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Abstract

We establish a new class of minimax prediction error bounds for generalized linear
models. Our bounds significantly improve previous results when the design matrix
is poorly structured, including natural cases where the matrix is wide or does
not have full column rank. Apart from the typical L2 risks, we study a class of
entropic risks which recovers the usual L2 prediction and estimation risks, and
demonstrate that a tight analysis of Fisher information can uncover underlying
structural dependency in terms of the spectrum of the design matrix. The minimax
approach we take differs from the traditional metric entropy approach, and can be
applied to many other settings.

1 Introduction

Throughout, we consider a parametric framework where observations X ∈ Rn are generated
according to X ∼ Pθ, where Pθ denotes a probability measure on a measurable space (X ⊆ Rn,F)
indexed by an underlying parameter θ ∈ Θ ⊂ Rd. For each Pθ, we associate a density f(·; θ) with
respect to an underlying measure λ on (X ,F) according to

dPθ(x) = f(x; θ)dλ(x).

This setup contains a vast array of fundamental applications in machine learning, engineering,
neuroscience, finance, statistics and information theory [1–10]. As examples, mean estimation [1],
covariance and precision matrix estimation [2], phase retrieval [3,4], group or membership testing [5],
pairwise ranking [10], can all be modeled in terms of parametric statistics. The central question to
address in all of these problems is essentially the same: how accurately can we infer the parameter θ
given the observation X?

One of the most popular parameteric families is the exponential family, which captures a rich variety
of parametric models such as binomial, Gaussian, Poisson, etc. Given a parameter η ∈ R, a density
f(·; η) is said to belong to the exponential family if it can be written as

f(x; η) = g(x) exp

(
ηx− Φ(η)

s(σ)

)
. (1)

Here, the parameter η is the natural parameter, g : X ⊆ R→ [0,∞) is the base measure, Φ : R→ R
is the cumulant function, and s(σ) > 0 is a variance parameter. The density f(·; η) is understood to
be on a probability space (X ⊆ R,F) with respect to a dominating σ-finite measure λ.

In this work, we are interested in the following generalized linear model (GLM), where observation
X ∈ Rn is generated according to an exponential family with natural parameter equal to a linear
transformation of the underlying parameter θ. In other words,

f(x; θ) =

n∏
i=1

{
g(xi) exp

(
xi〈mi, θ〉 − Φ(〈mi, θ〉)

s(σ)

)}
, (2)
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for a real parameter θ := (θ1, θ2, . . . , θd) ∈ Rd and a fixed design matrix M ∈ Rn×d, with rows
given by the vectors {mi}ni=1 ⊂ Rd.

The above model assumes each Xi is drawn from its own exponential family, with respective
natural parameters 〈mi, θ〉, i = 1, 2, . . . , n. Evidently, this captures the classical (Gaussian) linear
model X = Mθ + Z, where f(·; θ) is taken to be the usual Gaussian density, and also captures a
much broader class of problems including phase retrieval, matrix recovery and logistic regression.
See [11–13] for history and theory of the generalized linear model.

In order to evaluate the performance of an estimator θ̂ (i.e., a measurable function ofX), it is common
to define a loss function L(·, ·) : Rd × Rd 7−→ R and analyze the loss L(θ, θ̂). A typical figure of
merit is the constrained minimax risk R(M,Θ), defined as

R(M,Θ) := inf
θ̂

sup
θ∈Θ
L(θ, θ̂).

In words, the minimax risk characterizes the worst-case risk under the specified loss L(·, ·) achieved
by the best estimator, with a constraint that θ belongs to a specified parameter space Θ.

