
Appendix

A Approximation Error Analysis

In this section, we provide a complete proof of Theorem 1, quantifying the effect of function
embedding of constraints in dual Q-LP. The proof is an adaptation from the standard LP for state-
value functions to the case of Q-LP (De Farias and Van Roy, 2003).

We first provide an equivalent reformulation of the primal of the feature embedded LP,
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Theorem 1 Suppose the constant function 1 2 F� := span {�}. Then,
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where Q
⇡ is the fixed-point solution to the Bellman equation Q (s, a) = R (s, a) + �P⇡

Q (s, a).

Proof We first show the equivalence between function space embedding of dual Q-LP and the linear
approximation of primal Q-LP, which can be easily derived by checking their Lagrangians. Denote

l (d,�) := Ed [r (s, a)] + �
> h�, (1� �)µ0⇡ + � · P⇡

⇤
d� di (17)

= (1� �)Eµ0⇡

⇥
�
>
� (s, a)

⇤
+ Ed

⇥
r (s, a) + � · P⇡

�
>
� (s, a)� �

>
� (s, a)

⇤

= (1� �)Eµ0⇡ [Q� (s, a)] + Ed [r (s, a) + � · P⇡
Q� (s, a)�Q� (s, a)] ,

where � 2 Rp and Q� (s, a) := �
>
� (s, a). Since the l (d,�) is convex-concave w.r.t. (�, d), it is

also the Lagrangian of primal Q-LP with linear parametrization, i.e.,
min
�2Rp

(1� �)Eµ0⇡

⇥
�
>
� (s0, a0)

⇤
(18)

s.t. �
>
� (s, a) > R (s, a) + � · P⇡

�
>
� (s, a) , 8 (s, a) 2 S ⇥A.

By Lemma 5, it is equivalent to solving
min
�2Rp

��Q⇡ � �
>
�
��
1,µ0⇡

(19)

s.t. �
>
� (s, a) > B⇡

�
�
>
�
�
(s, a) , 8 (s, a) 2 S ⇥A.

We now define
(d⇤,�⇤) := argmax

d>0
argmin

�

l (d,�) ,

�̃ := argmin
�

��Q⇡ � �
>
�
��
1

,

✏ :=
���Q⇡ � �̃

>
�

���
1

,

15



and obtain from strong duality that
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where the third inequality comes from the optimality of (19).

Justification of full-rank basis embedding. The effect of full-rank basis embedding in the ex-
ample in Section 3.1 can be justified straightforwardly. We consider the Lagrangian (17). If the
� 2 R|S||A|⇥|S||A| is full-rank, ��1 exists. For arbitrary Q 2 R|S||A|⇥1, there exists � =

�
Q�

�1
�>,

which means there is an one-to-one correspondence between Q and � in Lagrangian. Therefore,
in finite state and action MDP, the Lagrangian is not affected by full-rank basis embedding, and
therefore, the solution of full-rank basis embedding will be the same as the original LP.

B CoinDICE for Undiscounted and finite-horizon MDPs

In the main text, we consider the CoinDICE for infinite-horizon MDPs with discounted factor � < 1.
The algorithm can be generalized to undiscounted MDPs with � = 1 and finite-horizon MDPs.
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Undiscounted MDP. We have the dual form of the Q-LP as

⇢̃⇡ :=

⇢
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�
. (20)

Comparing with the (3), we have an extra normalization constraint. Specifically, if d(s, a) is feasible,
without the normalization constraint, c · d (s, a) will also be feasible for any c > 0. Therefore, the
optimization could be unbounded.

By change-of-variable ⌧ (s, a) = d
⇡(s,a)

dD(s,a) and feature embeddings of the stationary constraint in (20),
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Then, the CoinDICE confidence interval is achieved by applying the generalized empirical likelihood
to (21), i.e.,
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where �̄ (x; ⌧,�) := � (s0, a0) (⌧ (s0, a0)� ⌧ (s, a)).

A similar argument of Section 3.3 for discounted MDPs can be applied to (22), resulting in the
following confidence interval:

C
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where ` (x; ⌧,�, ⌫) := ⌧ · r + �
>� (x; ⌧,�) + ⌫ � ⌫ · ⌧ .

Remark (Normalization constraint): Although in the discounted MDPs, there is no scaling issue,
and thus the normalizaiton constraint is redudant, we still prefer to add the constraint in practice. It
does not only bring the benefits in optimization, but also enforce the normalization explicitly and
reduce the feasible set, leading to better statistical property.

Finite-horizon MDP. While we mainly focus on infinite-horizon MDPs with a discounted factor,
the dual method can be adapted to finite-horizon settings straightforwardly. For example, we have the
finite-horizon d-LP as
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dh(s,a):S⇥A!R+

HX

h=1

Edh
[rh (s, a)] (24)

s.t. d0 (s, a) = µ0 (s)⇡ (a|s) , (25)
dh+1 (s, a) = P⇡

⇤
dh (s, a) , 8h 2 {1, . . . , H} . (26)

Upon this finite-horizon formulation, we can derive the finite-horizon CoinDICE following the same
technique, i.e..
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and �h (x; ⌧h,�) := ⌧h (s, a)� (s0, a0)� ⌧h+1 (s0, a0)� (s0, a0).

C CoinBandit

MDPs are strictly more general than multi-armed and contextual bandits. Therefore, our estimator
can also be specialized accordingly for confidence interval estimation in bandit problems with slight
modifications. Without loss of generality, we consider the contextual bandit setting, while the
multi-armed bandits can be further reduced from contextual bandit.

