
Supplement to “Hamiltonian Monte Carlo using an
adjoint-differentiated Laplace approximation:

Bayesian inference for latent Gaussian models and
beyond”

Charles C. Margossian
Department of Statistics

Columbia University
New York, NY 10027

charles.margossian@columbia.edu

Aki Vehtari
Department of Computer Science

Aalto University
02150 Espoo, Finland

Finnish Center for Artificial Intelligence

Daniel Simpson
Department of Statistical Sciences

University of Toronto
ON M5S, Canada

Raj Agrawal
CSAIL

Massachusetts Institute of Technology
Cambridge, MA 02139

We review the Newton solver proposed by Rasmussen and Williams [14] and prove theorem 1, the
main result required to do build an adjoint method for the embedded Laplace approximation. We
next present our prototype code and provide details for the models used in our computer experiments.

A Newton solver for the embedded Laplace approximation

Algorithm A Newton solver for the embedded Laplace approximation [14, chapter 3]
input: K, y, π(y | θ, φ)

2: θ∗ = θ0 (initialization)
repeat

4: W = −∇θ∇θ log π(y | θ∗, φ)

L = Cholesky(I +W
1
2KW

1
2 )

6: b = Wθ∗ +∇θ log π(y | θ∗, φ)

a = b−W 1
2LT \ (L \ (W

1
2Kb))

8: θ∗ = Ka
until convergence

10: log π(y | φ) = − 1
2a
T θ∗ + log π(y | θ∗, φ)−

∑
i logLii

return: θ∗, log πG(y | φ)

Algorithm A is a transcription of the Newton method by Rasmussen and Williams [14, chapter 3]
using our notation. As a convergence criterion, we use the change in the objective function between
two iterations

∆ log π(θ | y, φ) ≤ ε

for a specified ε. This is consistent with the approach used in GPStuff [16]. We store the following
variables generated during the final Newton step to use them again when computing the gradient:
θ∗, K, W

1
2 , L, and a. This avoids redundant computation and spares us an expensive Cholesky

decomposition.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



B Building the adjoint method

To compute the gradient of the approximate log marginal with respect to φ, ∇ log πG(y | φ), we
exploit several important principles of automatic differentiation. While widely used in statistics and
machine learning, these principles remain arcane to many practitioners and deserve a brief review.
We will then construct the adjoint method (theorem 1 and algorithm 2) as a correction to algorithm 1.

B.1 Automatic differentiation

Given a composite map

f = fL ◦ fL−1 ◦ ...f1,
the chain rule teaches us that the corresponding Jacobian matrix observes a similar decomposition:

J = JL · JL−1 · ... · J1.
Based on computer code to calculate f , a forward mode sweep automatic differentiation numerically
evaluates the action of the Jacobian matrix on the initial tangent u, or directional derivative J · u.
Extrapolating from the chain rule

J · u = JL · JL−1 · ... · J3 · J2 · J1 · u
= JL · JL−1 · ... · J3 · J2 · u1
= JL · JL−1 · ... · J3 · u2
...

= JL · uL−1,
where the ul’s verify the recursion relationship

u1 = J1 · u,
ul = Jl · ul−1.

If our computation follows the steps outlined above we never need to explicitly compute the full
Jacobian matrix, Jl, of an intermediate function, f l; rather we only calculate a sequence of Jacobian-
tangent products. Similarly a reverse mode sweep evaluates the contraction of the Jacobian matrix
with a cotangent, wT , yielding wTJ , by computing a sequence cotangent-Jacobian products.

Hence, in the case of the embedded Laplace approximation, where

K : φ → K

Rp → R(n+1)n/2

is an intermediate function, we do not need to explicitly compute ∂K/∂φ but only wT∂K/∂φ
for the appropriate cotangent vector. This type of reasoning plays a key role when differentiating
functionals of implicit functions – for example, probability densities that depend on solutions to
ordinary differential equations – and leads to so-called adjoint methods [e.g. 7].

