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Abstract

To analyse visual systems, the concept of an ideal observer promises an optimal
response for a given task. Bayesian ideal observers can provide optimal responses
under uncertainty, if they are given the true distributions as input. In visual search
tasks, prior studies have used signal to noise ratio (SNR) or psychophysics ex-
periments to set the distributional parameters for simple targets on backgrounds
with known patterns, however these methods do not easily translate to complex
targets on natural scenes. Here, we develop a model of target detectability in
natural images to estimate the parameters of target-present and target-absent distri-
butions for a visual search task. We present a novel approach for approximating the
foveated detectability of a known target in natural backgrounds based on biological
aspects of human visual system. Our model considers both the uncertainty about
target position and the visual system’s variability due to its reduced performance
in the periphery compared to the fovea. Our automated prediction algorithm uses
trained logistic regression as a post processing phase of a pre-trained deep neural
network. Eye tracking data from 12 observers detecting targets on natural image
backgrounds are used as ground truth to tune foveation parameters and evaluate the
model, using cross-validation. Finally, the model of target detectability is used in a
Bayesian ideal observer model of visual search, and compared to human search
performance.

1 Introduction

Humans have evolved a foveated visual system which, instead of processing an entire view with
uniform resolution, receives higher spatial detail in the centre of the visual field (the fovea). Thus, in
a visual search, the eyes make a series of movements to direct the high-resolution fovea to different
parts of a scene in order to find the target [1]. This process is constrained by limitations of the visual
system, namely lower acuity and degraded ability to resolve feature locations in the visual periphery,
resulting in target location uncertainty [25|3; 4l]. However, most models of human visual search and
attention are based on the concept of saliency [5; 6]]; they do not model target detectability and are not
able to predict optimal eye movement sequences. Similarly, most computer vision object detectors
are based on discriminative models which do not predict target detection uncertainty[7]].

A Bayesian ideal observer makes optimal decisions under uncertainty. Modelling a visual search
task as a Bayesian ideal observer problem [8], we assume that the visual system computes a series
of optimal eye movements that reduces the uncertainty of target location. However, this assumes
that the detectability of the target is known across the visual field. This process has been modeled
for simple targets in noise images, and has been shown to predict human eye movements in these
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search tasks [I8;19; [10]. Various approaches have been proposed for calculating the detectability of
targets in the visual field, often based on signal detection theory or estimated from psychophysical
experiments [[115[12; 13 [14]. However, there has been little work on automatically estimating the
detectability for object targets in natural scenes.

In this paper, we present a novel approach for calculating the foveated detectability of an object target
on natural background images, which can be fed to a Bayesian ideal observer in a visual search task.
Our approach is based on signal detection theory and uses the extracted features of target-absent
and target-present images to estimate the parameters of the probability distributions. Given the
distributions, target detectability is estimated as a measure of the distributions’ discriminability. Our
method uses a logistic regression classifier as a post processing phase of a pre-trained deep neural
network in a pipeline for parameter estimation. Our model is based on biological aspects of the
human visual system and considers both the uncertainty of the target position and the visual system’s
increased uncertainty in the periphery due to its reduced performance. To model the detectability
of targets across different eccentricities, we use a model of feature pooling similar to [[15]. We use
human detection performance to calibrate the rate at which detectability changes with eccentricity
in the model, and compare the resulting ideal observer model of visual search to human search
performance, in a cross-validation design.

2 Related work

In recent years, visual search and fixation prediction models have been widely studied as an approach
to better understand human visual attention and perception [[16;|17]]. Early works in this area were
proposed as extensions of existing saliency maps. Saliency maps model the important locations
in a visual scene which should be processed or searched [18]]. A saliency map can be treated as a
probability map of potential target locations and searched by choosing the next fixation based on next
highest probability [19;20]. However, these models do not model target detectability and are not
able to predict optimal eye movement sequences.

