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Abstract

Projection robust Wasserstein (PRW) distance, or Wasserstein projection pursuit
(WPP), is a robust variant of the Wasserstein distance. Recent work suggests that
this quantity is more robust than the standard Wasserstein distance, in particular
when comparing probability measures in high-dimensions. However, it is ruled out
for practical application because the optimization model is essentially non-convex
and non-smooth which makes the computation intractable. Our contribution in
this paper is to revisit the original motivation behind WPP/PRW, but take the
hard route of showing that, despite its non-convexity and lack of nonsmoothness,
and even despite some hardness results proved by Niles-Weed and Rigollet [68]
in a minimax sense, the original formulation for PRW/WPP can be efficiently
computed in practice using Riemannian optimization, yielding in relevant cases
better behavior than its convex relaxation. More specifically, we provide three
simple algorithms with solid theoretical guarantee on their complexity bound (one
in the appendix), and demonstrate their effectiveness and efficiency by conducing
extensive experiments on synthetic and real data. This paper provides a first step
into a computational theory of the PRW distance and provides the links between
optimal transport and Riemannian optimization.

1 Introduction

Optimal transport (OT) theory [86, 87] has become an important source of ideas and algorithmic tools
in machine learning and related fields. Examples include contributions to generative modelling [4, 74,
38, 83, 39], domain adaptation [21], clustering [80, 44], dictionary learning [73, 76], text mining [58],
neuroimaging [48] and single-cell genomics [75, 91]. The Wasserstein geometry has also provided
a simple and useful analytical tool to study latent mixture models [43], reinforcement learning [6],
sampling [20, 25, 63, 8] and stochastic optimization [66]. For an overview of OT theory and the
relevant applications, we refer to the recent survey [70].

Curse of Dimensionality in OT. A significant barrier to the direct application of OT in machine
learning lies in some inherent statistical limitations. It is well known that the sample complexity of
approximating Wasserstein distances between densities using only samples can grow exponentially
in dimension [29, 36, 89, 53]. Practitioners have long been aware of this issue of the curse of
dimensionality in applications of OT, and it can be argued that most of the efficient computational
schemes that are known to improve computational complexity also carry out, implicitly through
their simplifications, some form of statistical regularization. There have been many attempts to

*Tianyi Lin and Chenyou Fan contributed equally to this work.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



mitigate this curse when using OT, whether through entropic regularization [24, 23, 40, 61]; other
regularizations [28, 11]; quantization [17, 35]; simplification of the dual problem in the case of
1-Wasserstein distance [78, 4] or by only using second-order moments of measures to fall back on
the Bures-Wasserstein distance [9, 65, 19].

Subspace projections: PRW and WPP. We focus in this paper on another important approach to
regularize the Wasserstein distance: Project input measures onto lower-dimensional subspaces and
compute the Wasserstein distance between these reductions, instead of the original measures. The
simplest and most representative example of this approach is the sliced Wasserstein distance [71,
14, 52, 67], which is defined as the average Wasserstein distance obtained between random 1D
projections. In an important extension, Paty and Cuturi [69] and Niles-Weed and Rigollet [68]
proposed very recently to look for the k-dimensional subspace (k > 1) that would maximize the
Wasserstein distance between two measures after projection. [69] called that quantity the projection
robust Wasserstein (PRW) distance, while [68] named it Wasserstein Projection Pursuit (WPP).
PRW/WPP are conceptually simple, easy to interpret, and do solve the curse of dimensionality in
the so called spiked model as proved in [68, Theorem 1] by recovering an optimal 1//n rate. Very
recently, Lin et al. [59] further provided several fundamental statistical bounds for PRW as well as
asymptotic guarantees for learning generative models with PRW. Despite this appeal, [69] quickly
rule out PRW for practical applications because it is non-convex, and fall back on a convex relaxation,
called the subspace robust Wasserstein (SRW) distance, which is shown to work better empirically
than the usual Wasserstein distance. Similarly, [68] seem to lose hope that it can be computed, by
stating “it is unclear how to implement WPP efficiently,” and after having proved positive results on
sample complexity, conclude their paper on a negative note, showing hardness results which apply for
WPP when the ground cost is the Euclidean metric (the 1-Wasserstein case). Our contribution in this
paper is to revisit the original motivation behind WPP/PRW, but take the hard route of showing that,
despite its non-convexity and lack of nonsmoothness, and even despite some hardness results proved
in [68] in a minimax sense, the original formulation for PRW/WPP can be efficiently computed in
practice using Riemannian optimization, yielding in relevant cases better behavior than SRW. For
simplicity, we refer from now on to PRW/WPP as PRW.

