancer. Figure 4 compares the posterior samples and the error when estimating various
quantities of interest, namely (i) the expectation value of the global shrinkage, τ , and the slab pa-
rameter, caux; and (ii) the 90th quantile of two local shrinkage parameters. As a benchmark we use
estimates obtained from 98,000 MCMC iterations.

The Laplace approximation yields slightly less extreme probabilities of developing cancer than the
corresponding full model. This behavior is expected for latent Gaussian models with a Bernoulli

7

logcaux logλ1816 logλ2586 logτ

−0.50 −0.25 0.00 0.25 0.50 −10 0 10 −10 0 10 −10 −5 0 5
0

500
1000
1500
2000
2500

0
500

1000
1500
2000

0

1000

2000

0

500

1000

value

co
un

t method
(full) HMC
HMC + Laplace

E(logcaux) Q90(logλ1816) Q90(logλ2586) E(logτ)

101 102 103 101 102 103 101 102 103 101 102 103

10−110−1

100100

10−1
100
101

101101101101

10−5
10−4
10−3
10−2

time (s)

sq
ua

re
d

er
ro

r

Figure 4: (Up) Posterior samples obtained with full HMC and HMC using an embedded Laplace
approximation when fitting a general linear regression with a regularized horseshoe prior. (Down)
Error when estimating various quantities of interest against wall time. E stands for “expectation”
and Q90, “90th quantile”. Unreported in the figure is that we had to run full HMC four times before
obtaining reasonable tuning parameters.

Table 2: Top six covariate indices, i, with the highest 90th quantiles of log λi for the SKIM.

(full) HMC 2586 2660 2679 2581 2620 2651

HMC + Laplace 2586 2679 2660 2581 2620 2548

ADVI 2586 2526 2106 2550 2694 2166

observation model, and has been studied in the cases of Gaussian processes and Gaussian random
Markov fields (e.g. [26, 14, 41]). While introducing a bias, the embedded Laplace approximation
yields accuracy comparable to full HMC when evaluating quantities of interest.

6 Sparse kernel interaction model

A natural extension of the general linear model is to include interaction terms. To achieve better
computational scalability, we can use the kernel interaction trick by Agrawal et al. [1] and build a
sparse kernel interaction model (SKIM), which also uses the regularized horseshoe prior by Piironen
and Vehtari [31]. The model is an explicit latent Gaussian model and uses a non-trivial covariance
matrix. The full details of the model are given in the Supplementary Material.

When fitting the SKIM to the prostate cancer data, we encounter similar challenges as in the previous
section: ∼150 divergent transitions with full HMC when using Stan’s default tuning parameters. The
behavior when adding the embedded Laplace approximation is much better, although there are still
∼3 divergent transitions,2 which indicates that this problem remains quite difficult even after the
approximate marginalization. We also find large differences in running time. The embedded Laplace
approximation runs for ∼10 hours, while full HMC takes ∼20 hours with δa = 0.8 and ∼50 hours
with δa = 0.99, making it difficult to tune the sampler and run our computer experiment.

For computational convenience, we fit the SKIM using only 200 covariates, indexed 2500 - 2700
to encompass the 2586th covariate which we found to be strongly explanatory. This allows us to
easily tune full HMC without altering the takeaways of the experiment. Note that the data here used
is different from the data we used in the previous section (since we only examine a subset of the
covariates) and the marginal posteriors should therefore not be compared directly.

As in the previous section, we generate 12,000 posterior draws for each method. For full HMC
we obtain 36 divergent transitions with δa = 0.8 and 0 with δa = 0.99. The embedded Laplace
approximation produces 0 divergences with δa = 0.8. Table 2 shows the covariates which are
softly selected. As before, we see a good overlap between full HMC and the embedded Laplace
approximation, and mostly disagreeing results from ADVI. Figure 5 compares (i) the posterior draws

2We do our preliminary runs using only 4000 sampling iterations. The above number are estimated for 12000
sampling iterations. The same holds for the estimated run times.

8

logcaux logλ2581 logλ2586 logτ logχ

−0.50 −0.25 0.00 0.25 0.50 −10 −5 0 5 10 0 4 8 12 16 −2.5 0.0 2.5 5.0 −0.3 0.0 0.3 0.6
0

250

500

750

1000

1250

0

500

1000

1500

2000

0

500

1000

1500

0

1000

2000

0

500

1000

value

co
un

t HMC
Laplace

E(logcaux) Q90(logλ2516) Q90(logλ2586) E(logτ) E(logχ)

100 101 102 103 100 101 102 103 100 101 102 103 100 101 102 103 100 101 102 103

10−5
10−4
10−3
10−2

10−210−2

10−110−1

100100

10−210−2

10−110−1

100100

101101

10−2

10−1

100

101

10−5
10−4
10−3
10−2

time

er
r

Figure 5: (Up) Samples obtained with full HMC and HMC using an embedded Laplace approximation
when fitting the SKIM. (Down) Error when estimating various quantities of interest against wall time.
E stands for “expectation” and Q90, “90th quantile”. Unreported in the figure is that we had to run
full HMC twice before obtaining reasonable tuning parameters.

of full HMC and the embedded Laplace approximation, and (ii) the error over time, benchmarked
against estimates from 98,000 MCMC iterations, for certain quantities of interest. We obtain
comparable estimates but note that the Laplace approximation introduces a bias, which becomes
more evident over longer runtimes.