Other visual search models are based on biological aspects of the human visual system, and their
predictions match closely with human eye movements. The authors in [9]] proposed that an ideal
observer, in an effort to find the target, directs their gaze to locations in the scene which will reduce
uncertainty about target location. Statistics of human eye movements have been shown to match
the ideal observer model, assuming that the signal to noise ratio (SNR) of a target to a background
(detectability of the target) is known at all positions in the visual field [9]. Similarly to [9]], which
considers search for sine wave gratings on 1/ f noise, most previous work uses simple targets and
backgrounds for which calculating SNR is straightforward [[115 215 [13]].

However, it is not easy to calculate SNR for complex targets in natural scenes, and thus there is little
prior work attempting to derive models of detectability for such scenarios. Dorronsoro et al. [22]
propose that the detectability of sinusoidal gratings in natural scenes for human observers can be
predicted via separability along the dimensions of contrast and similarity. For the same task, Oluk
and Geisler [23]] considered detectability as a function of local background luminance, contrast and
the background’s cosine similarity to the target. However, there are a large number of features or
statistics of both the background and the target which may affect detectability, and these are not all
easily measurable. Other work on visual search has proposed a number of features which may affect
target detectability such as edge orientations, color, numerosity, and size [24}25]. The list of known
features is not exhaustive and they interact in complex ways, thus it is very difficult to estimate the
detectability of targets on natural images, where the target and background may be similar to, or
different, from each other on a large number of feature dimensions. This observation leads us to try
the deep neural approach outlined in the next section, which can extract high level features.

Another aspect of the human visual system which should be considered in models of visual search
is the effect of target eccentricity (distance from the fovea on the retina) on detectability. The first
models which considered eccentricity assumed that targets were only visible within a specific radius
around the fovea, and invisible outside this range [26]. Later models such as the Area Activation
Model treated the detectability function as a two-dimensional Gaussian with the mean at the fovea
and decreasing with eccentricity [27]. Other works [285|29;30] model the effect of retinal eccentricity
as a loss of spatial resolution and assume that more eccentric targets are less detectable because they
are blurred. However, this is not an accurate model of the fall-off in detectability over eccentricity,
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Figure 1: The overall structure of our proposed pipeline for computing a detectability map for a
known object target on a natural background.

which seems to involve feature compression or feature “crowding”, and not just simple image-level
blur [31]. In this paper we use a model of feature pooling similar to [[155[32;33].

3 Methods

In this section we describe our method for computing detectability of a given target on any natural
background; the ideal observer model that we use for later comparison to human visual search [9];
and the psychophysics experiment that we used to establish ground truth for evaluating the models.

3.1 Proposed model

The architecture of our proposed model is presented in Figure[I] The input to the model is a gray-
scale natural background with size n x n and the output is a detectability map which models an
observer’s ability to discriminate the known target from the given background. The model has
three main components: a Convolutional Neural Network (CNN) for feature extraction; trained
logistic regression classifiers for determining the probability of target presence/absence at various
eccentricities; and a function to combine all of the outputs into a detectability map which also tunes
the parameters of the model to match human detectabilities in this study.

Given that the human visual system has lower spatial resolution at higher eccentricities in the visual
field, it is expected that the probability of target being detected correctly will decrease as the target
occurs at farther eccentricities. Thus, our method for computing the detectability map takes two main
factors into account: i) the discriminability of the feature distributions of the target from the given
target and background; and ii) the target’s distance from the center of fixation.

3.1.1 Calculating distribution discriminability of a known target from a natural background

To calculate the detectability of an object target in a textured natural scene, we approximate the
discriminability of target-present and target-absent distributions [34; [35]]. For this purpose, we
assume that the model uses a sub-optimal target-matched template. Assuming the internal noise and
uncertainty of the model as a Gaussian noise, we can write the template response as a random value
from standard normal distributions with means —d’ /2 if target-absent and +d’/2 if target-present
[12]. In this case, d’ is interpreted as the discriminability of the distributions, which gives us an
estimate of how well separated the two distributions are from each other. d’ can be calculated using
probabilities of hits and false alarms of the model [36]. We calculate these two probabilities using a
classifier which is trained to classify patches as target-present or target-absent.