17



Specifically, in the behavior-agnostic contextual bandit setting, the stationary distribution constraint
in (5) is no long applicable in bandit setting. We rewrite the policy value as

⇢̃⇡ := Es⇠µD,a⇠⇡(a|s) [r (s, a)]

=

⇢
max
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EdD [⌧ · r (s, a)]
��� dD·⌧ = µ

D
⇡,EdD [⌧ ] = 1

�
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where we reload the µD as the contextual distribution, which is unchanged for all policies, dD (s, a) =

µ
D (s)⇡b (a|s), ⌧ (s, a) := µ

D(s)⇡(a|s)
µD(s)⇡b(a|s)

, and � (s, a) denotes the feature mappings. We keep the
normalization constraint to ensure the validation of density ratio empirically.

We apply the same technique to (27), leading to the CoinBandit confidence interval estimator
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where the x := (s, a, s0, a0) is constructed by s ⇠ µ

D (s) , a ⇠ ⇡ (a|s) and (s0, a0) ⇠ d
D, and

N (x; ⌧,�) := � (s, a)� � (s0, a0) · ⌧ (s0, a0).
Similarly, the interval estimator in CoinBandit (28) can be calculated by solving a minimax optimiza-
tion.

Remark (Behavior-known contextual bandit): When the behavior policy ⇡b (a|s) is known, the
solution to (27) can be computed in closed-form as ⌧ (s, a) = ⇡(a|s)

⇡b(a|s)
. Then, the CoinBandit reduces

to

C
f

n,⇠
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⇢
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�
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Remark (Multi-armed bandit): Furthermore, these estimators (28) and (29) can be further re-
duced for multi-armed bandit. Specifically, we set all s equivalent, then, the s becomes the dummy
variable. The CoinBandit estimators (28) and (29) reduces for the off-policy evaluation in multi-
armed bandit. If the action number is finite, we can use tabular representation for ⌧ (a), eliminating
the approximation error.

Remark (Comparison to Karampatziakis et al. (2019)): Karampatziakis et al. (2019) considers
the off-policy contextual bandit confidence interval estimation. Although both CoinBandit and the
estimator in Karampatziakis et al. (2019) share the same asymptotic coverage, there are significant
differences:

• The estimator in Karampatziakis et al. (2019) is derived from empirical likelihood with reverse
KL-divergence, while our CoinBandit is based on generalized empirical likelihood with arbitrary
f -divergence.

• More importantly, compared to our CoinBandit, which is applicable for both behavior-agnostic
and behavior-known off-policy setting, the estimator in Karampatziakis et al. (2019) is only valid
for behavior-known setting.

• Computationally, the estimator in Karampatziakis et al. (2019) requires an extra statistics, i.e.,(
max
w

nX

i=1

log (nwi)
��Ew [⌧ � 1] = 0, w 2 K�2 log(·)

)
,

while such quantity is not required in CoinBandit, and thus saving the computational cost.

• Statistically, we provide finite sample complexity for CoinBandit in Theorem 4, while such sample
complexity is not clear for Karampatziakis et al. (2019).

D Stochastic Confidence Interval Estimation

We analyze the properties of the optimization for the upper and lower bounds and derive the practical
algorithm in this section.
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D.1 Upper and Lower Confidence Bounds

We first establish the distribution robust optimization representation of the confidence region:

Lemma 6 Let ⇢̂⇡ (w) = max⌧>0 min�2Rp Ew
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. (30)

Proof For any w 2 Kf , we rewrite the optimization (8) by its Lagrangian, which will be an estimate
of the policy value,
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Based on Lemma 6, we can formulate the upper and lower bounds:

Theorem 3 Denote the upper and lower confidence bounds of Cf
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by un and ln, respectively:
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where ` (x; ⌧,�) := ⌧ · r + �
>� (x; ⌧,�). For any (⌧,�,�, ⌘) that satisfies the constraints in (11),
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respectively. Therefore, the confidence bounds can be simplified as:
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Proof We first calculate the upper bound un using Lemma 6:
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where the switch between maxw2Kf
and max⌧>0 in (32) is immediate, (33) is due to the fact that

the objective is concave w.r.t. � and convex w.r.t. w and ⌧ , separately.

We apply Lagrangian to the inner constrained optimization over w, leading to
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where the last equation comes from the conjugate of f , and for any given (⌧,�,�, ⌘), the optimal w⇤
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The lower bound ln may be obtained in a similar fashion:
ln = min

w2Kf
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Again, we consider the Lagrangian
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and the optimal weight is
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D.2 Closed-form Solution for Reweighting

We consider a few examples of f -divergences in Theorem 3, and show how the weights can be
efficiently computed, for a given ⌧ and �.

• KL-divergence. To satisfy the conditions in Assumption 1, we select f (x) = 2x log x. Recall the
property that for any convex function f and any ↵ > 0, the conjugate function of g(x) = ↵f(x)
is equal to g⇤(y) = ↵f⇤(y/↵). Let f be the standard f -divergence function of KL-divergence
KL (w||bpn), i.e., f (x) = 2x log x. With g

0

⇤
(y) = f

0

⇤
(y/↵), equation (12) implies that the

following upper and lower bounds:
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This can also be verified by plugging the f (x) = 2x log x into (12) and considering w
>1 = 1.

• Reverse KL-divergence. With the f-divergence function f (x) = � log x for the reverse-KL
divergence, one has the following upper and lower bounds:

wl (x) = �� (` (x; ⌧,�) > ⌘l) (` (x; ⌧,�)� ⌘l)
�1

,

nX
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�
,

wu (x) = �� (⌘u > ` (x; ⌧,�)) (⌘u � ` (x; ⌧,�))�1
,

nX
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� (⌘u > ` (x; ⌧,�)) (⌘u � ` (x; ⌧,�))�1 =
1

�
,

where � (a > b) =

⇢
1 if a > b

0 otherwise
. This is obtained by plugging the f (x) = � log x into (12)

and considering w
>1 = 1, w > 0 and KKT conditions on the dual variables for w > 0.