Contribution: In this paper, we study the computation of the PRW distance between two discrete
probability measures of size n. We show that the resulting optimization problem has a special structure,
allowing it to be solved in an efficient manner using Riemannian optimization [2, 16, 50, 18]. Our
contributions can be summarized as follows.

1. We propose a max-min optimization model for computing the PRW distance. The maxi-
mization and minimization are performed over the Stiefel manifold and the transportation
polytope, respectively. We prove the existence of the subdifferential (Lemma 2.2), which al-
lows us to properly define an e-approximate pair of optimal subspace projection and optimal
transportation plan (Definition 2.7) and carry out a finite-time analysis of the algorithm.

2. We define an entropic regularized PRW distance between two finite discrete probability
measures, and show that it is possible to efficiently optimize this distance over the trans-
portation polytope using the Sinkhorn iteration. This poses the problem of performing
the maximization over the Stiefel manifold, which is not solvable by existing optimal
transport algorithms [24, 3, 30, 56, 57, 42]. To this end, we propose two new algorithms,
which we refer to as Riemannian gradient ascent with Sinkhorn (RGAS) and Riemannian
adaptive gradient ascent with Sinkhorn (RAGAS), for computing the entropic regularized
PRW distance. These two algorithms are guaranteed to return an e-approximate pair of
optimal subspace projection and optimal transportation plan with a complexity bound of
O(n2d||C|| 2 e=* +n?||C|%.e 8 + n?||C||12e~12). To the best of our knowledge, our algo-
rithms are the first provably efficient algorithms for the computation of the PRW distance.

3. We provide comprehensive empirical studies to evaluate our algorithms on synthetic and
real datasets. Experimental results confirm our conjecture that the PRW distance performs
better than its convex relaxation counterpart, the SRW distance. Moreover, we show that the
RGAS and RAGAS algorithms are faster than the Frank-Wolfe algorithm while the RAGAS
algorithm is more robust than the RGAS algorithm.

Organization. The remainder of the paper is organized as follows. In Section 2, we present the
nonconvex max-min optimization model for computing the PRW distance and its entropic regularized
version. We also briefly summarize various concepts of geometry and optimization over the Stiefel
manifold. In Section 3, we propose and analyze the RGAS and RAGAS algorithms for computing the



entropic regularized PRW distance and prove that both algorithms achieve the finite-time guarantee
under stationarity measure. In Section 4, we conduct extensive experiments on both synthetic and
real datasets, demonstrating that the PRW distance provides a computational advantage over the SRW
distance in real application problems. In the supplementary material, we provide further background
materials on Riemannian optimization, experiments with the algorithms, and proofs for key results.
For the sake of completeness, we derive a near-optimality condition (Definition E.1 and E.2) for the
max-min optimization model and propose another Riemannian SuperGradient Ascent with Network
simplex iteration (RSGAN) algorithm for computing the PRW distance without regularization and
prove the finite-time convergence under the near-optimality condition.

Notation. We let [n] be the set {1,2,...,n}. 1, and 0,, are the n-dimension vectors of ones
and zeros. A" = {u € R" : IIu = 1,u > 0,} is the probability simplex. For z € R™ and
p € (1, 400), the £,-norm stands for ||z, and the Dirac delta function at x stands for 6,.(-). Diag (z)
denotes an n x n diagonal matrix with = as the diagonal elements. For X € R"™*", the right and
left marginals are denoted 7(X) = X1, and ¢(X) = X1, and || X ||cc = maxi<; j<n |Xij]
and [|X[[1 = >>,; <, |Xij|- The notation diag(X) stands for an n-dimensional vector which
corresponds to the diagonal elements of X. If X is symmetric, Apax(X) stands for its largest
eigenvalue. St(d, k) := {X € R4k : XTX = I, } denotes the Stiefel manifold. For X,Y € R™"*",
(X,Y) = Trace(X "Y') denotes the Euclidean inner product and || X || » denotes the Frobenius norm
of X. We let Ps be the orthogonal projection onto a closed set S and dist(X,S) = infycs | X =Y || F
denotes the distance between X and S. Lastly, a = O(b(n,d, ¢)) stands for the upper bound
a < C -b(n,d,e) where C > 0 is independent of n and 1/¢ and a = O(b(n, d, €)) indicates the
previous inequality where C' depends on the logarithmic factors of n, d and 1/e.