As shown in Figure[T] the input of the system is any image with size n x n. In potential fixation
locations, patches of the image with size m; x m; (m; < n,i € {1,..5} which represents the
five sample eccentricities used in the paper) are extracted from the image and fed to a pre-trained
convolutional neural network for feature extraction. We use CNNs for feature extraction because
the hierarchical feature representation they learn is analogous to the feed-forward processing in the
human visual system and their representations are more similar to human visual representations than
hand-tuned visual features [37; 38]. We extract features from the last fully connected layer of the
CNN (before the classification layer) to use as the input to our classifier. We use pre-trained weights
(pre-trained on Image-Net [39]]) instead of retraining a CNN to detect the target so that the model



can be easily generalised to any target, and also to reduce the certainty of the model so that it better
resembles a human observer.

The classifier is trained on the texture dataset of Cimpoi et al. [40], using patches of different
backgrounds with and without the target; the dataset consists of 5640 texture images from 47 different
texture categories. In this study the target is a 40 x 40 pixel grey-scale image of a person with a
standing pose (downloaded from a commercial site cutcaster.com), which can be seen in the m; X m;
patches in Figure|l| The training process is supervised; the input is the CNN feature vector for the
patch and the label 1 or O to indicate the presence or absence of the target.

The test backgrounds which were used in the human experiments were not included in this training
set, and they were taken from a different dataset ([41]). The reason for this is to show that our model
is not overfit to the train dataset and can generalize to new datasets.

In order to measure the target’s discriminability (denoted as d’) against a particular background, we
present the classifier with both the background patch with no target, denoted as D (distractor), and a
target-present version of the same patch, denoted as T (target). Choosing a probabilistic classifier
(logistic regression) for this step, the labels are returned with a value which is monotonically related to
probability (using the logistic function which normalized among the two classes so their summation
equals one); the probability of the D patch being predicted as distractor denoted as P(¢|D) and
probability of the T patch being predicted as target denoted as P(¢|7"). In binary classifications, these
two probabilities can be associated with probability of false alarm Py and hit P}, respectively. These
two values correspond with the area under the likelihood curves with variance of 1 and mean of
—d' /2 [36]. Thus, d’ can be calculated by solving the system,

P(T) = (% ~c) "
P(tD) =6 (5 —¢)

where ¢ is the standard normal integral function (cumulative Gaussian) and c is some decision
criterion. Solving Equationfor d' we getd = ¢~ 1(P,) — ¢ (Py). Calculating d’ for every patch
of the image, we get a detectability map as the output of the algorithm (as shown in Figure|[I)).

3.1.2 Modelling eccentricity

The intuition behind our modelling of eccentricity is based on previous work on peripheral visual
processing. It has been shown that in the center of the visual field (fovea), neurons have smaller
receptive fields and are closer together [42; 43]. Farther out in the visual periphery, the number of
neurons decreases and their receptive fields increase in size. This means that in the periphery, each
neuron covers a greater portion of the visual scene and the features are processed in less detail due to
the lower density of neurons. We have modelled this property of the visual system by increasing the
patch size around the target when it appears at greater eccentricity. To approximate the detectability
function, we sample at five eccentricities: 0, 1.8, 3.6, 5.4, and 7.2 degrees from fixation. At each
eccentricity, the classifier is trained with its corresponding patch size (see results section); so we have
different trained classifiers for different eccentricities.

The detectability of the target is calculated for each of the five sample eccentricities based on these
five classifiers (Figure [Z). To obtain a continuous map of detectability, the five points are fit to a
log-linear model d’(r) = ce ™57 where r is the eccentricity in degree of visual angle, « is a constant
representing the foveal threshold of detectability, and f3 is the slope of the log function which controls
the decrease in detectability as a function of eccentricity, which is different for each background.
This function has been used to model detectability reduction as a function of eccentricity in previous
studies [44]. One sample of the detectability map is shown in Figure[T]as the output of the model.

3.2 Visual searcher as a Bayesian ideal observer

Using the detectability maps from the model described in the previous section, we implement an
ideal observer model of visual search, using the approach of Najemnik and Geisler [9].