Two choices of the loss function L(·, ·) give rise to the usual variants of L2 loss:

1. Estimation loss, where the loss function L(·, ·) is defined as

L1(θ, θ̂) = E‖θ − θ̂‖2 for all θ, θ̂ ∈ Rd. (3)

2. Prediction loss, where the loss function L(·, ·) is defined as

L2(θ, θ̂) =
1

n
E‖Mθ −Mθ̂‖2 for all θ, θ̂ ∈ Rd. (4)

In this work, we shall approach things from an information theoretic viewpoint. In particular, we
will bound minimax risk under entropic loss (closely connected to logarithmic loss in the statistical
learning and information literature, see, e.g., [14–16]), from which L2 estimates will follow. To
start, let us review some of the key definitions in information theory. Suppose the parameter θ ∈ Rd
follows a prior π, a probability measure on Rd having density ψ with respect to Lebesgue measure.
The differential entropy h(θ) corresponding to random variable θ is defined as

h(θ) := −
∫
Rd

ψ(u) logψ(u)du.

Here and throughout, we will take logarithms with respect to the natural base, and assume all entropies
exist (i.e., their defining integrals exist in the Lebesgue sense). The mutual information I(θ;X)
between parameter θ ∼ π and observation X ∼ Pθ is defined as

I(θ;X) :=

∫
Rd

∫
X
f(x; θ) log

f(x; θ)∫
Rd f(x; θ′)dπ(θ′)

dλ(x)dπ(θ).

The conditional entropy is defined as h(θ|X) := h(θ)− I(θ;X). The entropy power of a random
variable U is defined as exp(2h(U)), and for any two random variables U and V with well-defined
conditional entropy, the conditional entropy power is defined similarly as exp(2h(U |V )).

Lower bounds on conditional entropy power can be translated into lower bounds of other losses, via
tools in rate distortion theory [17]. To illustrate this, let’s consider the following two Bayes risks,
with suprema taken over all priors π on the parameter space Θ ⊆ Rd, and infima taken over all valid
estimators θ̂ (i.e., measurable functions of X).

1. Entropic estimation loss, where the Bayes risk is defined as

Re(M,Θ) := inf
θ̂

sup
π

n∑
i=1

exp
(

2h(θi|θ̂i)
)
. (5)

2. Entropic prediction loss, where the Bayes risk is defined as

Rp(M,Θ) := inf
θ̂

sup
π

1

n

n∑
i=1

exp
(

2h(m>i θ|m>i θ̂)
)
. (6)

2



The following simple observation shows that any lower bound derived for the entropic Bayes risks
implies a lower bound on the minimax L2 risks.

Lemma 1. We have inf θ̂ supθ∈Θ L1(θ, θ̂) & Re(M,Θ) and inf θ̂ supθ∈Θ L2(θ, θ̂) & Rp(M,Θ).

Proof. This follows since Gaussians maximize entropy subject to second moment constraints and
conditioning reduces entropy: E(θi−θ̂i)2 ≥ Var(θi−θ̂i) & exp(2h(θi−θ̂i)) & exp(2h(θi|θ̂i)).

Here and onwards, we use “&” (also “.” and “�”) to refer to “≥” (and “≤”, “=”, respectively) up
to constants that do not depend on parameters.

Although we focus on L2 loss in the present work, we remark that minimax bounds on entropic
loss directly yield corresponding estimates on Lp loss using standard arguments involving covering
and packing numbers of Lp spaces. See, for example, the work by Raskutti et al. [18]. Despite
its universal nature, there is relatively limited work on deriving minimax bounds for the entropic
loss. This is the focus of the present work, and as a consequence, we obtain bounds on L2 loss that
significantly improve on prior results when the matrix M is poorly structured.

1.1 Contributions

In this paper, we make three main contributions.

1. First, we establish L2 minimax risk and entropic Bayes risk bounds for the generalized linear
model (2). The generality of the GLM allows us to extend our results to specific instances
of the GLM such as the Gaussian linear model, phase retrieval and matrix recovery.

2. Second, we establish L2 minimax risk and entropic Bayes risk bounds for the Gaussian
linear model. In particular, our bounds are nontrivial for many instances where previous
results fail (for example when M ∈ Rn×d does not have full column rank, including cases
with d > n), and can be naturally applied to the sparse problem where ‖θ‖0 ≤ k. Further,
we show that both our minimax risk and entropic Bayes risk bounds are tight up to constants
and log factors when M is sampled from a Gaussian ensemble.