2 Projection Robust Wasserstein Distance

In this section, we present the basic setup and optimality conditions for the computation of the
projection robust 2-Wasserstein (PRW) distance between two discrete probability measures with at
most n components. We also review basic ideas in Riemannian optimization.

2.1 Structured max-min optimization model

In this section we define the PRW distance [69] and show that computing the PRW distance between
two discrete probability measures supported on at most n points reduces to solving a structured
max-min optimization model over the Stiefel manifold and the transportation polytope.

Let 22 (R%) be the set of Borel probability measures in R? and let 225(R?) be the subset of Z(R%)
consisting of probability measures that have finite second moments. Let 11, v € Z5(R?) and I1(1, )
be the set of couplings between p and v. The 2-Wasserstein distance [87] is defined by

1/2

Wa(u,v) i= ( inf / lz -yl dw(m,y)) . 2.1)
well(p,v)

To define the PRW distance, we require the notion of the push-forward of a measure by an operator.

Letting X,Y C R%and T : X — ), the push-forward of 1 € Z(X) by T is defined by Tup €

Z(Y). In other words, T4 1 is the measure satisfying T u(A) = (T~ (A)) for any Borel set in V.

Definition 2.1 For p,v € P3(R%), let G, = {E C R? | dim(E) = k} be the Grassmannian of
k-dimensional subspace of R? and let Pg; be the orthogonal projector onto E for all E € G;,. The
k-dimensional PRW distance is defined as Py (i, v) := supgeg, Wa(Pryit, PE#v).

Paty and Cuturi [69, Proposition 5] have shown that there exists a subspace E* € G such that
Pr(i,v) = Wa(Ppgs g1, Pp-yv) forany k € [d] and i, v € P5(R?). Forany E € Gy, the mapping
7 — [||Pe(z — y)||* dr(z,y) is lower semi-continuous. This together with the compactness
of II(u, v) implies that the infimum is a minimum. Therefore, we obtain a structured max-min
optimization problem:

1/2
— . _ 2
Pulpv) = s min ( [1pstz =y dw(x,w) . 22)

Let us now consider this general problem in the case of discrete probability measures, which is
the focus of the current paper. Let {x1,72,...,2,} € R?and {y1,92,...,y,} C R? denote sets



Algorithm 1 Riemannian Gradient Ascent with Sinkhorn Iteration (RGAS)
o Input: {(zi,7i)}ie(n) and {(y5,¢j) }iem)s k = O(1), Uy € St(d, k) and e.

emin{1,1/6} 1
N Iologmy - and Y (8LI+16L2)[[Clloot16n LI CIZ, "

- Initialize: € < 15r5—
:fort=0,1,2,...do
Compute Tt4+1 €= REGOT({(:EZ'? ri)}ie[nh {(yj7 Cj)}jE[n]a Ui, 777/5\)'
Compute &i41 «— Pry,si(2Vr, Ut
Compute U1 < Retry, (v&e+1)-
: end for

R

of n atoms, and let (ry,79,...,7,) € A™ and (¢1,c¢a,...,¢,) € A™ denote weight vectors. We
define discrete probability measures p 1= >;, 70, and v := 377, ¢;0,,. In this setting, the
computation of the k-dimensional PRW distance between p and v reduces to solving a structured
max-min optimization model where the maximization and minimization are performed over the
Stiefel manifold St(d, k) := {U € R** | UTU = I,;} and the transportation polytope II(p, v) :=
{m e R*" | r(m) =7, ¢(r) = c} respectively. Formally, we have

max  min ZZWUHU 2 — U y|> stU'U=1I r(x)=r, c(x) =c 2.3)

dxk nxXn
UEeR GR =1 j=1

The computation of this PRW distance raises numerous challenges. Indeed, there is no guarantee
for finding a global Nash equilibrium as the special case of nonconvex optimization is already
NP-hard [64]; moreover, Sion’s minimax theorem [79] is not applicable here due to the lack of
quasi-convex-concave structure. More practically, solving Eq. (2.3) is expensive since (i) preserving
the orthogonality constraint requires the singular value decompositions (SVDs) of a d X d matrix,
and (ii) projecting onto the transportation polytope results in a costly quadratic network flow problem.
To avoid this, [69] proposed a convex surrogate for Eq. (2.3):

max  min Z Zﬂm VIQx; —y;), stTrace(Q) =k, r(n) =7, c(n) =c.  (2.4)

