- We thank all reviewers for their insightful suggestions. In the following, we address all the questions in order.
- R1: "direct connection" This is an interesting question! We do not think that Assumption 1 will have a direct relation 2
- in terms of Lipschitz smoothness (which is an extremely local property). For example, to infer the performance of π
- on M_k , no additional information is gained by knowing performances of π on MDPs $\{M_i\}_{i=1}^{k-2}$ when the Lipschitz constraint and the performance of a policy on MDP M_{k-1} are known. This is unlike our assumption, where data from
- the past MDPs $\{M_i\}_{i=1}^{k-1}$ can be informative towards inferring the performance of a policy on M_k .
- "data/split", "highest lower" We will clarify that our consideration of the lower bound for optimization was based on
- similar techniques used in the literature [12, 21, 52], and is not a primary contribution of our work. In Table 1, we 8
- provide an ablation study for RecoSys, for all the speeds (0, 1, 2, 3). All other experimental details are the same as in 9
- Appendix E.3, except for (iv), where mean performance is optimized for instead of the lower bound. It can be seen that 10
- the safety violation rate of SPIN is robust against such hyper-parameter changes. Although, it is worth noting that too 11
- small a test-set can make it harder to pass the safety-test for executing a $\pi_c \neq \pi^{\text{safe}}$, hence performance improvement is
- marginally low in (i). Thank you for suggesting these experiments to improve the paper, we will include these results in 13 the appendix. 14
- "without striving for safety?" If the safety check procedure for a policy's performance on a non-stationary MDP (which 15
- is one of the primary contributions of our work) is removed, then the results can be catastrophic, as can be seen in (v). 16
- "wild bootstrap" Time series literature is vast and it is not obvious to us which other method would be more suitable 17 to address the challenges mentioned in Lines 147-156. A detailed discussion is provided in Appendix C.2 and C.3 18
- regarding why several popular techniques would be ill-suited. 19
- "lifelong", "zero-shot", "safe imitation" Thank you for pointing these out. We will discuss these in the main paper. 20
- "credit Assumption 1" While we did formalize the implicit assumption made by [51] in the context of reinforcement 21 learning, this type of assumption is popular in time series literature [6]. We will discuss this in the paper.

		train-test	0	1	2	3	0	1	2	3
(i)	SPIN	75%-25%	.56	.22	.17	.14	0.0	3.6	5.1	5.4
(ii)	SPIN	25%-75%	.48	.29	.21	.19	0.0	4.6	6.5	7.0
(iii)	SPIN (Fig. 4)	50%-50%	.62	.28	.21	.18	0.0	4.7	6.4	6.6
(iv)	SPIN-mean	50%-50%	.70	.28	.24	.19	0.2	4.9	6.3	7.1
(v)	Non-stationary + No safety	100%-0%	.73	.22	.16	.19	9.4	37.6	40.2	38.6
(vi)	Stationary + Safety (Fig. 4)	50%-50%	.85	.12	.07	.07	0.0	19.8	15.3	11.9

Table 1: (Left) Algorithm. (Middle) Improvement over π^{safe} . (Right) Safety violation percentage.

R2: Thank you for your support!

23

R3: "underlying linear model"- We will clarify this point of confusion in the paper. Yes, Assumption 1 requires the 24 trend (policy's performance over time) to be a linear function of the features, ϕ , which are known ahead of time. We 25 will state this explicitly in the paper, while reminding readers that this allows for non-linear functions when ϕ are 26 non-linear. Additionally, we will discuss the flexibility offered by the Fourier basis for modeling a wide-class of trends 27 [6], and emphasize Lines 271–274 to indicate that our experimental section also includes a domain (Diabetes treatment) 28 where Assumption 1 is violated. 29

"explain the key differences" - We will clarify lines 57–60 to highlight that our paper extends prior work [8,51] to 30 quantify uncertainty about a policy's future performance and to provide safety guarantees. 31

"conservative bandit exploration" - Thank you for pointing this out. We will include this in the main paper. 32

R4: "how many real world problems would satisfy these properties" - This is a good point: We should have, and will, discuss around Lines 345-347 how a practitioner can or should apply our method. Like any time-series 34 forecasting problem, before applying our method goodness-of-fit tests [10] can be used by practitioners to check 35 whether Assumption 1 is reasonable. For example, notice that Fig. 5 in [51] shows that this assumption is reasonable for 36 a real digital marketing dataset. Furthermore, we will discuss how this is at least a step in the right direction: standard 37 methods that make stationarity assumptions correspond to our method with $\phi(s) = [1]$ always (fitting a horizontal line). 38 Even if Assumption 1 is not satisfied exactly, if the trend has an overall pattern, it is likely better to account for this 39 overall pattern than to resort back to standard methods (fitting a horizontal line).

- "algorithm would have helped" Due to space constraints, the algorithm was deferred to Appendix D.
- "pseudo samples fail", "How much data is necessary"- These are great questions! Unfortunately, there is no exact 42 answer. Bootstrap methods provide approximate bounds and their failure rate is typically of the order $O(n^{-p/2})$, where
- $p \in [1,3]$ and n is the number of samples. Lines 662–668 in the appendix provide a more detailed discussion.