3. Third, we investigate the L2 minimax risk via the lens of the entropic Bayes risk, and provide
evidence that information theoretic minimax methods can naturally extract dependencies
on the structure of design matrix M via analysis of Fisher information. The techniques we
develop are general and can be used to establish minimax results for other problems.

2 Main Results and Discussion

The following notation is used throughout: upper-case letters (e.g., X , Y ) denote random variables or
matrices, and lower-case letters (e.g., x, y) denote realizations of random variables or vectors. We
use subscript notation vi to denote the i-th component of a vector v = (v1, v2, . . . , vd). We let [k]
denote the set {1, 2, . . . , k}.
We will be making the following assumption.

Assumption: The second derivative of the cumulant function Φ is bounded uniformly by a constant
L > 0: Φ′′(·) ≤ L.

The following lemma characterizes the mean and variance of densities in the exponential family.

Lemma 2 (Page 29, [11]). Any observation X generated according to the exponential family (1) has
mean Φ′(η) and variance s(σ) · Φ′′(η).

In other words, our assumption is equivalent to saying that the variance of each observation
X1, . . . , Xn is bounded. This is a common assumption made in the literature; See, for exam-
ple, [19–22].

Our first main result establishes a minimax prediction lower bound corresponding to the generalized
linear model (2). Let us first make a few definitions. For an n × k matrix A, we define the vector
ΛA := (λ1, . . . , λk) ∈ Rk, where the λi’s denote the eigenvalues of the k × k symmetric matrix
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A>A in descending order. ‖ΛA‖p denotes the usual Lp norm of the vector ΛA for p ≥ 1. Finally, we
define

Γ(A) := max

(
‖ΛA‖21
‖ΛA‖22

, λmin(A>A) ‖Λ−1
A ‖1

)
, (7)

where Λ−1
A := (λ−1

1 , . . . , λ−1
k ), with the convention that λmin(A>A)‖Λ−1

A ‖1 = 0 when
λmin(A>A) = 0.

Theorem 3. For observations X ∈ Rn generated via the generalized linear model (2) with a fixed
design matrix M ∈ Rn×d, the minimax L2 prediction risk and the entropic Bayes prediction risk are
lower bounded by

1

n
inf
θ̂

sup
θ∈Rd

E‖Mθ̂ −Mθ‖2 &
1

n

s(σ)

L
Γ(M).

1

n
inf
θ̂

sup
π

n∑
i=1

exp
(

2h(m>i θ |m>i θ̂)
)
&

1

n

s(σ)

L

‖ΛM‖21
‖ΛM‖22

.

Bounds on minimax risk under an additional sparsity constraint ‖θ‖0 ≤ k (i.e., the true parameter θ
has at most k non-zero entries) can be derived as a corollary.

Corollary 4 (Sparse Version of Theorem 3). For observations X ∈ Rn generated via the generalized
linear model (2), with the additional constraint that ‖θ‖0 ≤ k (i.e., Θ := {θ ∈ Rd : ‖θ‖0 ≤ k}), the
minimax prediction error is lower bounded by

1

n
inf
θ̂

sup
θ∈Θ

E‖Mθ̂ −Mθ‖2 &
1

n

s(σ)

L
max
Q∈Mk

Γ(Q).

1

n
inf
θ̂

sup
π

n∑
i=1

exp
(

2h(m>i θ |m>i θ̂)
)
&

1

n

s(σ)

L
max
Q∈Mk

‖ΛQ‖21
‖ΛQ‖22

.

Here, the maximum is taken overMk, the set of all n× k′ submatrices of M , with k′ ≤ k.

We now note an important specialization of Corollary 4. In particular, consider the Gaussian linear
model with observations X ∈ Rn generated according to

X = Mθ + Z, (8)

with Z ∼ N (0, σ2 In) the standard Gaussian vector. This corresponds to the GLM of (2) when the
functions are taken to be h(x) = e−x

2/(2σ2), s(σ) = σ2, and Φ(t) = t2/2 (hence, L = 1). This is
a particularly important instance worth highlighting because of the ubiquity of the Gaussian linear
model in applications.