0=X0=<TI nxn
d‘/rE]R =1 j=1

Eq. (2.4) is intrinsically a bilinear minimax optimization model which makes the computation
tractable. Indeed, the constraint set R = {2 € RIX4 | 0 < Q =< I, Trace(Q) = k} is convex and
the objective function is bilinear since it can be rewritten as (€, >\, 2?21 mi (@i —yj) (xi—y;) ).
Eq. (2.4) is, however, only a convex relaxation of Eq. (2.3) and its solutions are not necessarily good
approximate solutions for the original problem. Moreover, the existing algorithms for solving
Eq. (2.4) are also unsatisfactory—in each loop, we need to solve a OT or entropic regularized OT
exactly and project a d x d matrix onto the set R using the SVD decomposition, both of which are
computationally expensive as d increases (see Algorithm 1 and 2 in [69]).

2.2 Entropic regularized projection robust Wasserstein

Eq. (2.3) has special structure: Fixing a U € St(d, k), it reduces to minimizing a linear function
over the transportation polytope i.e., the OT problem. Thus, Eq. (2.3) is to maximize the function
SU) :== mingenum) >y Z _, i j U x; — UTy;||? over the Stiefel manifold St(d, k).

Since the OT problem admits multiple optimal solutions, f is not differentiable which makes the
optimization over the Stiefel manifold hard [1]. Computations are greatly facilitated by adding
smoothness, which allows the use of gradient-type and adaptive gradient-type algorithms. This
inspires us to consider an entropic regularized version of Eq. (2.3), where an entropy penalty is added
to the PRW distance. The resulting optimization model is as follows:

max  min ZZm U Tz —U Ty ||P —nH(x) st.U'U=1I, r(x)=r, c(x)=c, (2.5)

dXxXk nxmn
UeR ER =1 j=1

where 17 > 0 is the regularization parameter and H(7) := —(m,log(r) — 1,1,)) denotes the
entropic regularization term. We refer to Eq. (2.5) as the computation of entropic regularized
PRW distance. Accordingly, we define the function f,, = mingeryu{> i) D5y mij|[U T2 —

UTy,||> —nH(m)} and reformulate Eq. (2.5) as the maximization of the differentiable function f,)




Algorithm 2 Riemannian Adaptive Gradient Ascent with Sinkhorn Iteration (RAGAS)

1: Tnput: {(z,7:) }icp) and {(y5, ¢;)}jep), k = O(1), Uo € St(d, k), e and a € (0,1).

ev/a P emin{1,1/6}
200CT 1 40log(n)

N

and

: Initialize: po = 04, o = Ox, po = a||C|| %14, @ = ||C|21x, €
7= 16L%+32L2+§‘2n*1L§HCHOQ'

:fort=0,1,2,...do

Compute 741 < REGOT ({(i,7:) }icn), { (Y5, ¢i) Yiem), Us, 1, €).

Compute Git1 < Pry,si(2Vr, , Ub).

Update piy1 < Bpr + (1 - ﬁ)diag(Gz+1G2—+1)/k‘ and Pry1 max{ﬁt,pt+1}.

Update gi+1 < Bg: + (1 — B)diag(G/11Ger1)/d and Gor1 < max{Gs, g1}

Compute &41 < Pry,si(Diag (Pry1)~"/*Gr1Diag (Giy1) ™).

Compute Uzt < Retry, (v€¢+41).

: end for

S A

—

over the Stiefel manifold St(d, k). Indeed, for any U € St(d, k) and a fixed p > 0, there exists
a unique solution 7* € TI(u,v) such that m — Y70 3% m; 4|U Ty — UTy,l|> — nH(r) is
minimized at 7*. When 7 is large, the optimal value of Eq. (2.5) may yield a poor approximation of
Eq. (2.3). To guarantee a good approximation, we scale the regularization parameter 7 as a function
of the desired accuracy of the approximation. Formally, we consider the following relaxed optimality
condition for 7 € II(u, v) given U € St(d, k).