B.2 Derivation of the adjoint method

In this section we provide a proof of theorem 1. As a starting point, assume algorithm 1 is valid.
The proof can be found in Rasmussen and Williams [14, chapter 5]. The key observation is that all
operations performed on

∂K

∂φj
are linear. Algorithm 1 produces a map

Z : ∂K/∂φj → ∂

∂φj
π(y | φ)

: Rn×n → R,
and constructs the gradient one element at a time. By linearity,

∂

∂φj
Z(K) = Z

(
∂K

∂φj

)
.

2



Algorithm B Gradient of the approximate marginal log density, log πG(y | φ), with respect to the
hyperparameters, φ, using reverse mode automatic differentiation

input: y, φ, π(y | θ, φ)
2: Do lines 2 - 6 of Algorithm 2.

Initiate an expression tree for automatic differentiation with φv = φ.
4: Kv = K(φv)
z = Z(Kv)

6: Do a reverse-sweep over z to obtain∇φ log π(y | φ).
return: ∇φ log π(y | φ).

Thus an alternative approach to compute the gradient is to calculate the scalar Z(K) and then use a
single reverse mode sweep of automatic differentiation, noting that Z is an analytical function. This
produces Algorithm B. At this point, the most important is done in order to achieve scalability: we
no longer explicitly compute ∂K/∂φ and are using a single reverse mode sweep.

Automatic differentiation, for all its relatively cheap cost, still incurs some overhead cost. Hence,
where possible, we still want to use analytical results to compute derivatives. In particular, we can
analytically work out the cotangent

wT :=
∂z

∂K
.

For the following calculations, we use a lower case, kij and rij , to denote the (ij)th element
respectively of the matrices K and R.

Consider
Z(K) = s1 + sT2 s3,

where, unlike in Algorithm 1, s1 and s3 are now computed using K, not ∂K/∂φj . We have

s1 =
1

2
aTKa− 1

2
tr(RK).

Then

∂

∂ki′j′
aTKa =

∂

∂ki′j′

∑
i

∑
j

aikijaj = ai′aj′ ,

and

∂

∂ki′j′
tr(RK) =

∂

∂ki′j′

∑
l

rilkli = rj′i′ .

Thus

∂s1
∂K

=
1

2
aaT − 1

2
RT .

For convenience, denote l = ∇θ log π(y | θ, φ). We then have

b = Kl,

s3 = b− K̃Rb = (I − K̃R)b,

where K̃ = K, but is maintained fixed, meaning we do not propagate derivatives through it. Let
Ã = I − K̃R and let ãij denote the (i, j)th element of Ã. Then

sT2 s3 =
∑
i

(s2)i

∑
j

ãij
∑
m

kjmlm

 .

Thus

∂

∂ki′j′
sT2 s3 =

∑
i

(s2)iãii′ lj′ = lj′
∑
i

(s2)iãii′ ,

3



where the sum term is the (i′)th element of Ãs2. The above expression then becomes

∂

∂K
sT2 s3 = Ãs2l

T = s2l
T −KRs2lT .

Combining the derivative for s1 and sT2 s3 we obtain

wT =
1

2
aaT − 1

2
R+ (s2 +RKs2)[∇θ log π(y | θ, φ)]T ,

as prescribed by Theorem 1. This result is general, in the sense that it applies to any covariance matrix,
K, and likelihood, π(y | θ, φ). Our preliminary experiments, on the SKIM, found that incorporating
the analytical cotangent, wT, approximately doubles the differentiation speed.

C Computer code

The code used in this work is open source and detailed in this section.

C.1 Prototype Stan code

The Stan language allows users to specify the joint log density of their model. This is done by
incrementing the variable target. We add a suite of functions, which return the approximate log
marginal density, log πG(y | φ). Hence, the user can specify the log joint distribution by incrementing
target with log πG(y | φ) and the prior log π(φ). A call to the approximate marginal density looks
as follows:

target +=
laplace_marginal_*_lpmf (y | n, K, phi , x, delta ,

delta_int , theta0);

The * specifies the obervation model, typically a distribution and a link function, for example
bernoulli_logit or poisson_log. The suffix lpmf is used in Stan to denote a log posterior mass
function. y and n are sufficient statistics for the latent Gaussian variable, θ; K is a function that takes
in arguments phi, x, delta, and delta_int and returns the covariance matrix; and theta0 is the
initial guess for the Newton solver, which seeks the mode of π(θ | φ, y). Moreover, we have

• y: a vector containing the sum of counts/successes for each element of θ,

• n: a vector with the number of observation for each element of θ,

• K: a function defined in the functions block, with the signature (vector, data matrix,
data real[], data int[]) ==> matrix. Note that only the first argument may be
used to pass variables which depend on model parameters, and through which we propagate
derivatives. The term data means an argument may not depend on model parameters.