7 Discussion

Equipped with a scalable and flexible differentiation algorithm, we expand the regime of models to
which we can apply the embedded Laplace approximation. HMC allows us to perform inference
even when φ is high dimensional and multimodal, provided the energy barrier is not too strong.
In the case where dim(θ) � dim(φ), the approximation also yields a dramatic speedup. When
dim(θ)� dim(φ), marginalizing θ out can still improve the geometry of the posterior, saving the user
time otherwise spent tuning the sampling algorithm. However, when the posterior is well-behaved,
the approximation may not provide any benefit.

Our next step is to further develop the prototype for Stan. We are also aiming to incorporate
features that allow for a high performance implementation, as seen in the packages INLA, TMB, and
GPstuff. Examples include support for sparse matrices required to fit latent Markov random fields,
parallelization and GPU support.

We also want to improve the flexibility of the method by allowing users to specify their own likelihood.
TMB provides this flexibility but in our view two important challenges persist. Recall that unlike
full HMC, which only requires first-order derivatives, the embedded Laplace approximation requires
the third-order derivative of the likelihood (but not of the other components in the model). It is in
principle possible to apply automatic differentiation to evaluate higher-order derivatives and most
libraries, including Stan, support this; but, along with feasibility, there is a question of efficiency
and practicality (e.g. [6]): the automated evaluation of higher-order derivatives is often prohibitively
expensive. The added flexibility also burdens us with more robustly diagnosing errors induced by
the approximation. There is extensive literature on log-concave likelihoods but less so for general
likelihoods. Future work will investigate diagnostics such as importance sampling [42], leave-one-out
cross-validation [41], and simulation based calibration [37].

Broader Impact

Through its multidisciplinary nature, the here presented research can act as a bridge between various
communities of statistics and machine learning. We hope practitioners of MCMC will consider the
benefits of approximate distributions and vice-versa. This work may be a stepping stone to a broader
conversation on how, what we have called the two broad approaches of Bayesian computation, can
be combined. The paper also raises awareness about existing technologies and may dispel certain
misconceptions. For example, our use of the adjoint principle shows that automatic differentiation is
not a simple application of the chain rule, but quite a bit more clever than that.

9

Our goal is to make the method readily available to practitioners across multiple fields, which is
why our C++ code and prototype Stan interface are open-source. While there is literature on the
Laplace approximation, the error it introduces, and the settings in which it works best, we realize
not all potential users will be familiar with it. To limit misuse, we must complement our work with
pedagogical material built on the existing references, as well as support and develop more diagnostic
tools.

Acknowledgment

We thank Michael Betancourt, Steve Bronder, Alejandro Catalina, Rok C̆es̆novar, Hyunji Moon, Sam
Power, Sean Talts and Yuling Yao for helpful discussions.

CM thanks the Office of Naval Research, the National Science Foundation, the Institute for Education
Sciences, and the Sloan Foundation. CM and AV thank the Academy of Finland (grants 298742 and
313122). DS thanks the Canada Research Chairs program and the Natural Sciences and Engineering
Research Council of Canada. RA’s research was supported in part by a grant from DARPA.

We acknowledge computing resources from Columbia University’s Shared Research Computing
Facility project, which is supported by NIH Research Facility Improvement Grant 1G20RR030893-
01, and associated funds from the New York State Empire State Development, Division of Science
Technology and Innovation (NYSTAR) Contract C090171, both awarded April 15, 2010.

We also acknowledge the computational resources provided by the Aalto Science-IT project.

The authors declare to have no conflict of interest.

References
[1] R. Agrawal, J. H. Huggins, B. Trippe, and T. Broderick. The Kernel interaction trick: Fast

Bayesian discovery of pairwise interactions in high dimensions. Proceedings of the 36th
International Conference on Machine Learning, 97, April 2019.

[2] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, and J. M. Siskind. Automatic differentiation in
machine learning: a survey. Journal of Machine Learning Research, 18:1 – 43, 2018.

[3] B. M. Bell and J. V. Burke. Algorithmic differentiation of implicit functions and optimal values.
In C. Bischof, H. Bücker, P. Hovland, U. Naumann, and J. Utke, editors, Advances in Automatic
Differentiation. Lecture Notes in Computational Science and Engineering, volume 64. Springer,
Berlin, Heidelberg, 2008. doi: https://doi.org/10.1007/978-3-540-68942-3_17.