Theorem 5. For observations X ∈ Rn generated via the Gaussian linear model (8), with the
sparsity constraint ‖θ‖0 ≤ k (i.e., Θ := {θ ∈ Rd : ‖θ‖0 ≤ k}), the minimax prediction error is
lower bounded by

1

n
inf
θ̂

sup
θ∈Θ

E‖Mθ̂ −Mθ‖2 &
σ2

n
max
Q∈Mk

Γ(Q).

1

n
inf
θ̂

sup
π

n∑
i=1

exp
(

2h(m>i θ |m>i θ̂)
)
&
σ2

n
max
Q∈Mk

‖ΛQ‖21
‖ΛQ‖22

.

Here, the maximum is taken overMk, the set of all n× k′ submatrices of M , with k′ ≤ k.

Remark 6. In the above results, the function Γ(·) can in fact be replaced with

Γ̃(M) := max

(
n∑
i=1

‖mi‖42
‖Mmi‖2

, λmin(M>M)‖Λ−1
M ‖1

)
,

which is stronger than the original statements. However, the chosen statements above highlight the
simple dependence on the spectrum of ΛM .
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2.1 Related Work

Most relevant to our results is the following lower bound on minimax L2 estimation risk and entropic
Bayes estimation risk, developed in a recent work by Lee and Courtade [23]. We note that [23] does
not bound prediction loss (which is often of primary interest), as we have done in the present paper.
Theorem 7 (Theorem 3, [23]). Let observation X be generated via the generalized linear model
defined in (2), with the additional structural constraint Θ = Bd2(R) := {v : ‖v‖22 ≤ R2}. Suppose
the cumulant function Φ satisfies Φ′′ ≤ L for some constant L. Then, the minimax estimation error is
lower bounded by

inf
θ̂

sup
θ∈Θ

E‖θ̂ − θ‖2 & inf
θ̂

sup
π

n∑
i=1

exp(2h(θi|θ̂i)) & min

(
R2,

s(σ)

L
Tr((M>M)−1)

)
. (9)

The bound of (9) is tight when X is generated by the Gaussian linear model, showing that (Gaussian)
linear models are most favorable in the sense of minimax estimation error amongst the class of GLMs
considered here. Lee and Courtade extracted the dependence on the Tr(M>M) term by analyzing a
Fisher information term in the class of Bayesian Cramér-Rao-type bounds from [24]. Earlier work
(see, e.g., [25]) yielded bounds on the order of d/λmax(M>M), which is loose compared to (9).

There is a large body of work that establish minimax lower bounds on prediction error for specific
models of the generalized linear model. Typically, these analyses depend on methods involving
metric entropy (see, for example, [4, 18, 19, 26–28]). A popular minimax result is due to Raskutti et
al. [18], who consider the sparse Gaussian linear model, where for a fixed design matrix M with an
additional sparsity constraint ‖θ‖0 ≤ k,

σ2 Φ2k,−(M)

Φ2k,+(M)

k

n
log

(
ed

k

)
. inf

θ̂
sup
‖θ‖0≤k

1

n
E‖Mθ̂ −Mθ‖22 . σ2 min

(
k

n
log

(
ed

k

)
, 1

)
. (10)

Here the terms Φr,−(M) and Φr,+(M) correspond to the constrained eigenvalues,

Φr,−(M) := inf
06=‖θ‖0≤r

‖Mθ‖2

‖θ‖2
, Φr,+(M) := sup

06=‖θ‖0≤r

‖Mθ‖2

‖θ‖2
. (11)

The upper bound of (10) is achieved by classical methods such as aggregation [29–32].