Definition 2.2 The transportation plan 7 € I(u, v) is called an e-approximate optimal transporta-
tion plan for a given U € St(d, k) if the following inequality holds:

SN FUT Tz - U Ty? < _Jnin )sz,jHUTmi — U y|? + e (2.6)
i=1 j—=1 M1 =1

2.3 Optimality condition

Recall that the computation of the PRW distance in Eq. (2.3) and the entropic regularized PRW
distance in Eq. (2.5) are equivalent to

U):= i 0] UT i_UT i|I? ’ 2.7

UeStan) {f( ) werﬂl(lﬁl,);;“ﬂ x 5] 2.7
and

U):= mi iU @ = U Tyyl|> —nH(x) ¢ . 2.8

LA {M )= i, 2o malU e~ UTul A 28)

Since St(d, k) is a compact matrix submanifold of R?*¥ [15], Eq. (2.7) and Eq. (2.8) are both
special instances of the Stiefel manifold optimization problem. The dimension of St(d, k) is equal to
dk — k(k + 1)/2 and the tangent space at the point Z € St(d, k) is defined by TzSt := {¢ € R¥*F :
77 + ZT¢ =0}. We endow St(d, k) with Riemannian metric inherited from the Euclidean inner
product (X,Y) forany X,Y € TzStand Z € St(d, k). Then the projection of G € R%** onto TSt
is given by Absil et al. [2, Example 3.6.2]: Pr,s(G) = G — Z(G" Z + Z" G) /2. We make use of
the notion of a retraction, which is the first-order approximation of an exponential mapping on the
manifold and which is amenable to computation [2, Definition 4.1.1]. For the Stiefel manifold, we
have the following definition:

Definition 2.3 A retraction on St = St(d, k) is a smooth mapping Retr : TSt — St from the tangent
bundle TSt onto St such that the restriction of Retr onto TzSt, denoted by Retrz, satisfies that (i)
Retrz(0) = Z for all Z € St where 0 denotes the zero element of TSt, and (ii) for any Z € St, it
holds that limgct, s ¢—0 ||Retrz (§) — (Z + &)||r/[I€]|F = 0.

We now present a novel approach to exploiting the structure of f. We begin with several definitions.

Definition 2.4 The coefficient matrix between 1 = Y | 1;0,, and v ="

j=1Cj0y; is defined by
C = (Cij)i<ij<n € R™™ with each entry Ci; = ||z; — y;|*



Definition 2.5 The correlation matrix between p = 3 i, 130, and v = Y77_, ¢;0,, is defined by
Ve =310 Z?:l mij (i —y;) (i —y;) T € R
Lemma 2.1 The function f is 2||C||oo-weakly concave.

Lemma 2.2 Each element of the subdifferential O f (U) is bounded by 2||C|| for all U € St(d, k).

Remark 2.3 Lemma 2.1 implies there exists a concave function g : R¥* — R such that f(U) =
g(U) + |ICll s lU% for any U € Rk, Since g is concave, Og is well defined and Vial [85,
Proposition 4.6] implies that Of (U) = 0g(U) + 2||C||ooU for all U € R¥*¥,

This result together with Vial [85, Proposition 4.5] and Yang et al. [92, Theorem 5.1] lead to the
Riemannian subdifferential defined by subdiff f(U) = Pr,s(9f(U)) forall U € St(d, k).

Definition 2.6 The subspace projection Ue St(d, k) is called an e-approximate optimal subspace
projection of f over St(d, k) in Eq. (2.7) if it satisfies dist(0, subdiff f(U)) < e.

Definition 2.7 The pair of subspace projection and transportation plan (ff ,m) € St(d, k) x II(p, v)
is an e-approximate pair of optimal subspace projection and optimal transportation plan for the
computation of the PRW distance in Eq. (2.3) if the following statements hold true: (i) U is an
e-approximate optimal subspace projection of f over St(d, k) in Eq. (2.7). (ii) T is an e-approximate
optimal transportation plan for the subspace projection U.

The goal of this paper is to develop a set of algorithms which are guaranteed to converge to a pair of
approximate optimal subspace projection and optimal transportation plan, which stand for a stationary
point of the max-min optimization model in Eq. (2.3). In the next section, we provide the detailed
scheme of our algorithm as well as the finite-time theoretical guarantee.