• phi: the vector of hyperparameters,

• x: a matrix of data. For Gaussian processes, this is the coordinates, and for the general linear
regression, the design matrix,

• delta: additional real data,

• delta_int: additional integer data,

• theta0: a vector of initial guess for the Newton solver.

It is also possible to specify the tolerance of the Newton solver. This structure is consistent with other
higher-order functions in Stan, such as the algebraic solver and the ordinary differential equation
solvers. It gives users flexibility when specifying K, but we recognize it is cumbersome. One item
on our to-do list is to use variadic arguments, which remove the constraints on the signature of K, and
allows users to pass any combination of arguments to K through laplace_marignal_*_lpmf.

For each observation model, we implement a corresponding random number generating function,
with a call

4



theta = laplace_marginal_*_rng (y, n, K, phi , x, delta ,
delta_int , theta0);

This generates a random sample from πG(θ | y, φ). This function can be used in the generated
quantities blocks and is called only once per iteration – in contrast with the target function which
is called and differentiated once per integration step of HMC. Moreover the cost of generating θ is
negligible next to the cost evaluating and differentiating log π(y | φ) multiple times per iteration.

The interested reader may find a notebook with demo code, including R scripts and Stan files, at
https://github.com/charlesm93/StanCon2020, as part of the 2020 Stan Conference [11].

C.2 C++ code

We incorporate the Laplace suite of functions inside the Stan-math library, a C++ library for automatic
differentiation [4]. The library is open source and available on GitHub, https://github.com/
stan-dev/math. Our most recent prototype exists on the branch try-laplace_approximation21.
The code is structured around a main function

laplace_approximation (likelihood , K_functor , phi , x, delta ,
delta_int , theta0);

with

• likelihood: a class constructed using y and n, which returns the log density, as well as
its first, second, and third order derivatives.

• K_functor: a functor that computes the covariance matrix, K

• ...: the remaining arguments are as previously described.

A user can specify a new likelihood by creating the corresponding class, meaning the C++ code is
expandable.

To expose the code to the Stan language, we use Stan’s new OCaml transpiler, stanc3, https:
//github.com/stan-dev/stanc3 and again the branch try-laplace_approximation2.

Important note: the code is prototypical and currently not merged into Stan’s release or development
branch.

C.3 Code for the computer experiment

The code is available on the GitHub public repository, https://github.com/charlems93/
laplace_manuscript.

We make use of two new prototype packages: CmdStanR (https://mc-stan.org/cmdstanr/)
and posterior (https://github.com/jgabry/posterior).

D Tuning dynamic Hamiltonian Monte Carlo

In this article, we use the dynamic Hamiltonian Monte Carlo sampler described by Betancourt [2]
and implemented in Stan. This algorithm builds on the No-U Turn Sampler by Hoffman and Gelman
[8], which adaptively tunes the sampler during a warmup phase. Hence for most problems, the
user does not need to worry about tuning parameters. However, the models presented in this article
are challenging and the sampler requires careful tuning, if we do not use the embedded Laplace
approximation.

The main parameter we tweak is the target acceptance rate, δa. To run HMC, we need to numerically
compute physical trajectories across the parameter space by solving the system of differential

1Our first prototype is was on the branch try-laplace_approximation, and was used to conduct the here
presented computer experiment. The new branch modifies the functions’ signatures to be more consistent with
the Stan language. In this Supplement, we present the new signatures.