One can readily observe that the lower bound of (10) becomes degenerate for even mildly ill-structured
design matrices M . For example, in the case where M has repeating columns, the above result gives
a lower bound of 0, which is not very interesting. This suggests that the metric entropy approach does
not easily capture the dependence of the structure of design matrixM at the resolution of the complete
spectrum of M>M as our results do. In fact, it can be shown that Corollary 4 uniformly improves
upon (10) up to logarithmic factors; see Section 4.1 of the supplementary. Further, the lower bound
of Raskutti et al. does not hold for k > n, which is a disadvantage for high dimensional problems
where d� n. Verzelen [30] discusses the regime where k

n log
(
ed
k

)
≥ 1

2 and k ≤ max(d1/3, n/5)
and provide bounds for the worst-case matrix M , which is a different setting from ours.

There are also lines of work on specific settings of the generalized linear model. For example, Candes
et al. [28] discusses low-rank matrix recovery, and Cai et al. [4] considers phase retrieval. There are,
however, fewer results that directly look at the generalized linear model of our setting. The closest
work related is that of Abramovich and Grinshtein [19], where they consider estimating the entire
vector Mθ, as opposed to our setting where we estimate θ first with θ̂, then evaluate Mθ̂. Their result
also depends on the ratio between (constrained) minimum and maximum eigenvalues as in (10), and
hence fails when M is not full rank or otherwise has divergent maximum and minimum (constrained)
eigenvalues.

Comparing Theorems 3 and 5 with the results surveyed above raises several points (illustrated in
Table 1):

• Nontrivialness when M is not full rank. Unlike the lower bound in (10), the ratio
‖ΛM‖21/‖ΛM‖22 does not vanish when M is not full rank; see Case (d) in Table 1. This is
particularly important when the dimension of the parameter is large relative to the number
of observed samples.
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Table 1: Values of identities in Γ(M) (defined in (7)) for different scenarios of ΛM = (λ1, . . . , λd)
for fixed M ∈ Rn×d. The value t satisfies t� 1. In each row, the bold item marks the largest value.

Case ‖ΛM‖21/‖ΛM‖22 λd‖Λ−1
M ‖1 d(λd/λ1)

(a) ΛM = (1, 1, . . . , 1, 1) d d d

(b) ΛM = (t, 1, 1, . . . , 1) ≈ (t+ d)2/(t2 + d) ≈ d d/t

(c) ΛM = (1, 1, . . . , 1, 1/t) ≈ d ≈ d/t d/t

(d) ΛM = (1, 1, . . . , 1, 0) ≈ d 0 0
(e) ΛM = (t, 1, . . . , 1, 1/t) ≈ (t+ d)2/(t2 + d) ≈ (t+ d)/t d/t2

• Insensitivity to extreme values in the spectrum ΛM . Unlike the ratio between largest and
smallest (restricted) eigenvalues in ΛM , the ratio ‖ΛM‖21/‖ΛM‖22 is less sensitive to the
setting where the maximum and minimum eigenvalues in ΛM diverge. Table 1 provides
several examples in rows (b)-(e).

• Sharpness. Comparing with the upper bound (10), we observe that Theorem 3 (or, more
specifically, Theorem 5) is sharp if either the largest (constant·d) eigenvalues are of the same
order or (for the L2 risk) if the smallest (constant·d) eigenvalues are non-zero and of the
same order. This can be seen by considering ‖ΛM‖21/‖ΛM‖22 and λmin(M>M)‖Λ−1

M ‖1 in
the former and latter cases, respectively. Moreover, as shown in the following Section, when
M is sampled from a Gaussian ensemble, i.e., all components of M are sampled from a
standard Gaussian, our bounds are optimal up to log factors with high probability.

• Logarithmic term for sparse linear regression. In many cases, the log factor is insignifi-
cant, and the improved spectral dependence of Theorem 5 can yield substantial improvement.
For example, when k is not very sparse, say k = Θ(dc) for some c ∈ (0, 1], the log factor
is not significant and our results can be significantly better than (10) when M is mildly ill-
conditioned. In the very sparse case, say k = O(log d), our results still provide meaningful
bounds for M with minimum constrained eigenvalue close to 0.