3 Riemannian (Adaptive) Gradient meets Sinkhorn Iteration

We present the Riemannian gradient ascent with Sinkhorn (RGAS) algorithm for solving Eq. (2.8). By
the definition of V;; (cf. Definition 2.5), we can rewrite f,,(U) = min e, {(UU T, Vz) —nH (m)}.
Fix U € R9**  and define the mapping 7 — (UU ", V,) — nH(m) with respect to ¢;-norm. By
the compactness of the transportation polytope II(u,v), Danskin’s theorem [72] implies that f,, is
smooth. Moreover, by the symmetry of V., we have

Va(U) = 2Vix@yU forany U € RXF 3.1
where 7*(U) := argmin, ¢y, {{UUT,V,) — nH(x)}. This entropic regularized OT is solved
inexactly at each inner loop of the maximization and we use the output 711 < 7(U;) to obtain
an inexact gradient of f, which permits the Riemannian gradient ascent update; see Algorithm 1.

Note that the stopping criterion used here is set as ||m;+1 — 7(Uy)||1 < € which implies that ;41 is
e-approximate optimal transport plan for U, € St(d, k).

The remaining issue is to approximately solve an entropic regularized OT efficiently. We leverage
Cuturi’s approach and obtain the desired output 711 for U; € St(d, k) using the Sinkhorn iteration.
By adapting the proof presented by Dvurechensky et al. [30, Theorem 1], we derive that Sinkhorn iter-
ation achieves a finite-time guarantee which is polynomial in n and 1/€. As a practical enhancement,
we exploit the matrix structure of grad £, (U;) via the use of two different adaptive weight vectors,
namely p; and @;; see the adaptive algorithm in Algorithm 2. It is worth mentioning that such an
adaptive strategy is proposed by Kasai et al. [50] and has been shown to generate a search direction
which is better than the Riemannian gradient grad f;,(U;) in terms of robustness to the stepsize.

Theorem 3.1 Either the RGAS algorithm or the RAGAS algorithmn returns an e-approximate pair of
optimal subspace projection and optimal transportation plan of the computation of the PRW distance
in Eq. (2.3) (cf. Definition 2.7) in

N 2411112 2(1||6 2(C||L0 o 2
o<(“ I ||m+n|6||m+n||w|oo><l+|| [ ))
€ € €

€

arithmetic operations.



PZ({2, V) depending on dimension k

701 —— k* =2, RGAS —— k" =2, RAGAS
k™ =4, RGAS k™ =4, RAGAS
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Dimension k

Figure 1: Computation of PZ(j1, ) depending on the dimension k € [d] and k* € {2, 4,7, 10}, where 2 and

¥ stand for the empirical measures of 1 and v with 100 points. The solid and dash curves are the computation of

P?(j1, &) with the RGAS and RAGAS algorithms, respectively. Each curve is the mean over 100 samples with

shaded area covering the min and max values.
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Figure 2: Mean estimation error (left) and mean subspace estimation error (right) over 100 samples, with
varying number of points n. The shaded areas represent the 10%-90% and 25%-75% quantiles over 100 samples.

Remark 3.2 Theorem 3.1 is surprising in that it provides a finite-time guarantee for finding an
e-stationary point of a nonsmooth function f over a nonconvex constraint set. This is impossible for
general nonconvex nonsmooth optimization even in the Euclidean setting [96, 77]. Our results show
that the max-min optimization model in Eq. (2.3) is speical such that fast computation is possible.

Remark 3.3 Note that our algorithms only return an approximate stationary point for the nonconvex
max-min optimization model in Eq. (2.3), which needs to be evaluated in practice. It is also interesting
to compare such stationary point to the global optimal solution of computing the SRW distance. This
is very challenging in general due to multiple stationary points of non-convex max-min optimization
model in Eq. (2.3) but possible if the data has certain structure. We leave it to the future work.

4 Experiments

We conduct extensive numerical experiments to evaluate the computation of the PRW distance by the
RGAS and RAGAS algorithms. The baseline approaches include the computation of SRW distance
with the Frank-Wolfe algorithm® [69] and the computation of Wasserstein distance with the POT
software package’ [34]. For the RGAS and RAGAS algorithms, we set v = 0.01 unless stated
otherwise, 3 = 0.8 and o = 1076, The details of our full setup can be found in Appendix G.