5

https://github.com/charlesm93/StanCon2020
https://github.com/stan-dev/math
https://github.com/stan-dev/math
https://github.com/stan-dev/stanc3
https://github.com/stan-dev/stanc3
https://github.com/charlems93/laplace_manuscript
https://github.com/charlems93/laplace_manuscript
https://mc-stan.org/cmdstanr/
https://github.com/jgabry/posterior


equations prescribed by Hamilton’s equations of motion. We do this using a numerical integrator. A
small step size, δ, makes the integrator more precise but generates smaller trajectories, which leads to
a less efficient exploration of the parameter space. When we introduce too much numerical error, the
proposed trajectory is rejected. Adapt delta, δa ∈ (0, 1), sets the target acceptance rate of proposed
trajectories. During the warmup, the sampler adjusts δ to meet this target. For well-behaved problems,
the optimal value of δa is 0.8 [3].

It should be noted that the algorithm does not necessarily achieve the target set by δa during the
warmup. One approach to remedy this issue is to extend the warmup phase; specifically the final
fast adaptation interval or term buffer [see 8, 15]. By default, the term buffer runs for 50 iterations
(when running a warmup for 1,000 iterations). Still, making the term buffer longer does not guarantee
the sampler attains the target δa. There exist other ways of tuning the algorithm, but at this points,
the technical burden on the user is already significant. What is more, probing how well the tuning
parameters work usually requires running the model for many iterations.

E Automatic differentiation variational inference

ADVI automatically derives a variational inference algorithm, based on a user specified log joint
density. Hence we can use the same Stan file we used for full HMC and, with the appropriate
call, run ADVI instead of MCMC. The idea behind ADVI is to approximate the posterior over the
unconstrained space using a Gaussian distribution, either with a diagonal covariance matrix – leading
to a mean-field approximation – or with a full rank covariance matrix. The details of this procedure
are described in [10]. Compared to full HMC, ADVI can be much faster, but in general it is difficult
to assess how well the variational approximation describes the target posterior distribution without
using an expensive benchmark [17, 9]. Furthermore, it can be challenging to assess the convergence
of ADVI [6].

To run ADVI, we use the Stan file with which we ran full HMC. We depart from the default tuning
parameters by decreasing the learning rate η to 0.1, adjusting the tolerance, rel_tol_obj, and
increasing the maximum number of iterations to 100,000. Our goal is to improve the accuracy of the
optimizer as much as possible, while insuring that convergence is reached.

We compare the samples drawn from the variational approximation to samples drawn from full HMC
in Figures A, B and C. For the studied examples, we find the approximation to be not very satisfactory,
either because it underestimates the posterior variance, does not capture the skewness of the posterior
distribution, or returns a unimodal approximation when in fact the posterior density is multimodal.
These are all features which cannot be captured by a Gaussian over the unconstrained scale. Naturally,
a different choice for Q could lead to better inference. Using a custom VI algorithm is however
challenging, as we need to derive a useful variational family and hand-code the inference algorithm,
rather than rely on the implementation in a probabilistic programming language.

F Model details

We review the models used in our computer experiments and point the readers to the relevant
references.

F.1 Disease map

The disease map uses a Gaussian process with an exponentiated squared kernel,

k(xi, xj) = α2 exp

(
− (xi − xj)T (xi − xj)

ρ2

)
.

The full latent Gaussian model is

ρ ∼ invGamma(aρ, bρ),

α ∼ invGamma(aα, bα),

θ ∼ Normal(0,K(α, ρ, x)),

yi ∼ Poisson(yiee
θi),

6



α ρ θ1 θ2

0.5 1.0 1.5 2.0 0 50 100 150 −0.20 −0.15 −0.10 −0.05 0.00 0.0 0.1 0.2 0.3 0.4
0

100

200

300

0

100

200

300

0

200

400

600

0

200

400

600

value

co
un

t (full) HMC
ADVI

Figure A: Samples obtained with full HMC and sampling from the variational approximation produced
by ADVI when fitting the disease map. Unlike the embedded Laplace approximation, ADVI strongly
disagrees with full HMC.

where we put an inverse-Gamma prior on ρ and α.

When using full HMC, we construct a Markov chain over the joint parameter space (α, ρ, θ). To avoid
Neal’s infamous funnel [12] and improve the geometry of the posterior distribution, it is possible to
use a non-centered parameterization:

(ρ, α) ∼ π(ρ, α),

z ∼ Normal(0, In×n),

L = Cholesky decompose(K),

θ = Lz,

yi ∼ Poisson(yiee
θi).