Unfortunately the reverse KL-divergence does not satisfy the conditions in Assumption 1. Note
that this is the standard f-divergence function for empirical likelihood maximization problem, we
therefore also include it here for the sake of completeness.
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• �
2-divergence. Notice that the standard f-divergence function, i.e., f (x) = (x � 1)2, of �2-

divergence �
2 (w||bpn) := Ebpn

⇣
w

bpn

� 1
⌘2�

satisfies the conditions in Assumption 1. Consider

the lower bound calculation. Leveraging the closed-form solution of the following `2 projection
problem onto the simplex space w

>1 = 1 and w > 0 (Wang and Carreira-Perpinán, 2013):

arg min
w:w>1=1,w>0

nX

i=1

wi

` (xi; ⌧,�)

�
+

nX

i=1

1

bpn,i
(wi � bpn,i)2

=
p
bpn,i · arg min

v:v>
p

bpn=1,v>0

nX

i=1

✓
vi � (1� ` (xi; ⌧,�)

2�
) ·
p
bpn,i
◆2

, (here we let vi =
wip
bpn,i

)

the lower bound w`(x) is given by (for any i 2 {1, 2, . . . , n})
w`(xi) =

p
bpn,i · w⇤(xi)

=
p
bpn,i ·

✓
(1� ` (xi; ⌧,�)

2�
) ·
p
bpn,i + Gbpn

✓
(1� ` (x; ⌧,�)

2�
) ·
p
bpn,i
◆◆

+

,

where Gbpn
(y) =

1�
P|Sbpn |

i=1 yi·

p
bpn,i

P|Sbpn |
i=1 bpn,i

, Sbpn
is the set of indices in {1, . . . , n} in which any element j

satisfies y(j) + 1P
j

i=1 bpn,i

(1 �
P

j

i=1 y(i) ·
p
bpn,i) > 0. Here y(i) indicates the samples with the

i-th largest element of y. Using analogous arguments, by replacing ` with �` one can also define a
similar solution for the upper bound wu(x). Now suppose bpn,i = 1

n
, 8i. Then, we have

wl(xi) =

r
1

n
·
 
(1� ` (xi; ⌧,�)

2�
) ·
r

1

n
+ G 1

n

 
(1� ` (x; ⌧,�)

2�
) ·
r

1

n

!!

+

,

wu(xi) =

r
1

n
·
 
(1 +

` (xi; ⌧,�)

2�
) ·
r

1

n
+ G 1

n

 
(1 +

` (x; ⌧,�)

2�
) ·
r

1

n

!!

+

,

where G 1
n

(y) =
n�

P|S1/n|
i=1 yi·

p
n

|S1/n|
, S 1

n

is the set of indices in {1, . . . , n} in which any element j

satisfies y(j) + 1
j
(n �

p
n
P

j

i=1 y(i)) > 0. Here y(i) indicates the samples with the i-th largest
element of y. This can also be verified by plugging the f (x) = (x� 1)2 into (12) and considering
w

>1 = 1 and w > 0. In fact, the above can be generalized to the Cressie-Read family with
f (x) = (x�1)k�k(x�1)+k�1

k(k�1) .

• Reverse KL-divergence. With the f -divergence function f (x) = � log x for the reverse KL-
divergence, one has the following upper and lower bounds:

wl (x) = �� (` (x; ⌧,�) > ⌘l) (` (x; ⌧,�)� ⌘l)
�1

,

nX

i=1

� (` (x; ⌧,�) > ⌘l) (` (x; ⌧,�)� ⌘l)
�1 =

1

�
,

wu (x) = �� (⌘u > ` (x; ⌧,�)) (⌘u � ` (x; ⌧,�))�1
,

nX

i=1

� (⌘u > ` (x; ⌧,�)) (⌘u � ` (x; ⌧,�))�1 =
1

�
,

where � (a > b) =

⇢
1 if a > b

0 otherwise
. This is obtained by plugging the f (x) = � log x into (12)

and considering w
>1 = 1, w > 0 and KKT conditions on the dual variables for w > 0.

Unfortunately the reverse KL-divergence does not satisfy the conditions in Assumption 1. Note
that this is the standard f -divergence used in the vanilla empirical likelihood, we therefore also
include it here for the sake of completeness.

D.3 Practical Algorithm

In (13), we eliminate one level optimization, thus reduce the computational difficulty. Meanwhile,
SGDA for (13) could benefit from the attractive finite-step convergence. However, as observed
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Algorithm 1 CoinDICE: estimating upper confidence bound using KL-divergence and function
approximation.

Inputs: A target policy ⇡, a desired confidence 1 � ↵, a finite sample dataset D :=

{(s(j)0 , a
(j)
0 , s

(j)
, a

(j)
, r

(j)
, s

0(j))}n
j=1, optimizers OPT ✓, number of iterations K,T .

Set divergence limit ⇠ := 1
2�

2,1�↵

1 .
Initialize � 2 R, Q✓1 : S ⇥A! R, ⇣✓2 : S ⇥A! R.
for k = 1, . . . ,K do

for t = 1, . . . , T do
Sample from target policy a

(j)
0 ⇠ ⇡(s(j)0 ), a(j)0 ⇠ ⇡(s(j)0) for j = 1, . . . , n.