Fragmented hypercube. Figure | presents the behavior of P?(1i,7) as a function of k* €
{2,4,7,10}, where ji and U are empirical distributions corresponding to x and v. The sequence is
concave and increases slowly after k& = k*, which makes sense since the last d — k£* dimensions
only represent noise. The rigorious argument for the SRW distance is presented in Paty and Cuturi
[69, Proposition 3] but hard to be extended here since the PRW distance is not a sum of eigenvalues.
Figure 2 presents mean estimation error and mean subspace estimation error with varying number
of points n € {25, 50,100, 250, 500, 1000}. In particular, U is an approximate optimal subspace
projection achieved by computing PZ (71, ) with our algorithms and * is the optimal projection
matrix onto the k*-dimensional subspace spanned by {e; } jc[x+]. Fixing k* = 2 and construct /i and

2 Available in https://github.com/francoispierrepaty/SubspaceRobustWasserstein.
3 Available in https://github.com/PythonOT/POT
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Figure 3: Mean normalized SRW distance (left) and mean normalized PRW distance (right) as a function of
dimension. The shaded area shows the 10%-90% and 25%-75% quantiles over the 100 samples.
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Figure 4: (Left) Comparison of mean relative errors over 100 samples, depending on the noise level. The
shaded areas show the min-max values and the 10%-90% quantiles; (Right) Comparisons of mean computation
times on CPU (log-log scale). The shaded areas show the minimum and maximum values over the 50 runs.
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Figure 5: Comparisons of mean computation time of the RGAS and RAGAS algorithms on CPU (log-log scale)
for different learning rates. The shaded areas show the max-min values over 50 runs.

© from y and v respectively with n points each, we find that the quality of solutions obtained by the
RGAS and RAGAS algorithms are roughly the same.

Robustness of P, to noise. Figure 3 presents the mean value of S7(1i,7)/W3(1i, D) (left) and
P2(1,v) /W3 (ji, D) (right) over 100 samples with varying k. We plot the curves for both noise-free
and noisy data, where white noise (N(0, I;)) was added to each data point. With moderate noise,
the data is approximately on two 5-dimensional subspaces and both the SRW and PRW distances do
not vary too much. Our results are consistent with the SRW distance presented in Paty and Cuturi
[69, Figure 6], showing that the PRW distance is also robust to random perturbation of the data.
Figure 4 (left) presents the comparison of mean relative errors over 100 samples as the noise level
varies. In particular, we construct the empirical measures /i, and , by gradually adding Gaussian
noise o V(0 I) to the points. The relative errors of the Wasserstein, SRW and PRW distances are
defined the same as in Paty and Cuturi [69, Section 6.3]. For small noise level, the imprecision in the
computation of the SRW distance adds to the error caused by the added noise, while the computation
of the PRW distance with our algorithms is less sensitive to such noise. When the noise has the
moderate to high variance, the PRW distance is the most robust to noise, followed by the SRW
distance, both of which outperform the Wasserstein distance.

Computation time of algorithms. Considering the fragmented hypercube with dimension d €
{25, 50,100, 250, 500}, subspace dimension k& = 2, number of points n = 100 and threshold
e = 0.001. For the SRW and the PRW distances, the regularization parameter is set as n = 0.2
for n < 250 and i = 0.5 otherwise®, as well as the scaling for the matrix C' (cf. Definition 2.4) is
applied for stabilizing the algorithms. We stop the RGAS and RAGAS algorithms when ||Uz41 —
Utllr/||Utllr < e. Figure 4 (right) presents the mean computation time of the SRW distance with
the Frank-Wolfe algorithm [69] and the PRW distance with our RGAS and RAGAS algorithms. Our

# Available in https://github.com/francoispierrepaty/SubspaceRobustWasserstein



D G I KB1 KB2 ™ T

D 0/0 0.184/0.126  0.185/0.135  0.195/0.153  0.202/0.162  0.186/0.134  0.170/0.105
G 0.184/0.126 0/0 0.172/0.101  0.196/0.146  0.203/0.158  0.175/0.095  0.184/0.128
I 0.185/0.135  0.172/0.101 0/0 0.195/0.155  0.203/0.166  0.169/0.099  0.180/0.134
KB1 | 0.195/0.153  0.196/0.146  0.195/0.155 0/0 0.164/0.089  0.190/0.146  0.179/0.132
KB2 | 0.202/0.162  0.203/0.158  0.203/0.166  0.164/0.089 0/0 0.193/0.155 0.180/0.138
™ | 0.186/0.134  0.175/0.095  0.169/0.099  0.190/0.146  0.193/0.155 0/0 0.182/0.136
T 0.170/0.105 0.184/0.128  0.180/0.134  0.179/0.132  0.180/0.138  0.182/0.136 0/0

Table 1: Each entry is S7/P7 distance between different movie scripts. D = Dunkirk, G = Gravity, I =
Interstellar, KB1 = Kill Bill Vol.1, KB2 = Kijll Bill Vol.2, TM = The Martian, T = Titanic.