Remark 8. In some cases, (10) can be improved by ignoring certain components of θ ∈ Rd via
dimensionality reduction. For example, if the first two columns of M are the same, then it is possible
to ignore the first component of θ and simply look at the remaining d− 1 components. We remark that
even with this reduction, (10) still depends on the ratio between minimum and maximum constrained
eigenvalues of the new “effective” matrix, and leads to a poor lower bound when the minimum and
maximum constrained eigenvalues are of a different order. We remark that other dimensionality
reduction methods (such as rotations) may be limited by the sparsity constraint ‖θ‖0 ≤ k. Moreover,
in general when the spectrum of M is all positive (with divergent large/small eigenvalues), one
cannot use dimensionality reduction to improve the result of (10).

2.2 Application to Gaussian Designs

Gaussian designs are frequently adopted in machine learning and compressed sensing (see, for
example, [18, 33–35]). The following proposition provides a concentration bound for the ratio
‖ΛM‖21/‖ΛM‖22 when M is sampled from the standard Gaussian ensemble (i.e., where each compo-
nent of M is sampled i.i.d. according to a standard Gaussian).
Proposition 9. Let the design matrix M ∈ Rn×k be sampled from the Gaussian ensemble. There
exist universal constants c1, c2, c3 > 0 such that ‖ΛM‖21/‖ΛM‖22 ≥ c1 min(n, k) with probability at
least 1− c2 exp(−c3 min(n, k)).

Proposition 9 implies that, with high probability, the lower bound of Theorem 5 (and therefore the
corresponding estimate in Theorem 3) is sharp up to a logarithmic term that is negligible when d � k.
In particular, under the assumptions of Theorem 5, we obtain with the help of (10) that

σ2 min

(
k

n
, 1

)
. inf

θ̂
sup
‖θ‖0≤k

1

n
E‖Mθ̂ −Mθ‖22 . σ2 min

(
k

n
log

(
ed

k

)
, 1

)
, (12)

with the lower bound holding with high probability in min(n, k). This can significantly improve
on the lower bound (10); consider, for example, the case where s := min(2k, d) = αn for
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some fixed α < 1. Note that any n × s submatrix M ′ of M satisfies Φ2k,−(M)/Φ2k,+(M) ≤
λmin(M ′>M ′)/λmax(M ′>M ′). An asymptotic result by Bai and Yin [36] implies that if α is fixed
then this latter ratio converges to (1−

√
α)

2
/ (1 +

√
α)

2 almost surely as n, k, d → ∞. Hence,
asymptotically speaking, the result of (10) is tight at most up to constants depending on α while our
results of Corollary 4 is tight (up to log factors) without dependency of α.

Interestingly, Proposition 9 also holds for square matrices, where the minimum eigenvalue is close to
zero (more precisely, for a square Gaussian matrix M ∈ Rn×n, λmin(M>M) is of the order n−1, as
shown in the work of Rudelson and Vershynin [37]). Proposition 9 follows from Szarek’s work [38]
on concentration of the largest n/2 singular values for a square Gaussian matrix M ∈ Rn×n,
concentration of singular values of rectangular subgaussian matrices [26], and an application of
interlacing inequalities for singular values of submatrices [39]. Similar results can be shown for
subgaussian matrices under additional assumptions using tools from [40].

3 Key Points of Proofs of Main Theorems

In our approach, we will be using classical information theory tools inspired by the techniques
developed by Lee and Courtade [23].

3.1 Preliminaries

We say that a measure µ is log-concave if dµ(x) = e−V (x)dx for some convex function V (·). The
Fisher information IX(θ) given θ ∈ Rd corresponding to the map θ 7−→ Pθ is defined as

IX(θ) = EX ‖∇θ log f(X; θ)‖22 ,

where the gradient is taken with respect to θ, and the expectation is taken with respect to X ∼ Pθ. If
the parameter θ has a prior π that is log-concave, the following lemma gives an upper bound on the
mutual information I(θ;X), which depends on the covariance matrix of θ, defined as Cov(θ).