Compute loss terms:
`
(j) := (1��)Q✓1(s

(j)
0 , a

(j)
0 )+⇣✓2(s

(j)
, a

(j)) ·(�Q✓1(s
(j)

, a
(j))+r

(j)+�Q✓1(s
(j)0

, a
(j)0))

Update (✓1, ✓2) OPT ✓(L, ✓1, ✓2).
end for
Update (w,�) by (35) or (36)
Compute loss L :=

P
n

j=1 w
(j) · `(j).

end for
Return L.

in Namkoong and Duchi (2016), when � approaches 0, SGDA for (13) may suffer from high variance.
In this section, we consider two strategies to bypass such difficulty. We take the upper bound as an
example, and the lower bound can be handled similarly:

• Instead of using the optimal weights (12), Namkoong and Duchi (2016) suggests to keep
(w,�) in optimization to be updated simultaneously via gradients, i.e., targeting on solving
the Lagrangian (33) with SGDA directly. For example, with KL-divergence, this leads to
the update of wu in the t-th iteration as

w̃
(j) = exp

⇣
⌘t`

(j)
⌘⇣

w
(j)
⌘1�⌘t�

✓
1

n

◆⌘t�

and wu =
w̃

(j)

P
j
w̃(j)

, (35)

with stepsize ⌘t.
• The instability and high variance of solving (13) comes from unboundness of w induced by

arbitarry � during the optimization procedure. In other words, given a fixed (⌧,�), if we
can keep w 2 Kf satisfied, i.e.,

wu = argmax
KL(w||bpn)6 ⇠

n

hw, `i

) (wu,�
⇤) = argmax

w>1=1,w>0
argmin

�>0
hw, `i � �

✓
KL (w||bpn)�

⇠

n

◆

) (wu,�
⇤) =

8
<

:w̃
(j)
�⇤ := exp{`

(j)

�⇤
}; w

(j)
�⇤ :=

w̃
(j)
�⇤

P
w̃

(j)
�⇤

with
nX

j=1

w
(j)
�⇤ logw(j)

�⇤ =
⇠

n

9
=

; ,

(36)
the optimization will be stable.

Moreover, the major computation cost of optimization is updating the w, which is an O (n) operation.
Therefore, we update w less frequently, which corresponds to optimizing the equivalent form (10).
Incorporating these techniques into SGDA, we obtain the algorithm in Algorithm 1.

Remark (More regularization for stability): Directly solving a Lagrangian for LP may induce
instability, due to lack of curvature. To overcome such difficulty, the augmented Lagrangian
method (ALM) (Rockafellar, 1974) is the natural choice. Directly applying the ALM will introduce
the regularization h (Ebpn

[� (x; ⌧,�)]) where h denotes some convex function with minimum at zero.
Such regularization will not change the optimal solution (⌧,�) in (11) and the value [ln, un].

The ALM introduces extra computational cost in optimization since the regularization involves
empirical expectations inside a nonlinear function. We exploit alternative regularizations following the
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spirit of ALM, while circumventing the computational difficulty. Recall the fact that the regularization
on dual variable does not change the optimal solution (Nachum et al., 2019b, Theorem 4), i.e.

⌧
⇤ (s, a) =

⇢
argmax

⌧>0
EdD [⌧ · r (s, a)]

��EdD [� (x; ⌧,�)] = 0

�
(37)

=

⇢
argmax

⌧>0
EdD [⌧ · r (s, a)]� ↵Ep [h (⌧)]

��EdD [� (x; ⌧,�)] = 0

�
, (38)

where p is some distribution over S ⇥A.

We show the upper bound as an example, and the lower bound can be treated similarly. We have

(wu, ⌧
⇤) = argmax

w2Kf

⇢
argmax

⌧>0
Ew [⌧ · r (s, a)]

��Ew [� (x; ⌧,�)] = 0

�

= argmax
w2Kf

⇢
argmax

⌧>0
Ew [⌧ · r (s, a)]� ↵Ep [h (⌧)]

��Ew [� (x; ⌧,�)] = 0

�
, (39)

where the equality comes from Nachum et al. (2019b, Theorem 4) and the fact the regularization
Ep [h (⌧)] does not depend on w. Then, we can solve (39) alternatively for (wu, ⌧

⇤) by Lagrangian,
max
⌧>0

min
�

max
w2Kf

Ew

⇥
⌧ · r (s, a) + �

>� (x; ⌧,�)
⇤
� ↵Ep [h (⌧)] . (40)

Although the optimal �̃⇤ to (40) differs from �
⇤, (wu, ⌧

⇤) are the same. Once we have the (wu, ⌧
⇤),

we can recover the original Lagrangian ⇢̃⇡ (wu) = Ewu
[⌧ · r (s, a)], since Ewu

⇥
�
⇤>� (x; ⌧⇤,�)

⇤
=

0 in the original Lagrangian Ew (` (x; ⌧⇤,�⇤)) in (11) due to the KKT condition.

Comparing to the original ALM, the new regularization takes the advantage of ALM while keeps the
original computational efficiency.

E Proofs for Statistical Properties

In this section, we provide the detailed proofs for the asymptotic coverage Theorem 2 and the finite-
sample correction Theorem 4. For notation simplicity, we use sup, max and inf,min interchangeably.
With a little abuse of notation, we use

R
as
P

on discrete domain.

E.1 Asymptotic Coverage

Theorem 2 follows from a result in Duchi et al. (2016). The following notation will be needed:

• ` (x; ⌧,�) = (1� �)�>
� (s0, a0) + ⌧ (s, a)

�
r (s, a) + ��

>
� (s0, a0)� �

>
� (s, a)

�
;

• kfk1 :=
R
|f (s, a)| dD (s, a) dsda, and k� (s, a)k2 :=

p
h�,�i;

• kf (s, a)k
L2(dD) := EdD

⇥
f
2 (s, a)

⇤ 1
2 , H ⇢ L

2
�
d
D
�
, we define L

1 (H) be the space of
bounded linear functionals on H with kL1 � L2kH := sup

h2H
|L1h� L2h| for L1, L2 2

L
1 (H);

• p = dP

dµ
, with a Lebesgue measure µ, is the Radon-Nikodym derivative. Abusing notation a

bit, we use (Df (P ||Q) , D (p||q)), and (EP [·] ,Ep (·)) interchangeably.

Definition 7 (Duchi et al., 2016, Hadamard directionally differentiability) Let Q be the space of
signed measures bounded with norm k·k

H
. The functional T : P ! R is Hadamard directionally

differentiable at P 2 P tangentially to B ⇢ Q if for all H 2 B, there exists dTp (H) 2 R such
that for all convergent sequences tn ! 0 and kHn �Hk

H
! 0 that satisfies P + tnHn 2 P , the

following holds
T (P + tnHn)� T (P )

tn
! dTP (H) , as n!1.

