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Abstract

In this paper, we develop a simple and fast online algorithm for solving a class of
binary integer linear programs (LPs) arisen in general resource allocation problem.
The algorithm requires only one single pass through the input data and is free of
doing any matrix inversion. It can be viewed as both an approximate algorithm for
solving binary integer LPs and a fast algorithm for solving online LP problems.
The algorithm is inspired by an equivalent form of the dual problem of the relaxed
LP and it essentially performs (one-pass) projected stochastic subgradient descent
in the dual space. We analyze the algorithm under two different models, stochastic
input and random permutation, with minimal technical assumptions on the input
data. The algorithm achieves O (m+/n) expected regret under the stochastic input
model and O ((m + logn)y/n) expected regret under the random permutation
model, and it achieves O(m+/n) expected constraint violation under both models,
where n is the number of decision variables and m is the number of constraints. In
addition, we employ the notion of permutational Rademacher complexity and derive
regret bounds for two earlier online LP algorithms for comparison. Both algorithms
improve the regret bound with a factor of \/m by paying more computational cost.
Furthermore, we demonstrate how to convert the possibly infeasible solution to a
feasible one through a randomized procedure. Numerical experiments illustrate the
general applicability and effectiveness of the algorithms.

1 Introduction

In this paper, we present a simple and fast online algorithm to approximately solve a general class
of binary (integer) linear programs (LP). Different specifications of the considered LP problem
cover a wide range of classic problems and modern applications: secretary problem [13]], knapsack
problem [17], resource allocation problem [29], generalized assignment problem [8]], network routing
problem [5]], matching problem [23], etc. From the perspective of integer LP, our algorithm is
an efficient approximate algorithm that features for provable performance guarantee. In general,
integer LP is NP-complete and the LP relaxation technique is widely used in designing integer LP
algorithm. Our algorithm is inspired by the relaxed LP, and it outputs an integer solution to the
relaxed LP (so that there is no need for a rounding procedure). The solution can thus be viewed as
an approximate solution to both the integer LP and the relaxed LP. From the perspective of online
LP, to the best of our knowledge, our algorithm is the most simple and efficient online LP algorithm
so far. Furthermore, the algorithm analysis is conducted under the two prevalent models: stochastic
input model and random permutation model. The stochastic input model assumes that the columns of
the LP together with the corresponding coefficients in the objective function are drawn i.i.d. from an
unknown distribution.

The contribution of this paper can be summarized in the following three aspects:
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e We develop a fast online algorithm to solve a general class of LPs. The algorithm identifies an
equivalent form of the dual problem and performs projected stochastic subgradient descent
to solve the dual problem. The online LP algorithms discussed in literature [3}[18} 24} 15, [20]
all involve solving scaled LPs throughout the process but our algorithm is free of solving
any linear programs or matrix inversions. Specifically, our algorithm has an O(nnz(A))
flop complexity (linear in the number of non-zero entries in A), while the previous OLP
algorithms all require solving O(logn) or O(n) of LPs (increasing to the full size over
time). For example, [3]] solved O(logn) LPs and [18] solved O(n) LPs. As far as we know,
the algorithm is the first of its kind and the most efficient OLP algorithm so far.

e We derive upper bounds for the regret and constraint violation of our algorithm with minimal
statistical assumptions. Under the stochastic input model (Section 3, we only assume the
boundedness of the LP entries. The assumption is weaker than [20] because we do not
require a strong convexity for the underlying stochastic program, and it is weaker than [21]]
for that we do not assume a finite support of the random coefficients. Under the random
permutation model (Section ), our assumption is also weaker than all previous works
[13, (18} 24, [15] in that we allow negative data values for the input of the LP. The relaxation
of the non-negativeness assumption entails a entirely different approach to analyze the
regret/competitiveness ratio. Specifically, our analysis utilizes both the structure of the
problem and the property of gradient-based algorithm, and incorporates concentration
arguments under both stochastic input and random permutation models.

e We perform more algorithm analyses under the random permutation model through the
notion of Permutational Rademacher Complexity [27] which is previously designed for the
analysis of transductive learning. We show how the notion can be used for analyzing online
LP algorithms or possibly more general online algorithms under the random permutation
model. The results show that two previous algorithms [3| 18] improves the regret bound
with a factor of y/m by paying more computational cost.