The Markov chain now explores the joint space of (α, ρ, z) and the θ’s are generated by transforming
the z’s. With the embedded Laplace approximation, the Markov chain only explores the joint space
(α, ρ).

To run ADVI, we use the same Stan file as for full HMC and set tol_rel_obj to 0.005.

F.2 Regularized horseshoe prior

The horseshoe prior [5] is a sparsity inducing prior that introduces a global shrinkage parameter, τ ,
and a local shrinkage parameter, λi for each covariate slope, βi. This prior operates a soft variable
selection, effectively favoring βi ≈ 0 or βi ≈ β̂i, where β̂i is the maximum likelihood estimator.
Piironen and Vehtari [13] add another prior to regularize unshrunk βs, Normal(0, c2), effectively
operating a “soft-truncation” of the extreme tails.

F.2.1 Details on the prior

For computational stability, the model is parameterized using caux, rather than c, where

c = sslab
√
caux

with sslab the slab scale. The hyperparameter is φ = (τ, caux, λ) and the prior

λi ∼ Studentt(νlocal, 0, 1),

τ ∼ Studentt(νglobal, 0, sglobal),

caux ∼ invΓ(sdf/2, sdf/2),

β0 ∼ Normal(0, c20).

The prior on λ independently applies to each element, λi.

Following the recommendation by Piironen and Vehtari [13], we set the variables of the priors as
follows. Let p be the number of covariates and n the number of observations. Additionally, let p0 be
the expected number of relevant covariates – note this number does not strictly enforce the number of
unregularized βs, because the priors have heavy enough tails that we can depart from p0. For the

7



prostate data, we set p0 = 5. Then

sglobal =
p0√

n(p− p0)
,

νlocal = 1,

νglobal = 1,

sslab = 2,

sdf = 100,

c0 = 5.

Next we construct the prior on β,

βi ∼ Normal(0, τ2λ̃2i ),

where

λ̃2i =
c2λ2i

c2 + τ2λ2i
.

F.2.2 Formulations of the data generating process

The data generating process is

φ ∼ π(φ),

β0 ∼ Normal(0, c20),

β ∼ Normal(0,Σ(φ)),

y ∼ Bernoulli_logit(β0 +Xβ),

or, equivalently,

φ ∼ π(φ),

θ ∼ Normal(0, c20In×n +XΣ(φ)XT ),

y ∼ Bernoulli_logit(θ).

For full HMC, we use a non-centered parameterization of the first formulation, much like we did
for the disease map. The embedded Laplace approximation, as currently implemented, requires the
second formulation, which is mathematically more convenient but comes at the cost of evaluating
and differentiating K = c2In×n +XΣ(φ)XT . In this scenario, the main benefit of the Laplace
approximation is not an immediate speed-up but an improved posterior geometry, due to marginalizing
θ (and thus implicitly β and β0) out. This means we do not need to fine tune the sampler.

F.2.3 Fitting the model with full HMC

This section describes how to tune full HMC to fit the model at hand. Some of the details may be
cumbersome to the reader. But the takeaway is simple: tuning the algorithm is hard and can be a real
burden for the modeler.

Using a non-centered parameterization and with Stan’s default parameters, we obtain ∼150 divergent
transitions2. We increase the target acceptance rate to δa = 0.99 but find the sampler now produces
186 divergent transitions. A closer inspection reveals the divergences all come from a single chain,
which also has a larger adapted step size, δ. The problematic chain also fails to achieve the target
acceptance rate. These results are shown in Table 1. From this, it seems increasing δa yet again may
not provide any benefits. Instead we increase the term buffer from 50 iterations to 350 iterations.
With this setup, we however obtain divergent transitions across all chains.

This outcome indicates the chains are relatively unstable and emphasizes how difficult it is, for this
type of model and data, to come up with the right tuning parameters. With δa = 0.999 and the
extended term buffer we observe 13 divergent transitions. It is possible this result is the product of
luck, rather than better tuning parameters. To be clear, we do not claim we found the optimal model
parameterization and tuning parameters. There is however, to our knowledge, no straightforward way
to do so.