We say T : P ! R has an influence function T
1 (x;P ) 2 R if

dTP (Q� P ) :=

Z
T

1 (x;P ) d (Q� P ) (x) ,

and EP

⇥
T

1 (x;P )
⇤
= 0.
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We consider f in Df satisfying the following assumption (Duchi et al., 2016),
Assumption 1 (Smoothness of f -divergence) The function f : R+ ! R is convex, three times
differentiable in a neighborhood of 1, f (1) = f

0 (1) = 0 and f
00 (1) = 2.5

Then, the following theorem, which slightly simplifies Duchi et al. (2016, Theorem 10), characterizes
the asymptotic coverage of the general uncertainty estimation,

Theorem 8 (General asymptotic coverage) Let Assumption 1 hold and H = {h (x; ⌧,�)}, where
h (x; ⌧,�) is Lipschitz and the space of (⌧,�) is compact. Denote B ⇢ Q be such that���
p
n

⇣
bPn � P0

⌘
�G

���
H

! 0 with G 2 B. Assume T : P ! R is Hadamard differentiable

at P0 tangentially to B with influence function T
1 (·;P0) and dTP is defined and continuous on the

whole Q, then,

lim
n!1

P
✓
T (P0) 2

⇢
T (P ) : Df (P ||Pn) 6

⇠

n

�◆
= P

�
�
2
1 6 ⇠

�
.

Denote the T (P ) = max⌧>0 min�2Rp EP [` (x; ⌧,�)] by convexity-concavity, our proof for The-
orem 2 will be mainly checking the conditions required by Theorem 8: i), Lipschitz continuity of
functions in H, and ii) Hadamard differentiability of T (P ).

We first specify the regularity assumption for stationary distribution ratio:

Assumption 2 (Stationary ratio regularity) The target stationary state-action correction rato is
bounded: k⌧⇤k

1
6 C⌧ < 1, and ⌧

⇤ 2 F⌧ where F⌧ is a convex, compact and bounded RKHS
space with bounded kernel function kk ((·, ·) , (s, a))k

F⌧
6 K.

The bounded ratio component of Assumption 2 is a standard assumption used in Nachum et al.
(2019a); Zhang et al. (2020a); Uehara et al. (2019). The latter part regarding F⌧ is required for the
existence of solutions. In fact, the RKHS assumption F⌧ is already quite flexible, and it includes
deep neural networks by adopting the neural tangent kernels (Arora et al., 2019).

With Assumption 2, we can immediately obtain
T (P ) = max

⌧2F⌧

min
�2Rp

EP [` (x; ⌧,�)] = min
�2Rp

max
⌧2F⌧

EP [` (x; ⌧,�)]

by the minimax theorem (Ekeland and Temam, 1999, Proposition 2.1). By this equivalence, we will
focus on the min-max form.

Since r 2 [0, Rmax], one has for every ⇡ that Q⇡ 6 Rmax/(1 � �). Therefore, it is reasonable to
assume the following regularity conditions for �:

Assumption 3 (Embedding feature regularity) There exist some finite constants C� and C�, such
that k�k2 6 C� , k�k2 6 C�. Moreover, � (s, a) is L�-Lipschitz continuous.

This assumption implies
���>

�
��
1

6 k�k2 k�k2 6 C�C� and Lipschitz continuity of �>
� (s, a).

We define F� := {�| k�k2 6 C�}.

Lemma 9 (Lipschitz continuity) Under Assumptions 2 and 3, function ` satisfies k` (x; ⌧,�)k
1

6
M and is C`-Lipschitz in (⌧,�), for some proper finite constants M and C`.

Proof We first show the boundedness claim. By the definition of ` (x; ⌧,�), one has
k` (x; ⌧,�)k

1

6 (1� �)
���>

�
��
1

+
��⌧ (s, a)

�
r (s, a) + ��

>
� (s0, a0)� �

>
� (s, a)

���
1

6 (1� �)
���>

�
��
1

+ k⌧ (s, a)k
1

�
r (s, a) + ��

>
� (s0, a0)� �

>
� (s, a)

�

6 (1� �)C�C� + C⌧ (Rmax + (1 + �)C�C�)
= (C⌧ + 1) (1� �)C�C� + C⌧Rmax := M.

5That f(1) = 0 is required in the definition of f-divergence. If f 0 (1) 6= 0, one can “lift” it by f̄ (t) = f(t)�
f 0(1)(t� 1) so that the new function satisfies f̄ 0 (1) = 0. f 00 (1) = 2 is assumed for easier calculation without
loss of generality, as discussed in Duchi et al. (2016). For example, one can use f (t) = 2x log x� 2 (x� 1)
for modified KL-divergence, f (t) = (x� 1)2 for �2-divergence, and f (t) = � log x+ (x� 1)� 1

2 (x� 1)2

for reverse KL-divergence.
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We equip F⌧ ⇥ F� with the norm
k(⌧,�)k := k⌧k

F⌧
+ k�k2 , (41)

Then, we show the Lipschitz continuity of ` (x; ⌧,�) in (⌧,�),
|` (x; ⌧1,�1)� ` (x; ⌧2,�2)|
6 (1� �)

���� (s0, a0)
> (�1 � �2)

���+
���⌧2 (s, a) (�1 � �2)

> (�� (s0, a0) + � (s, a))
���

+
��(⌧1 (s, a)� ⌧2 (s, a))

�
r (s, a) + ��

>

1 � (s0, a0)� �
>

1 � (s, a)
���

6 (1� �) ((2 + �)C� + C⌧ ) k�1 � �2k2 + (Rmax + (1 + �)C�C�) |⌧1 (s, a)� ⌧2 (s, a)| ,
6 (1� �) ((2 + �)C� + C⌧ ) k�1 � �2k2 + (Rmax + (1 + �)C�C�)K k⌧1 � ⌧2kF⌧

,

6 C`

�
k�1 � �2k2 + k⌧1 � ⌧2kF⌧

�
,

which implies the ` (x; ⌧,�) is C`-Lipschitz continuous with
C` := max {(1� �) ((2 + �)C� + C⌧ , (1 + �)C�C�)K} .