We assume the target can appear at any of K positions in the image. The observer makes a series of
fixations f € {1,.., F'} while searching for the target. On each fixation, the observer computes the
probability of the target being in each potential target location (k € {1, .., K'}) while fixation is at
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Figure 2: The probability distributions of target-absent and target-present patches become less
discriminable (presented with orange and blue graphs respectively at the panel on the left side of
each box) as the patches sizes increase at the five sample eccentricities (0,1.8,3.6,5.4,7.2 degrees
of visual angel shown with dashed lines). With the taken approach detectability decreases as the
eccentricity increases (presented as the graph at the bottom right of each box); note that the fall-off
rate of detectability is different between the two backgrounds.

location [( f); this probability is integrated over all fixations up until the current fixation F'. Using
Bayes’ rule, the probability of & being the target location as of fixation F' is calculated as in[2][12]:

. F 12
priory, 5y X exp (Zle dk,l(f)WkJ(f))
Py(F) = (2)

K . F
Zj:l prior; gy X €xp (Zf:l d;‘?l(f)wjal(f))

where d;, ) is the detectability measure of location & while fixation is at [( f) and W is a template
response indicating the true location of the target. d), ) of k changes with each fixation based on the
fixation location, while W), remains the same throughout all fixations. The template response W, ;)

is a random value derived from Gaussian distributions with mean 0.5 at target-present locations or
—0.5 at target-absent locations and variance 1/ dfl( p) at all locations. Given Py (F), the next fixation

location, I( f + 1), is chosen to maximize information gain using equation [9ll.

K
I(f 4+ 1) = argmax (Z Pk(F)d;cQ,l(f-irl)) @

I(f+1) k=1

This process continues until a termination criterion is met; e.g., the probability of location ¢ containing
target exceeds a threshold value. The threshold value is arbitrarily set to 0.99 to model observer’s
confidence when target is found. We obtained similar results for threshold values in the range
0.90-0.99. The model does not require a separate inhibition of return mechanism because fixating a
location reduces uncertainty at that location. If a location is fixated and the target isn’t found, the
model’s estimate of the target probability at that location drops. This decreases likelihood of a return
saccade.

3.3 Human data

The psychophysical experiments included two tasks: a detection task, in which the target was
presented on a variety of backgrounds at various eccentricities while the observer fixated at the center
of the screen; and a visual search task in which observers were asked to find the target on various
backgrounds, and could move their gaze naturally.

These experiments were based on those used by Najmenik and Geisler [8]], but used object targets
and natural image backgrounds in place of 1/ f noise. The backgrounds were 18 images from the
ETH dataset [41]. The ETH dataset consists of 21,302 texture samples from different categories. To
choose the 18 backgrounds, we ran the entire dataset through our pipeline to find images with a wide
range of apparent difficulty, resulting in the 18 backgrounds shown in Figure 3] with a variety of low,
medium and high detectabilities, and with a variety of image content and patterns.



Figure 3: The used background images for the experiments chosen from the ETH dataset [41]].
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Figure 4: Probability of correct detection at each location for the 18 backgrounds (orange points).
The green curves are sigmoid fits to the means of the shown data-points.

Textured backgrounds were used instead of natural scenes because they are relatively homogeneous,
so we can expect similar search performance no matter where the target is located in the image;
and because they provide no contextual priors for target location, which may bias search paths [43].
However, the model described here can be extended to natural scenes — a separate detectability can be
computed for each region of a heterogeneous scene, and expected target locations can be incorporated
as a prior in (Equation [2).

Each image was presented at a resolution of 666 x 666 pixels and subtended 15 degrees of visual
angle. The background was randomly cropped from a larger field of texture created through texture
quilting [46]. Images were presented on a 1680 x 1050 pixel LCD screen, on background set to the
mean luminance of the image. The screen width and distance were 48cm and 67cm respectively.