2To be precise, we here did a preliminary run using 4000 sampling iterations and obtained 50 divergent
transitions (so an expected 150 over 12000 sampling iterations).

8



Table 1: Adapted tuning parameters across 4 Markov chains with δa = 0.99.

Chain Step size Acceptance rate Divergences

1 0.0065 0.99 0

2 0.0084 0.90 186

3 0.0052 0.99 0

4 0.0061 0.99 0

logcaux logλ1816 logλ2586 logτ

−0.50 −0.25 0.00 0.25 0.50 −5 0 5 10 0 10 −10 −5 0 5
0

2000

4000

0

500

1000

1500

2000

2500

0

500

1000

1500

2000

0

500

1000

value

co
un

t (full) HMC
ADVI

Figure B: Samples obtained with full HMC and sampling from the variational approximation produced
by ADVI when fitting a general linear model with a regularized horseshoe prior.

F.2.4 Fitting the model with the embedded Laplace approximation

Running the algorithm with Stan’s default tuning parameters produces 0 divergent transitions over
12,000 sampling iterations.

F.2.5 Fitting the model with ADVI

To run ADVI, we use the same Stan file as for full HMC and set tol_rel_obj to 0.005.

The family of distribution, Q, over which ADVI optimizes requires the exact posterior distribution
to be unimodal over the unconstrained scale. This is a crucial limitation in the studied example,
as shown in Figure B. This notably affects our ability to select relevant covariates using the 90th

posterior quantile. When examining the top six selected covariates (Table 1 in the main text), we find
the result from ADVI to be in disagreement with full HMC and the embedded Laplace approximation.
In particular, λ2586 which corresponds, according to our other inference methods, to the most relevant
covariate, has a relatively low 90th quantile. This is because ADVI only approximates the smaller
mode of π(λ2586 | y). Our results are consistent with the work by Yao et al. [17], who examine
ADVI on a similar problem.

F.3 Sparse kernel interaction model

SKIM, developed by Agrawal et al. [1], extends the model of Piironen and Vehtari [13] by accounting
for pairwise interaction effects between covariates. The generative model shown below uses the
notation in F.2 instead of that in Appendix D of Agrawal et al. [1]:

χ ∼ invΓ(sdf/2, sdf/2),

η2 =
τ2

c2
χ,

βi | τ, λ̃ ∼ Normal(0, τ2λ̃2i ),

βj | τ, λ̃ ∼ Normal(0, τ2λ̃2i ),

βij | η2, λ̃ ∼ Normal(0, η22λ̃
2
i λ̃

2
j ),

β0 | c20 ∼ Normal(0, c20),

where βi and βij are the main and pairwise effects for covariates xi and xixj , respectively, and τ , λ̃,
c0 are defined in F.2.

9



logcaux logλ2581 logλ2586 logτ logχ

−0.4 0.0 0.4 −10 −5 0 5 10 0 4 8 12 16 −2.5 0.0 2.5 5.0 −0.50 −0.25 0.00 0.25 0.50
0

500

1000

0

1000

2000

0

1000

2000

0

500

1000

1500

2000

2500

0

500

1000

1500

value

co
un

t

(full) HMC
ADVI

Figure C: Samples obtained with full HMC and sampling from the variational approximation produced
by ADVI when fitting the SKIM.

Instead of sampling {βi}pi=1 and {βij}pi,j=1, which takes at least O(p2) time per iteration to store
and compute, Agrawal et al. [1] marginalize out all the regression coefficients, only sampling (τ, ξ, λ̃)
via MCMC. Through a kernel trick and a Gaussian process re-parameterization of the model, this
marginalization takes O(p) time instead of O(p2). The Gaussian process covariance matrix K
induced by SKIM is provided below:

K1 = x diag(λ̃2) xT ,

K2 = [x ◦ x] diag(λ̃2) [x ◦ x]T ,

where “◦” denotes the element-wise Hadamard product. Finally,

K =
1

2
η22(K1 + 1) ◦ (K1 + 1)− 1

2
η22K2 − (τ2 − η22)K1

+c20 −
1

2
η22 .

References
[1] R. Agrawal, J. H. Huggins, B. Trippe, and T. Broderick. The Kernel interaction trick: Fast

Bayesian discovery of pairwise interactions in high dimensions. Proceedings of the 36th
International Conference on Machine Learning, 97, April 2019.