We now check the Hadamard directional differentiability of T (P ). The following proof largely
follows Duchi et al. (2016); Römisch (2014).

Lemma 10 (Hadamard Differentiability) Under Assumptions 2 and 3, the functional T (P ) =
min�2F�

max⌧2F⌧
EP [` (x; ⌧,�)] is Hadamard directionally differentiable on P tangentially to

B (H, P0) ⇢ L
1 (H) with derivative

dTP (H) :=

Z
` (x; ⌧⇤,�⇤) dH (x) ,

where (�⇤
, ⌧

⇤) = argmin
�2F�

argmax
⌧2F⌧

EP0 [` (x; ⌧,�)].

Proof For convenience, we define

H̃ (⌧,�) :=

Z
` (x; ⌧,�) dH (x) ,

where H is associated with a measure in Q.

We first show the upper bound convergence. For Hn 2 B (H, P0) with kHn �Hk
H
! 0, for any

sequence tn ! 0, we have
T (P0 + tnHn)� T (P0)

= min
�2F�

max
⌧2F⌧

⇣
EP0 [` (x; ⌧,�)] + tnH̃n (⌧,�)

⌘
� min

�2F�

max
⌧2F⌧

EP0 [` (x; ⌧,�)]

6 max
⌧2F⌧

⇣
EP0 [` (x; ⌧,�

⇤)] + tnH̃n (⌧,�
⇤)
⌘
� EP0 [` (x; ⌧,�

⇤)]

6 max
⌧2F⌧

tnH̃n (⌧,�
⇤) .

Denote ⌧
⇤

n
= argmax

⌧2F⌧
H̃n (⌧,�⇤), by definition, we have

max
⌧2F⌧

H̃n (⌧,�
⇤)� max

⌧2F⌧

H̃ (⌧,�⇤) 6 H̃n (⌧
⇤

n
,�

⇤)� H̃ (⌧⇤
n
,�

⇤) 6
���H̃n � H̃

���
H

! 0.

Therefore, we obtain

lim sup
n

1

tn
(T (P0 + tnHn)� T (P0)) 6 H̃ (⌧⇤,�⇤) .

For the lower bound part, we have
T (P0 + tnHn)

= min
�2F�

⇢
max
⌧2F⌧

⇣
EP0 [` (x; ⌧,�)] + tnH̃n (⌧,�)

⌘�

= min
�2F�

n
EP0 [` (x; ⌧n (�) ,�)] + tn

⇣
H̃n (⌧n (�) ,�)� H̃ (⌧n (�) ,�)

⌘
+ tnH̃ (⌧n (�) ,�)

o

6 min
�2F�

n
EP0 [` (x; ⌧n (�) ,�)] + tn

���H̃n � H̃

���
H

+ tn

���H̃
���
H

o

6 min
�2F�

EP0 [` (x; ⌧n (�) ,�)] +O (1) · tn,
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where ⌧n (�) = argmax
⌧2F⌧

⇣
EP0 [` (x; ⌧,�)] + tnH̃n (⌧,�)

⌘
.

Denote the set of ✏-ball of solutions w.r.t. P as

SP (✏) :=

⇢
� 2 F� : max

⌧2F⌧

EP [` (x; ⌧,�)] 6 min
�2F�

max
⌧2F⌧

EP [` (x; ⌧,�)] + ✏

�
.

Then, �⇤

n
2 SP0+tnHn

(0) implies �⇤

n
2 SP0 (ctn), which in turn implies the sequence of �⇤

n
has a

subsequence �̃
⇤

m
that converges to �

⇤ 2 SP0 (0).

It is straightforward to check the Lipschitz continuity of ¯̀(�) := max⌧ E [` (x; ⌧,�)] as��¯̀(�1)� ¯̀(�2)
��

6 (1� �) k�1 � �2k2 Eµ0⇡ [k�s0,a0k]2 +
����max
⌧2F⌧

E
⇥
⌧ · r + �

>

1 �
⇤
� max

⌧2F⌧

E
⇥
⌧ · r + �

>

2 �
⇤����

6 (1� �) k�1 � �2k2 Eµ0⇡ [k�s0,a0k]2 +max
⌧2F

��E
⇥
⌧ · r + �

>

1 �
⇤
� E

⇥
⌧ · r + �

>

2 �
⇤��

6 (1� �) k�1 � �2k2 Eµ0⇡ [k�s0,a0k]2 +max
⌧2F

���E
h
(�1 � �2)

> �
i���

6 ((1� �)C� + C⌧ (1 + �)C�) k�1 � �2k2 .
Therefore, with �̃

⇤

n
! �

⇤, we have

lim
m

˜̀
⇣
�̃
⇤

m

⌘
= min

�

˜̀(�) = T (P0) ,

and due to the optimality, for any m,
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where ⌧m

⇣
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h
`

⇣
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.

Since �̃
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where we use ` (⌧,�;x) is Lipschitz continuous. Therefore, we obtain

lim inf
n

1

tn
(T (P0 + tnHn)� T (P0)) > H̃ (⌧⇤,�⇤) .

Theorem 2 (Asymptotic coverage) Under Assumptions 1, 2, and 3, if D contains i.i.d. samples and
the optimal solution to the Lagrangian of (5) is unique, we have

lim
n!1

P
⇣
⇢⇡ 2 C

f

n,⇠

⌘
= P

⇣
�
2
(1) 6 ⇠

⌘
. (42)

Therefore, Cf

n,�
2,1�↵

(1)

is an asymptotic (1� ↵)-confidence interval of the value of the policy ⇡.