[4] M. Betancourt. A general metric for riemannian manifold hamiltonian monte carlo.
arXiv:1212.4693, 2013. doi: 10.1007/978-3-642-40020-9_35.

[5] M. Betancourt. A conceptual introduction to Hamiltonian Monte Carlo. arXiv:1701.02434v1,
2018.

[6] M. Betancourt. A geometric theory of higher-order automatic differentiation. arXiv:1812.11592,
2018.

[7] M. Betancourt and M. Girolami. Hamiltonian Monte Carlo for hierarchical models.
arXiv:1312.0906v1, 2013. doi: 10.1201/b18502-5.

[8] M. Betancourt, S. Byrne, and M. Girolami. Optimizing the integrator step size of Hamiltonian
Monte Carlo. arXiv:1411.6669, 2015.

[9] M. J. Betancourt, S. Byrne, S. Livingstone, and M. Girolami. The geometric foundations of
Hamiltonian Monte Carlo. Bernoulli, 23:2257 – 2298, 2017.

[10] D. M. Blei, A. Kucukelbir, and J. D. McAuliffe. Variational inference: A review for statisticians.
Journal of the American Statistical Association, 112:859 – 877, 2017. doi: 10.1080/01621459.
2017.1285773. URL https://arxiv.org/abs/1601.00670.

[11] B. Carpenter, M. D. Hoffman, M. A. Brubaker, D. Lee, P. Li, and M. J. Betancourt. The Stan
math library: Reverse-mode automatic differentiation in C++. arXiv 1509.07164., 2015.

[12] B. Carpenter, A. Gelman, M. Hoffman, D. Lee, B. Goodrich, M. Betancourt, M. A. Brubaker,
J. Guo, P. Li, and A. Riddel. Stan: A probabilistic programming language. Journal of Statistical
Software, 76:1 –32, 2017. doi: 10.18637/jss.v076.i01.

10

https://arxiv.org/abs/1601.00670

[13] C. M. Carvalho, N. G. Polson, and J. G. Scott. The Horseshoe estimator for sparse signals.
Biometrika, 97(2):465–480, 2010. ISSN 00063444. doi: 10.1093/biomet/asq017.

[14] B. Cseke and T. Heskes. Approximate marginals in latent Gaussian models. Journal of Machine
Learning Research, 12, 2011.

[15] A. K. Dhaka, A. Catalina, M. R. Andersen, M. Magnusson, J. H. Huggins, and A. Vehtari.
Robust, accurate stochastic optimization for variational inference. In Advances in Neural
Information Processing Systems 34, page to appear. 2020.

[16] J. V. Dillon, I. Langmore, D. Tran, E. Brevdo, S. Vasudevan, D. Moore, B. Patton, A. Alemi,
M. Hoffman, and R. A. Saurous. Tensorflow distributions. arXiv preprint arXiv:1711.10604,
2017.

[17] M. Errico. What is an adjoint model? Bulletin of the American Meteorological Society, 78:2577
– 2591, 1997.

[18] J. R. Gardner, G. Pleiss, D. Bindel, K. Q. Weinberger, and A. G. Wilson. Gpytorch: Black-
box matrix-matrix gaussian process inference with gpu acceleration. In Advances in Neural
Information Processing Systems, 2018.

[19] M. Girolami, B. Calderhead, and S. A. Chin. Riemannian manifold hamiltonian monte carlo.
arXiv:0907.1100, 2019.

[20] V. Gómez-Rubio and H. Rue. Markov chain Monte Carlo with the integrated nested Laplace
approximation. Statistics and Computing, 28:1033 – 1051, 2018.

[21] A. Griewank and A. Walther. Evaluating derivatives. Society for Industrial and Applied
Mathematics (SIAM), Philadelphia, PA, second edition, 2008.

[22] M. D. Hoffman and A. Gelman. The No-U-Turn Sampler: Adaptively setting path lengths in
Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15:1593–1623, April 2014.

[23] J. Huggins, M. Kasprzak, T. Campbell, and T. Broderick. Validated variational inference
via practical posterior error bounds. volume 108 of Proceedings of Machine Learning Re-
search, pages 1792–1802, Online, 26–28 Aug 2020. PMLR. URL http://proceedings.
mlr.press/v108/huggins20a.html.

[24] K. Kristensen, A. Nielsen, C. W. Berg, H. Skaug, and B. M. Bell. TMB: Automatic differentia-
tion and Laplace approximation. Journal of statistical software, 70:1 – 21, 2016.

[25] A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, and D. Blei. Automatic differentiation
variational inference. Journal of machine learning research, 18:1 – 45, 2017.