[2] M. Betancourt. A conceptual introduction to Hamiltonian Monte Carlo. arXiv:1701.02434v1,
2018.

[3] M. Betancourt, S. Byrne, and M. Girolami. Optimizing the integrator step size of Hamiltonian
Monte Carlo. arXiv:1411.6669, 2015.

[4] B. Carpenter, M. D. Hoffman, M. A. Brubaker, D. Lee, P. Li, and M. J. Betancourt. The Stan
math library: Reverse-mode automatic differentiation in C++. arXiv 1509.07164., 2015.

[5] C. M. Carvalho, N. G. Polson, and J. G. Scott. The Horseshoe estimator for sparse signals.
Biometrika, 97(2):465–480, 2010. ISSN 00063444. doi: 10.1093/biomet/asq017.

[6] A. K. Dhaka, A. Catalina, M. R. Andersen, M. Magnusson, J. H. Huggins, and A. Vehtari.
Robust, accurate stochastic optimization for variational inference. In Advances in Neural
Information Processing Systems 34, page to appear. 2020.

[7] M. Errico. What is an adjoint model? Bulletin of the American Meteorological Society, 78:2577
– 2591, 1997.

[8] M. D. Hoffman and A. Gelman. The No-U-Turn Sampler: Adaptively setting path lengths in
Hamiltonian Monte Carlo. Journal of Machine Learning Research, 15:1593–1623, April 2014.

[9] J. Huggins, M. Kasprzak, T. Campbell, and T. Broderick. Validated variational inference
via practical posterior error bounds. volume 108 of Proceedings of Machine Learning Re-
search, pages 1792–1802, Online, 26–28 Aug 2020. PMLR. URL http://proceedings.
mlr.press/v108/huggins20a.html.

[10] A. Kucukelbir, D. Tran, R. Ranganath, A. Gelman, and D. Blei. Automatic differentiation
variational inference. Journal of machine learning research, 18:1 – 45, 2017.

10

http://proceedings.mlr.press/v108/huggins20a.html
http://proceedings.mlr.press/v108/huggins20a.html


[11] C. C. Margossian, A. Vehtari, D. Simpson, and R. Agrawal. Approximate bayesian inference
for latent gaussian models in stan. In StanCon 2020, 2020. URL https://github.com/
charlesm93/StanCon2020.

[12] R. M. Neal. Slice sampling. Annals of statistics, 31:705 – 767, 2003.
[13] J. Piironen and A. Vehtari. Sparsity information and regularization in the horseshoe and other

shrinkage priors. Electronic Journal of Statistics, 11:5018–5051, 2017.
[14] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. The MIT

Press, 2006.
[15] Stan development team. Stan reference manual. 2020. URL https://mc-stan.org/docs/

2_22/reference-manual/.
[16] J. Vanhatalo, J. Riihimäki, J. Hartikainen, P. Jylänki, V. Tolvanen, and A. Vehtari. GPstuff:

Bayesian modeling with Gaussian processes. Journal of Machine Learning Research, 14:
1175–1179, 2013.

[17] Y. Yao, A. Vehtari, D. Simpson, and A. Gelman. Yes, but did it work?: Evaluating variational
inference. volume 80 of Proceedings of Machine Learning Research, pages 5581–5590. PMLR,
2018.

11

https://github.com/charlesm93/StanCon2020
https://github.com/charlesm93/StanCon2020
https://mc-stan.org/docs/2_22/reference-manual/
https://mc-stan.org/docs/2_22/reference-manual/

	Newton solver for the embedded Laplace approximation
	Building the adjoint method
	Automatic differentiation
	Derivation of the adjoint method

	Computer code
	Prototype Stan code
	C++ code
	Code for the computer experiment

	Tuning dynamic Hamiltonian Monte Carlo
	Automatic differentiation variational inference
	Model details
	Disease map
	Regularized horseshoe prior
	Details on the prior
	Formulations of the data generating process
	Fitting the model with full HMC
	Fitting the model with the embedded Laplace approximation
	Fitting the model with ADVI

	Sparse kernel interaction model