Lemma 10 (Theorem 2, [24]). Suppose the prior π of θ ∈ Rd is log-concave. Then, under mild
regularity conditions on the map θ 7−→ Pθ, we have

I(θ;X) ≤ d · φ
(

Tr(Cov(θ)) · E IX(θ)

d2

)
, (13)

where the function φ(·) is defined as φ(x) :=

{√
x if 0 ≤ x < 1,

1 + 1
2 log x if x ≥ 1.

We note that the regularity condition in Lemma 10 requires that each member of the parametric family
Pθ has density f(·; θ) smooth enough to permit the following change of integral and differentiation,∫

X
∇θf(x; θ)dλ(x) = 0, µ− a.e. θ. (14)

In our case, since we are working with the GLM of (2), the regularity condition is automatically
satisfied.

When θ is a one-dimensional (i.e., d = 1) log-concave random variable, the bound of (13) is sharp up
to a (modest) multiplicative constant when Var(θ)E IX(θ) is bounded away from zero. There exists
a tighter version of Lemma 10 when π is uniformly log-concave, however Lemma 10 is enough for
our purposes. We direct the interested reader to the paper [24].

3.2 Proof Sketch of Theorem 3

We start off by noting that we can lower bound the entropic Bayes risk of (6) by taking a specific
prior π. For our purposes, we will let θ have a multivariate Gaussian prior π = N

(
0, β2 Id

)
.

We continue with a bound on the sum of conditional entropy powers
n∑
i=1

exp
(

2h(m>i θ |m>i θ̂)
)
≥

n∑
i=1

exp
(
2h(m>i θ)− 2I(m>i θ;X)

)
, (15)
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which follows from the data-processing inequality I(m>i θ;m
>
i θ̂) ≤ I(m>i θ;X), since m>i θ →

X → m>i θ̂ forms a Markov chain.

When mi ∈ Rd is a zero-vector, exp
(
2h(m>i θ|m>i θ)

)
= exp

(
2h(m>i θ)− 2I(m>i θ;X)

)
= 0 and

hence does not contribute to the summations within (15). This implies that removing zero vector
rows from M does not affect the proof following (15). Hence, in the following we will assume that
the matrix M does not have rows that are zero vectors.

By our choice of the prior π, the density of m>i θ is Gaussian and hence log-concave, which allows us
to invoke Lemma 10, implying

n∑
i=1

exp
(

2h(m>i θ |m>i θ̂)
)
≥

n∑
i=1

exp
(
2h(m>i θ)− 2φ(Var(m>i θ) · E IX(m>i θ))

)
. (16)

Here, the expectation is taken with respect to the marginal density of m>i θ. The primary task is now
to obtain a reasonable bound on the expected Fisher information term E IX(m>i θ). To do this, we
introduce the following lemma, which provides an upper bound for the expected Fisher information
E IX(m>i θ).

Lemma 11. Fix M ∈ Rn×d. If parameter θ has a prior π = N (0, β2 Id) and X ∈ Rn is sampled
according to the generalized linear model defined as (2), then

E IX(m>i θ) ≤
L

s(σ)
· ‖Mmi‖22
‖mi‖42

+
1

β2
·Ψi(M) for all i = 1, 2, . . . , n. (17)

The function Ψi(M) depends only on M and is finite. The expectation is taken with respect to the
marginal density of m>i θ.

The functions Ψi(·) are not explictly stated here because later we will be taking β large enough so
that Ψi(·)/β2 in (17) can be ignored. A proof of Lemma 11 and more details about the functions
Ψi(·) are included in the supplementary. We can continue from (16) and see that

n∑
i=1

exp
(

2h(m>i θ |m>i θ̂)
)

&
n∑
i=1

β2‖mi‖22 exp

(
−2φ

[
β2‖mi‖22

(
L

s(σ)
· ‖Mmi‖22
‖mi‖42

+
1

β2
Ψi(M)