H5 H JC T™MV O RJ
H5 0/0 0.222/0.155  0.230/0.163  0.228/0.166  0.227/0.170  0.311/0.272
H 0.222/0.155 0/0 0.224/0.163  0.221/0.159  0.220/0.153  0.323/0.264
IC 0.230/0.163  0.224/0.163 0/0 0.221/0.156  0.219/0.157  0.246/0.191
TMV | 0.228/0.166  0.221/0.159  0.221/0.156 0/0 0.222/0.154  0.292/0.230
O 0.227/0.170  0.220/0.153  0.219/0.157  0.222/0.154 0/0 0.264/0.215
RJ 0.311/0.272  0.323/0.264  0.246/0.191  0.292/0.230  0.264/0.215 0/0

Table 2: Each entry is S7 /P7 distance between different Shakespeare plays. H5 = Henry V, H = Hamlet, JC =
Julius Caesar, TMV = The Merchant of Venice, O = Othello, RJ = Romeo and Juliet.

approach is significantly faster since the complexity bound of their approach is quadratic in dimension
d while our methods are linear in dimension d.

Robustness of algorithms to learning rate. We use the same experimental setting to evaluate the
robustness of our RGAS and RAGAGS algorithms by choosing the learning rate v € {0.01,0.1}.
Figure 6 indicates that the RAGAS algorithm is more robust than the RGAS algorithm as the
learning rates varies, with smaller variance in computation time (in seconds). This is the case
especially when the dimension is large, demonstrating the advantage of the adaptive strategies
in practice. To demonstrate the advantage of the adaptive strategies in practice, we initialize the
learning rate using four options v € {0.005,0.01,0.05,0.1} and present the results for the RGAS
and RAGAS algorithms separately in Figure 5. This is consistent with the results in Figure 6 and
supports that the RAGAS algorithm is more robust than the RGAS algorithm to the learning rate.

PRW (RGAS) Ir=0.01

Experiments on real data. We compute the PRW

and SRW distances between all pairs of movies in a g meion
corpus of seven movie scripts and operas in a corpus T T
of eight Shakespeare operas. Each script is tokenized
to a list of words, which is transformed to a measure
over R3% using WORD2VEC [62] where each weight
is word frequency. The SRW and PRW distances
between all pairs of movies and operas are in Table | oimension

and 2, which is consistent with the SRW distance  Figure 6: Comparisons of mean computation time
in [69, Figure 9] and shows that the PRW distance is  of the RGAS and RAGAS algorithms on CPU (log-
consistently smaller than SRW distance. Additional log scale) for different learning rates. The shaded
results on MNIST dataset are deferred to Appendix H. areas show the max-min values over 50 runs.

Summary. The PRW distance has less discriminative power than the SRW distance which is
equivalent to the Wasserstein distance [69, Proposition 2]. Such equivalence implies that the SRW
distance suffers from the curse of dimensionality in theory. In contrast, the PRW distance has much
better sample complexity than the SRW distance if the distributions satisfy the mild condition [68, 59].
Our empirical evaluation shows that the PRW distance is computationally favorable and more robust
than the SRW and Wasserstein distance, when the noise has the moderate to high variance.

Execution time in secon:

5 Conclusion

We study in this paper the computation of the projection robust Wasserstein (PRW) distance in the
discrete setting. A set of algorithms are developed for computing the entropic regularized PRW
distance and both guaranteed to converge to an approximate pair of optimal subspace projection
and optimal transportation plan. Experiments on synthetic and real datasets demonstrate that our
approach to computing the PRW distance is an improvement over existing approaches based on the
convex relaxation of the PRW distance and the Frank-Wolfe algorithm. Future work includes the
theory for continuous distributions and applications of PRW distance to deep generative models.




Broader Impact

The paper proposes efficient algorithms with theoretical guarantees to compute distances between
probability measures in very high dimensional spaces. The problem of comparing high dimensional
probability measures has appeared in several applications in machine learning, statistics, genomics,
and neuroscience. Our study, therefore, provides an efficient method for scientists in these domains
to deal with large-scale and high dimensional data. We believe that our work is fundamental and
initiates new directions in computing high-dimensional probability measures, which leads to faster
scientific discoveries. Finally, we do not foresee any negative impact to society from our work.
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