Proof The proof is to verify the conditions in Theorem 8 hold. By Lemma 6, we can rewrite

P
⇣
⇢⇡ 2 C

f

n,⇠

⌘
= P

�
⇢⇡ 2

�
⇢̂⇡ (w)

��w 2 Kf

 �
,
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where, according to the boundedness assumption on � in Assumption 3,
⇢̂⇡ (w) = max

⌧>0
min
�2F�

Ew

⇥
⌧ · r + �

>� (x; ⌧,�)
⇤
= min

�2F�

max
⌧>0

Ew

⇥
⌧ · r + �

>� (x; ⌧,�)
⇤
.

With Lemma 9 and Lemma 10, the conditions in Theorem 8 are satisfied. We apply Theorem 8 on
the unique optimal solution (⌧⇤,�⇤) = argmin

�2F�
argmax

⌧>0 EP0 [` (x; ⌧,�)]. We have dTP is a
linear functional on the space of bounded measures and

dTP0 (H) =

Z
` (x; ⌧⇤,�⇤) dH (x) ,

with the canonical gradient given by T
1 (·;P0) = ` (x; ⌧⇤,�⇤)� EP0 [` (x; ⌧

⇤
,�

⇤)].

E.2 Finite-Sample Correction

The previous section considers the asymptotic coverage of CoinDICE. We now analyze the finite-
sample effect for the estimator, for the special case f (x) = (x� 1)2. Thus, Df is the �2-divergence.

Consider the optimization problem,

max
w2Rn

w
>
z, s.t. Df (w||bpn) 6

⇠

n
,w 2 Pn�1 (bpn) . (43)

The following result will be needed.

Lemma 11 (Namkoong and Duchi, 2017, Theorem 1) Let Z 2 [0,M ] be a random variable,
�
2 = V ar (Z) and s

2
n

= Ebpn

⇥
Z

2
⇤
� Ebpn

[Z]2 as the population and sample variance of Z,
respectively. For ⇠ > 0, we have"r

⇠

n
s2
n
� M⇠

n

#

+
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⇢
Ew [Z] |Df (w||bpn) 6
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n
,w 2 Pn�1 (bpn)

�
� Ebpn

[Z] 6
r

⇠

n
s2
n
.

Moreover, for n > max
n
2, M

2

�2 max {4�, 22}
o

, with probability at least 1� exp
⇣
� 3n�2

5M2

⌘
,

max
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⇢
Ew [Z] |Df (w||bpn) 6

⇠

n
,w 2 Pn�1 (bpn)

�
= Ebpn

[Z] +

r
⇠

n
s2
n
.

The follow is the symmetric version of Lemma 11, which can be obtained immediately by negating
the random variable Z. For completeness, we give the proof below, which is adapted from Namkoong
and Duchi (2017). Recall that the lower bound is obtained by solving the following:

min
w2Rn

w
>
z, s.t. Df (w||bpn) 6

⇠

n
, w 2 Pn�1 (bpn) . (44)

Lemma 12 (Lower bound variance representation) Under the same conditions in Lemma 11, for
⇠ > 0, we have"r

⇠

n
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n
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6 Ebpn
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.

Moreover, for n > max
n
2, M

2

�2 max {4�, 22}
o

, with probability at least 1� exp
⇣
� 3n�2

5M2

⌘
,

min
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,w 2 Pn�1 (bpn)
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= Ebpn
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n
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.

Proof Denote u = 1
n
� w, we have u

>1 = 0, and the optimization (44) can be written as

z̄ �max
u

u
> (z � z̄) , s.t. kuk22 6 ⇠

n
, u

>1 = 0, u 6 1

n
, (45)

with z̄ = 1
n

P
n

i=1 zi. Obviously, by the Cauchy-Schwartz inequality,

u
> (z � z̄) 6

r
⇠

n
kz � z̄k2 ,
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and the equality holds if and only if

ui =

p
⇠ (z � z̄)

n kz � z̄k2
=

p
⇠ (z � z̄)

n
p
ns2

n

.

Given the constraint u 6 1
n

, to achieve the maximum, one needs to ensure

max
i

p
⇠ (z � z̄)

n
p
ns2

n

6 1.

If this condition is satisfied, we have
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Since z 2 [0,M ], we have |zi � z̄| 6 M , to ensure the condition, we need ⇠M
2

ns2
n

6 1, s
2
n
> ⇠M
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n
.

Otherwise, suppose s
2
n
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⇠M
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n
, or equivalently ⇠s

2
n

n
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⇠
2
M

2

n
, then,

min
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� M⇠
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.

For the high-probability statement, when n > max
n
2, M

2

�2 max {4�, 22}
o

, and the event s2
n
> 3

64�
2

holds, s2
n
> ⇠M

2

n
. Following Maurer and Pontil (2009, Theorem 10), one can bound that

P (|sn � �| 6 a) 6 exp

✓
� na

2

2M2

◆
.

Setting a =
⇣
1�

p
3
8

⌘
� completes the proof.

With Lemma 11 and Lemma 12, we represent the confidence bounds with variance. We resort to an
empirical Bernstein bound applied to the function space F with bounded function h : X ! [0,M ],
using empirical `1-covering numbers, N1 (F , ✏, n),

Lemma 13 (Maurer and Pontil, 2009, Theorem 6) Let n > 8M2

t
and t > log 12. Then, with

probability at least 1� 6N1 (F , ✏, 2n) e�t, for any h 2 F ,

E [h]� Ebpn
[h] 6

r
18V arbpn

(h) t

n
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15Mt

n
+ 2

 
1 + 2

r
2t

n

!
✏.