3.3.1 Detection

In the detection task, 12 participants (age range 20 - 40) judged if the target occurred in the first
or second frame in a two-alternative forced choice (2AFC) paradigm. The experimental procedure
received ethics approval from University of Melbourne Human Research Ethics Committee (ID:
1955695). Observers were required to fixate at the center of the display and maintain fixation
throughout each trial. Their fixation was constantly monitored with an eye tracker (Gazepoint Version
2.10.0). If the eye position is moved 0.9 degree from the center of the display during the stimulus
presentation, the trial was discarded and repeated at the end of the session. Each session consisted of
32 repetitions of 18 backgrounds with the target occurring at the same location throughout the session.
Targets were located at one of four positions spaced 1.8 degrees apart on a 45 degree radial from
fixation. To reduce the length of the experiment, we assumed that human foveal detection accuracy is
essentially 100% for these backgrounds and did not test detectability at fixation. Participants were
informed of the target location at the start of each session and were also post-cued by a circle which
appeared around the target for 0.2ms at the end of each trial. The whole experiment consisted of four
sessions (four eccentricities) and each session was around 20 minutes. Each session was preceded by
a short practice session of 20 trials with a sample background, to familiarize the participant with the
target appearance, location, and experiment process.
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Figure 5: Detectability estimates from the model (green curve) and from human observers (orange
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The averaged probability of correct detection across the 12 participants for each background is shown
in Figure l 4] The probab1hty of correct detection p, orrect( ) for each background at eccentricity r is
fit to a sigmoid function as in peorrect(r) = W + 0.5 where p and o are constants that

indicate inflection point and slope of the sigmoid. For a 2AFC, these probabilities must lie in the
range 0.5 to 1. As seen in Figure 4] the sigmoid functions vary over the different backgrounds. The
probability functions show some variety among observers, but they are consistent with previously
reported measurements [47; 48 [12]] in terms of having the highest probability of detection at fovea
(r = 0) and decreasing probability as a function of eccentricity. Background 9, with the lowest y and
o, and Background 11 with highest iz and o have the highest and lowest detectabilities, respectively.
At 1.8 degrees of visual angle, the probability of correctly detecting the target in Background 9 is
high, but it quickly falls to chance at visual angles further than 4 degrees. In contrast, the probability
of detecting the target on Background 11 is high at all tested eccentricities.

3.3.2 Visual search

Due to COVID-19 restrictions, there were only two participants from the detectability task who were
also able to participate in the visual search task. In the visual search task, observers were shown
the 18 backgrounds with the target pasted randomly in one of 84 locations (chose to uniformly tile
a 15-degree circle within the background [12]). Observers were asked to find the target as soon as
possible and press a key when found. Fixations were recorded and the final fixation before pressing
the key was checked against the target location. If the fixation was closer to the target location than
to any other potential target location, the trial was considered a correct detection, otherwise it was
discarded. If the target was not found within 20 seconds, the trial terminated automatically; these
timed-out trials were also discarded. The number of fixations on each search trial were compared to
the predictions of the ideal observer model.

4 Results

We evaluate the performance of our model using different feature representation pipelines to compute
the detectability of the target against each background. The input of the pipeline for the fovea are
224 x 224 pixel target-absent and target-present patches. In target-present images, the target, sized
212 x 212 pixels, is pasted at the center. 100 random crops of the background are used and the results
are averaged to compute the detectability. We ran the experiments on a high performance computing
server with a 16GB V100 GPU, hosted by University of Melbourne [49].

At further eccentricities, the patch size is scaled to [1.4,1.8,2.2,2.4] of its original size at the sample
locations 1.8, 3.6, 5.4, and 7.2 degrees from the fovea. As this scaling is not necessarily equivalent to
the feature pooling in the human visual system, we fit the detectabilities to the human detectabilities
with an appropriate scaling and translation for each background. The formula that we use is
. 2 .
w; = argmin(w;(dar; —b) —dm)*,i € {2,..,5} “4)
w;

in which ¢ iterates over the 5 eccentricities, b and w; are the translation and scaling parameters,
and dj; and dg are the model and human detectabilities respectively. The translation coefficient is
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Figure 6: Number of fixations in the visual search task for the 18 backgrounds. Blue curves represent
the performance of human observers; orange and green curves represent the Bayesian ideal observer
based on human or model detectabilities, respectively.

calculated as b = djs,1 — 3.28 in which dj; ; is the detectability of the model in the fovea and 3.28
is the human detectability at the center for any background. The scaling parameter w; is chosen for
each background by finding the best fit to the other backgrounds in a leave-one-out cross-validation.
The results are shown in Figure[5]

