
We thank the reviewers for their insightful comments. We first address the major concerns raised by the reviewers,1

followed by their minor questions/ comments. We shall incorporate their suggestions into the paper.2
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Fig(Rebuttal): Growth of regularizers w.r.t logits.

[R1 & R4] Justification of sigmoid (logistic) function in proposed3

regularizer (Eq 9, 10). By limiting logits, zc to values that are (ap-4

proximately) greater than 5 for in-domain examples, and less than5

-5 for OOD examples, we would have the desirable sharp uni-modal6

or multi-modal Dirichlet distributions respectively, maximizing their7

representation gaps (recall Fig 1; paper). Beyond these values, the8

cross-entropy loss should be the dominant term in the loss function to9

improve classification accuracy. The use of sigmoid function in our regularizer satisfies this condition by providing an10

implicit upper (lower) bounds on the concentration parameters for in-domain (OOD) examples (see Fig(Rebuttal)(a)).11

In contrast, using the precision, α0 =
∑

c exp zc(x) as the regularizer leads to large logit values for in-domain examples12

(see Fig(Rebuttal)(b)). However, it makes the cross-entropy loss term negligible (Eq. 9), leading to degrading the13

in-domain classification accuracy. Further exp zc(x) is not a symmetric function. Hence, it does not equally constrain14

the network to produce small fractional concentration parameters (i.e αc = exp zc(x) → 0) for OOD examples,15

that leads to the desired multi-modal Dirichlet distributions (Fig 1d; paper). Moreover, in practice the choice of16 ∑
c exp zc(x) (or

∑
c zc(x)) leads the training loss to NaN.17

[R2 & R4] "Sometimes have a significant drop" in misclassification detection Table 2. Table 2 presents the AUPR18

scores for misclassification detection. However, AUPR may not be an ideal metric for comparison, as it greatly depends19

on the base rates i.e no. of misclassifications vs correct predictions (see accuracy vs. AUPR scores in Appendix Table20

8) [1]. We instead recommend comparing the AUROC scores in Table 8 (appendix), where we achieve comparable21

scores with the other non-ensemble based OOD models. Further, DPN is consistent with Bayesian ensemble techniques22

(Eq 2, without marginalizing θ; Lines [107-115]), which would further improve the misclassification detection task.23

Table (Rebuttal) gives the comparison of root mean square calibration error (RMS)
C10 C100 TIM

Baseline 16.2±0.0 6.6±0.3 5.2±0.0

MCDP 15.7±0.1 6.7±0.0 5.3±0.2

DE 16.1±NA 6.8±NA 6.2±NA

EDL 15.5±0.1 10.1±0.4 10.3±0.4

OE 6.4±0.4 3.8±0.1 4.2±0.1

DPNrev 9.2±0.4 10.4±0.1 7.2±0.5

DPN+ 6.3±0.3 4.3±0.0 2.8±0.3

DPN− 6.5±0.2 3.5±0.1 2.7±0.3

Table(Rebuttal): Root mean
square calibration error

24

using the same experimental setup as Hendrycks et al [1]. We achieve simi-25

lar performances as non-Bayesian OE [1], and better results for C100 and TIM.26

Our proposed regularizer scales up (or down) the concentration parameters, αc =27

exp zc(x) for in-domain (OOD) examples, without disturbing their relative values i.e28

exp zc(x)/
∑

c exp zc(x)
(
= p(ωc|x∗, D); the predictive categorical

)
. Hence, it does not29

lead to over-confidence for in-distribution examples.30

Finally, our proposed maximizes the representation gap between in-domain and OODs31

to confidently determine the source of uncertainty and improves the OOD detection32

performance. Maximizing the gap between in-domain correct predictions and misclassifications is an important and33

interesting problem for future research.34

Reviewer 1: Eq. 12: First term is an expectation on joint dist. P̃T (x, y) where x and y are continuous and discrete35

random variables. Denoting sigmoid (logistic) function as σ (apply p(x, y) = p(y|x)p(x) followed by rearranging):36
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Deep ensemble (DE) results and In-domain accuracy are included in Appendix Table 8-12 and Table 8. We have also37

included the results for EDL in Table (Rebuttal) and shall include their remaining results in our main paper.38

Reviewer 2: Fig 5: We normalized the scores for better visualization.39

Detecting distributional shift across non-semantic factors can be useful for in-distribution generalization on specific40

domains by understanding the limitations of a classifier (Yarin Gal, Ph.D. thesis; 2016).41

Reviewer 3: Q 3.1 Appendix A.2 and B.1 provide additional ablation studies and results on the synthetic dataset for42

Reverse-KL loss to further justify our claims. (Due to space constraints, we could not include them in the main paper.)43

Q 3.2 In Table 1 and 2, OE represents the non-Bayesian model (state-of-the-art) by Hendrycks et al [1].44

Q 3.3 Our C10, C100 and TIM tasks respectively uses CIFAR-10, CIFAR-100 and TinyImageNet with 10, 100 & 20045

classes. Please refer to Appendix Table 7 where we present the experimental setup.46

Reviewer 4: Q4: Dataset with highly different characteristics as OOD training set lead to poor OOD detection47

performance. This is well-studied in (Lee et al., 2018; Hendrycks et al., 2019; Malinin et al., 2019).48

Q5:
∑

c exp(zc(x)) as a uncertainty measure for OE leads to poor OOD detection performances (in most of the cases)49

as it does not control the absolute values of exp zc(x) terms.50

Reference: [1] Deep Anomaly Detection with Outlier Exposure (Hendrycks et al., ICLR 2019)51