[26] M. Kuss and C. E. Rasmussen. Assessing approximate inference for binary Gaussian process
classification. Journal of Machine Learning Research, 6:1679 – 1704, 2005.

[27] C. C. Margossian. A review of automatic differentiation and its efficient implementation. Wiley
interdisciplinary reviews: data mining and knowledge discovery, 9, 3 2019. doi: 10.1002/
WIDM.1305.

[28] C. C. Monnahan and K. Kristensen. No-U-turn sampling for fast Bayesian inference in
ADMB and TMB: Introducing the adnuts and tmbstan R packages. Plos One, 13, 2018.
doi: https://doi.org/10.1371/journal.pone.0197954.

[29] R. M. Neal. Slice sampling. Annals of statistics, 31:705 – 767, 2003.

[30] R. M. Neal. MCMC using Hamiltonian dynamics. In Handbook of Markov Chain Monte Carlo.
Chapman & Hall / CRC Press, 2012.

[31] J. Piironen and A. Vehtari. Sparsity information and regularization in the horseshoe and other
shrinkage priors. Electronic Journal of Statistics, 11:5018–5051, 2017.

[32] R. Ranganath, S. Gerrish, and D. M. Blei. Black box variational inference. Artificial Intelligence
and statistics, pages 814 – 822, 2014.

[33] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT
Press, 2006.

[34] H. Rue, S. Martino, and N. Chopin. Approximate Bayesian inference for latent Gaussian models
by using integrated nested Laplace approximations. Journal of Royal Statistics B, 71:319 – 392,
2009.

11

http://proceedings.mlr.press/v108/huggins20a.html
http://proceedings.mlr.press/v108/huggins20a.html

[35] H. Rue, A. Riebler, S. Sorbye, J. Illian, D. Simson, and F. Lindgren. Bayesian computing with
INLA: A review. Annual Review of Statistics and its Application, 4:395 – 421, 2017. doi:
https://doi.org/10.1146/annurev-statistics-060116-054045.

[36] J. Salvatier, T. V. Wiecki, and C. Fonnesbeck. Probabilistic programming in Python using
PyMC3. PeerJ Computer Science, 2, 2016. doi: https://doi.org/10.7717/peerj-cs.55.

[37] S. Talts, M. Betancourt, D. Simpson, A. Vehtari, and A. Gelman. Validating Bayesian inference
algorithms with simulation-based calibration. arXiv:1804.06788v1, 2018.

[38] L. Tierney and J. B. Kadane. Accurate approximations for posterior moments and marginal
densities. Journal of the American Statistical Association, 81(393):82–86, 1986. doi: 10.1080/
01621459.1986.10478240. URL https://amstat.tandfonline.com/doi/abs/10.1080/
01621459.1986.10478240.

[39] J. Vanhatalo, V. Pietiläinen, and A. Vehtari. Approximate inference for disease mapping with
sparse Gaussian processes. Statistics in Medicine, 29(15):1580–1607, 2010.

[40] J. Vanhatalo, J. Riihimäki, J. Hartikainen, P. Jylänki, V. Tolvanen, and A. Vehtari. GPstuff:
Bayesian modeling with Gaussian processes. Journal of Machine Learning Research, 14:
1175–1179, 2013.

[41] A. Vehtari, T. Mononen, V. Tolvanen, T. Sivula, and O. Winther. Bayesian leave-one-out cross-
validation approximations for Gaussian latent variable models. Journal of Machine Learning
Research, 17(103):1–38, 2016. URL http://jmlr.org/papers/v17/14-540.html.

[42] A. Vehtari, D. Simpson, A. Gelman, Y. Yao, and J. Gabry. Pareto smoothed importance sampling.
arXiv:1507.02646, 2019. URL https://arxiv.org/abs/1507.02646.

[43] Y. Yao, A. Vehtari, D. Simpson, and A. Gelman. Yes, but did it work?: Evaluating variational
inference. volume 80 of Proceedings of Machine Learning Research, pages 5581–5590. PMLR,
2018.

[44] Y. Zhang and C. Sutton. Semi-separable hamiltonian monte carlo for inference in bayesian
hierarchical models. In Advances in Neural Information Processing Systems 27, pages 10–18.
Curran Associates, Inc., 2014.

12

https://amstat.tandfonline.com/doi/abs/10.1080/01621459.1986.10478240
https://amstat.tandfonline.com/doi/abs/10.1080/01621459.1986.10478240
http://jmlr.org/papers/v17/14-540.html
https://arxiv.org/abs/1507.02646

	Introduction
	Existing methods

	Aim and results of the paper
	Implementation for probabilistic programming
	Using automatic differentiation in the algorithm of Rasmussen:2006
	Adjoint method to differentiate the approximate log marginal density

	Gaussian process with a Poisson likelihood
	General linear regression model with a regularized horseshoe prior
	Sparse kernel interaction model
	Discussion