)])
(a)
�

n∑
i=1

1

L
s(σ) ·

‖Mmi‖22
‖mi‖42

+ 1
β2 Ψi(M)

(b)
= (1− ε)s(σ)

L

n∑
i=1

‖mi‖42
‖Mmi‖22

. (18)

In the above, both (a) and (b) require a selection of β2 to be large enough. In particular, in (a),
β2 ≥ s(σ)/L would guarantee that the function φ behaves logarithmically (recall from Lemma 10
that φ(t) behaves logarithmically if t ≥ 1). In (b), the variable ε depends on the selection of β. Since
the function Ψi(M) is finite for all i = 1, . . . , n, by taking β2 a constant large enough, we can force
ε to be as close to zero as possible. Hence, we can say that the inequality holds with ε = 0. A direct
application of the Cauchy-Schwarz inequality then yields

n∑
i=1

exp
(

2h(m>i θ |m>i θ̂)
)
≥ s(σ)

L

(∑n
i=1 ‖mi‖22

)2∑n
i=1 ‖Mmi‖22

=
s(σ)

L

‖ΛM‖21
‖ΛM‖22

. (19)

On the other hand, from Theorem 7 and the matrix identity ‖Mv‖22 ≥ λmin(M>M)‖v‖22,

inf
θ̂

sup
θ∈Rd

E‖Mθ̂ −Mθ‖22 ≥ λmin(M>M) · Tr
(
(M>M)−1

)
= λd‖Λ−1

M ‖1. (20)

Combining (19) and (20) with Lemma 1 finishes the proof.

3.3 An Alternative Proof of Theorem 5

For the Gaussian linear model, we have the following tighter version of Lemma 11.
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Lemma 12. Fix M ∈ Rn×d. If θ ∼ N (0, β2 Id) and X ∈ Rn is sampled according to the Gaussian
linear model defined as (8). Then,

E IX(m>i θ) ≤
1

σ2
· ‖Mmi‖22
‖mi‖42

for 1 ≤ i ≤ n. (21)

By taking any β2 ≥ σ2 maxi
(
‖mi‖22/‖Mmi‖22

)
, the function φ(·) in (16) will again behave loga-

rithmically, directly implying (18) with ε = 0. The remaining proof follows similarly as before.
Remark 13. The functions Ψi(·) can be difficult to bound directly (see supplementary for more
details). Hence, the improved tightness and simplicity of Lemma 12 over Lemma 11 for the Gaussian
linear model provides more flexibility on the selection of β. This can be helpful when dealing with
problem settings where there are other constraints on the parameter space Θ.
Remark 14. There is a subtle but crucial difference in the proof techniques employed here compared
to those in [23]. The key step in [23] requires bounding the Fisher information IX(θi) with diagonal
terms in the Fisher information matrix IX(θ), i.e., Lemma 9 of [23]. In our case, we need to bound
the Fisher information IX(m>i θ) (e.g., Lemma 11), and here, the terms m>i θ are not necessarily
mutually independent as required in Lemma 9 of [23], which prevents us from a direct application.
Instead, we choose θ to have a Gaussian prior and try to bound IX(θi) directly. This is facilitated by
properties of the Gaussian distribution; see Section 4.3 in the appendix for more details.

Broader Impact

The generalized linear model (GLM) is a broad class of statistical models that have extensive
applications in machine learning, electrical engineering, finance, biology, and many areas not stated
here. Many algorithms have been proposed for inference, prediction and classification tasks under
the umbrella of the GLM, such as the Lasso algorithm, the EM algorithm, Dantzig selectors, etc.,
but often it is hard to confidently assess optimality. Lower bounds for minimax and Bayes risks play
a key role here by providing theoretical benchmarks with which one can evaluate the performance
of algorithms. While many previous approaches have focused on the Gaussian linear model, in this
paper we establish minimax and Bayes risk lower bounds that hold uniformly over all statistical
models within the GLM. Our arguments demonstrate a set of information-theoretic techniques that
are general and applicable to setups other than the GLM. As a result, many applications stand to
potentially benefit from our work.
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