Using peorrect from the human experiments, the ground truth detectability of the target on each
textured background can be calculated using d’(r) = 2®~!(pcorrect(r)) in which ®~1(.) is the
inverse cumulative standard normal distribution. The detectabilities calculated from the human
experiments using the equation above, and the output of our proposed model for the four eccentricities
are shown in Figure [5|using the best feature pipeline from Table [I]

The MSE of the model output compared to the human detectability for different feature representations
and classifiers are shown in Table[I] In addition to features derived from CNNs, we also ran our
model using a simple luminance histogram to represent the target and background, as well as a few
hand-crafted features which have been proposed as analogues to the human visual system [50]. The
classifiers used were logistic regression and MLP (a two-layer neural network).

Features | MSE | SE | Features | MSE | SE

Alexnet + Log. Res. | 0.0978 | 0.0015 || luminance hist. + Log. Res. | 0.3404 | 0.0057
Alexnet + MLP 0.256 | 0.0035 HMAX]51]+ Log. Res. 0.224 | 0.0041
VGG19 + Log. Res. | 0.257 | 0.0033 Textons[52]+ Log. Res. 0.2767 | 0.0036

Table 1: Mean squared error (MSE) and standard error of the mean (SE) of various models for
predicting human detectability (see text).

As can be seen, Alexnet+logistic regression gives the best fit. Alexnet+MLP has a high confidence
classifying the target-present and target-absent images, so causes high detectabilities even for back-
grounds with complicated patterns. The output features of VGG19 [53]], which is a 19-layer CNN,
seem to perform worse than Alexnet. This might be due to VGG19’s deeper structure which results in
higher confidence predictions of the classifier. This causes the model to underestimate the difficulty
of some backgrounds that are difficult for human observers. The results in the table confirm that
for our purpose, simple features such as luminance or oriented filter banks [52]] do not provide a
sufficient representation of the image. More complex features are needed to produce detectability
maps similar to those of humans. HMAX [51]], which mimics the operation of simple and complex
cells in the human visual system, is quite competitive with deeper CNNss.

Finally we use the modeled detectabilities in the Bayesian ideal observer model formulated in
Equation [2]to predict the number of fixations needed to find the target on these backgrounds. Number
of fixations is a measure of search performance which should depend on the detectability of the
target, which in turn is a function of the background and eccentricity. The results of the visual search
algorithm from this simulation compared to the actual number of human fixations from the visual
search experiment are shown in Figure [§] The ideal observer model closely follows the human
observers’ number of fixations; the results from the full model (using model d’ from the feature



pipeline) and an “oracle” model (which uses the human d’ from the detectability task) are similar.
However, human observers perform worse than the ideal observers in some cases, which may be due
to environmental and internal distractions.

5 Conclusion

In this paper, we propose a method for computing a foveated model of detectability for object targets
in natural backgrounds that closely mimics human performance. We use these detectabilities in
a Bayesian ideal observer model of visual search based on [12] and are able to simulate human
search performance. A comparison of different feature pipelines confirms that more complex visual
features, such as those computed by CNNs, are needed to estimate the detectability of objects in
natural images, though deeper CNN architectures are not necessarily better at producing human-like
representations. This work adds to a growing body of literature showing the potential of CNNs to
serve as an approximation of the feed-forward visual processing pipeline in humans, enabling the
development of more sophisticated models of visual attention and fixation control.
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Broader Impact

The work presented in this paper can be used for attention prediction systems. Such systems can be
beneficial for applications such as augmented reality driving aids [54;155]. A foveated detectability
model could effectively model a driver’s visual system and quantitatively measure the detectability of
driving hazards based on the driver’s current gaze. This system could direct attention to locations
with high uncertainty to reduce the possibility of a hazard being missed that is not in the driver’s
fovea. However, attention prediction can also be abused for negative outcomes such as manipulating
attention for advertising. The proposed system is not intended for high risk applications or if applied,
should not have a critical role in them, so the consequences of failure of the system should not be
severely destructive. The proposed model is not leveraging any dataset biases, but the model of
detectability requires training on a large set of backgrounds, so an unrepresentative selection of
backgrounds could produce a wrong model and could potentially limit the results.
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