Theorem 4 (Finite-sample correction) Denote by N1 (F⌧ , ✏, 2n) and N1 (F� , ✏, 2n) the `1-
covering numbers of F⌧ and F� with ✏-ball on 2n empirical samples, respectively. Let Df be
�
2-divergence. Under Assumptions 2 and 3, let M := (C⌧ + 1) (1� �)C�C� + C⌧Rmax and

C` := max {(1� �) ((2 + �)C� + C⌧ , (1 + �)C�C�)K}, then, we have

P (⇢⇡ 2 [lu � ⇣n, un + ⇣n]) > 1� 12N1 (F⌧ , ✏, 2n)N1 (F� , ✏, 2n) e
�

⇠

18 ,

where (ln, un) are the solutions to (11), ⇣n = 11M⇠
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C`✏ and ⇠ = �

2,1�↵

(1) .

When the VC-dimensions of F⌧ and F� (denoted by dF�
and dF�

, respectively) are finite, we have

P (⇢⇡ 2 [ln � n, un + n]) > 1� 12 exp
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� 1
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,

where c1 = 2c+ log dF⌧
+ log dF�

+
�
dF⌧

+ dF�
� 1
�
, and n = 11M⇠

6n + 2C`M
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✓
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◆
.

Proof We focus on the upper bound, and the lower bound can be bounded in a similar way. Define
(⌧⇤,�⇤) := argmax

⌧2F⌧

argmin
�

EdD [` (x; ⌧,�)]

⇣
bw⇤
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argmin
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Ew [` (x; ⌧,�)] .
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By definition and the optimality of �⇤, we have

⇢⇡ = EdD [` (x; ⌧⇤,�⇤)] 6 EdD

h
`

⇣
x; ⌧⇤, �̂⇤

⌘i
. (46)

Applying Lemma 13 and the Lipschitz-continuity of ` (x; ⌧,�) on F⌧ ⇥ F� , with probability at least
1� 6N1 (F⌧ , ✏, 2n)N1 (F� , ✏, 2n) e�t, we have
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where the second equation comes from Lemma 11 and the third line comes from setting t 6 ⇠

18

and the definition of �̂⇤. Combining this with (46), we may conclude that with probability at least
1� 6N1 (F⌧ , ✏, 2n)N1 (F� , ✏, 2n) e�

⇠

18 ,
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With the same strategy based on Lemma 12 and Lemma 13, we can also bound the finite-sample
lower bound correction that with probability at least 1� 6N1 (F⌧ , ✏, 2n)N1 (F� , ✏, 2n) e�

⇠

18 ,

⇢⇡ > max
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The first part of the theorem is then proved.

For the second part, by van der Vaart and Wellner (1996, Theorem 2.6.7), one can bound
N (F , ✏, 2n) 6 cVC (F)

�
16Mne

✏

�VC(F)�1 for some constant c. We set ✏ = M

n
and denote

dF = VC (F). Plugging this into the bound, we obtain

P (⇢⇡ 2 [ln � , un + ]) > 1� 12 exp

✓
c1 + 2

�
dF⌧

+ dF�
� 1
�
log n� ⇠

18

◆
,

where c1 and  are as given in the theorem statement.

F Implementing Principles of Optimism and Pessimism

Based on the discussion in Section 5, the optimism and pessimism principles can be implemented by
maximizing uD (⇡) and lD (⇡), respectively. In this section, we first calculate the gradientr⇡uD (⇡)
and r⇡lD (⇡), and elaborate on the algorithm details.

Since we will optimize the policy ⇡, we modify the confidence interval estimator in CoinDICE
slightly, so that ⇡ is an explicitly parameterized distribution. Concretely, we consider the samples
x := (s0, s, a, r) with s0 ⇠ µ0 (s), (s, a, r, s0) ⇠ d

D, which leads to the corresponding upper and
lower bounds with

˜̀(x; ⌧,�,⇡) := ⌧ · r + �
>�̃ (x; ⌧,�,⇡) ,
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where �̃ (x; ⌧,�,⇡) = (1� �)E⇡(a0|s0) [� (s0, a0)] + �E⇡(a0|s0) [� (s0, a0) ⌧ (s, a)] �
� (s, a) ⌧ (s, a).
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Proof We focus on the computation of r⇡uD (⇡) with the optimal (�⇤
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u
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u
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The case for the lower bound can be obtained similarly:
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>
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i
.

Now, we are ready to apply the policy gradient upon uD (⇡) or lD (⇡) to implement the optimism
for exploration or pessimism for safe policy improvement, respectively. We illustrate the details
in Algorithm 2.

Algorithm 2 CoinDICE-OPT: implementation of optimism/pessimism principle
Inputs: initial policy ⇡0, a desired confidence 1 � ↵, a finite sample dataset D := {x(j) =

(s(j)0 , s
(j)

, a
(j)

, r
(j)

, s
0(j))}n

j=1, number of iterations T .
for t = 1, . . . , T do

Estimate (�⇤

u
, ⌧

⇤

u
, w

⇤

u
) via Algorithm 1 for optimism. {(�⇤

l
, ⌧

⇤

l
, w

⇤

l
) for pessimism.}

Sample
�
x
(j)
 k
j=1
⇠ Dt, a

(j)
0 ⇠ ⇡t(s

(j)
0 ), a(j)0 ⇠ ⇡t(s(j)0) for j = 1, . . . , k.

Estimate the stochastic approximation to r⇡uDt
(⇡t) via (49). {r⇡lDt

(⇡t) via (50) for pes-
simism.}
Natural policy gradient update: ⇡t+1 = argmin

⇡
�h⇡,r⇡uDt

(⇡t)i+ 1
⌘
KL (⇡||⇡t).

{⇡t+1 = argmin
⇡
�h⇡,r⇡lDt

(⇡t)i+ 1
⌘
KL (⇡||⇡t) for pessimism.}

Collect samples E =
n
x
(j) = (s0, s, a, r, s0)

(j)
om

j=1
by executing ⇡t+1, Dt+1 = Dt [ E .

{Skip the data collection step in offline setting.}
end for
Return ⇡T .
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