The algorithms developed in this paper can be viewed as a stochastic algorithm to solve large-scale
(integer) LPs. The literature on large-scale LP algorithms traced back to the early works on column
generation algorithm [14,9]]. In recent years, statistical structures underlying the input of LP have
been taken into consideration. Sampling-based/randomized LP algorithms are derived to handle large
number of constraints in the LP of Markov Decision Processes [[10}19]], the standard form of LP [30],
robust convex optimization [6]], etc. Compared to this line of works, our algorithms utilize the dual
LP and are free of solving any small-scale or reduced-size LP. Our algorithm can also be viewed as
an online and efficient version of the dual projected subgradient (DPG) algorithm for LP [4]]. Our
algorithm employs one column for subgradient descent in each iteration, whereas the dual project
subgradient algorithm requires the whole constraint matrix and conducts matrix multiplication in
each iteration. In addition, a class of backpressure/max-weight algorithms [25] are developed in
the control/queueing literature and the backpressure algorithm can be interpreted from a view of
pressure gradient. The key distinction between the backpressure algorithm and our algorithm lies in
the objective function: the backpressure algorithm aims to ensure the stability of a queueing networks
while our algorithm aims to maximize the revenue/reward obtained thoughout an online procedure.

Our work also complements to the literature of online convex optimization with constraints (0COwC)
[22}1311132]). The key difference between the online LP problem and the 0COwC problem is that when
computing the regret, the former considers a dynamic oracle where the decision variables are allowed
to take different values at each time period, while the later considers a stationary benchmark where
the the decision variables are required to be the same at each time period.

2 Integer Linear Program and Main Algorithm

2.1 Integer LP, Primal LP, and Dual LP

Consider the binary integer LP

max r'x (1)

s.t. Az <b
z;€{0,1}, j=1,...,n



where r = (r1,...,7,) " € R", A = (ay,...,a,) € R™*" and b = (by,...,b,,) " € R™. Here
a; = (aij,...,an,;) " denotes the j-th column of the constraint matrix A. The decision variables
x = (1,...,x,) " are binary integers. An LP relaxation of the above problem is

max r' x 2)
st. Az <b
0<zx<1.
The dual problem of (2) is

min b'p+1Ts 3)

st. ATp+s>r

p=0,5=>0,
where the decision variables are p € R™ and s € R". Throughout this paper, 0 and 1 denote all-zero
and all-one vector, respectively. We will use ILP (I), P-LP (2), and D-LP (3) to refer to both the

optimization problems and their optimal objective values. Evidently, we have the follow relation
between the optimal objective values,

ILP(1) < P-LP(2) = D-LP(d).
This relation lays the foundation for the wide application of LP relaxation in solving integer linear
programs [8]. Denote the optimal solutions to and with ¥, p;, and s*, and the optimal
solutions to (I)) as &*. From the complementary slackness condition, we know that

ot {1, r; > a;rpj;
J 0, m <aj;pj
forj=1,..,n. Whenr; = a;'—p;’;, the optimal solution 7 may take a non-integer value. The impli-

cation of this optimality condition is that the primal optimal solution * can be largely determined by
the dual optimal solution p;;.

“4)

2.2 Main Algorithm

The derivation of our algorithm relies on the following observation. If we denote the right-hand-side
b = nd, an equivalent form of the dual problem that only involves decision variables p can be
obtained from by plugging the constraints into the objective and removing the dual decision
variables s.

. 1< +
_ g7 T
min fo(p) =d'p+ Ejz::l (rj —a/p) 5)

where (-)T denotes the positive part function.

Now, we present the main algorithm — Simple Online Algorithm. It is a dual-based online algorithm
that observes the inputs of the LP sequentially and decides the value of decision variable z; immedi-
ately after each observation (r;, a;). At each time ¢, it updates the vector with the new observation
(r¢+, a+) and projects to the non-negative orthant to ensure the dual feasibility.

The key of the algorithm is the updating formula for p,, namely Step 5 in Algorithm|[I] For two

vectors u, v € R™, wV v = (max{uy,v1}, ..., max{tm,, v, }) ' denotes the elementwise maximum
operator. Specifically, the update from p; to p;4; can be interpreted as a projected stochastic
subgradient descent method for optimizing the problem (5). Concretely, the subgradient of the ¢-th
term in (3)) evaluated at p; is as follows,
+
8p(dTp+(rt—atTp) ) :d—atI(rt>atTp)‘ =d — a:z;
D=Dt¢

Db=Dt¢

where the second line is due to the specification of x; as the step 4 in the Algorithm|I] Throughout this
paper, I(-) denotes the indicator function. The dual updating rule indeed implements the stochastic
subgradient descent in the dual space. We defer the rigorous analyses of the algorithm performance
and the choice of the step size 7 to later sections. As for the computational aspect, Algorithm [I]
requires only one pass through the data and is free of matrix multiplications.



Algorithm 1 Simple Online Algorithm
: Input: d = b/n

. Initialize p; =0
fort=1,...,ndo

Set

B LN =

. _{1, re > a p;
L =
0, re<a/p

5 Compute

Pir1 =Pt + v (arzy — d)
Pi+1=Pi+1 VO

A

end for
: Output: & = (x1, ..., Tp)

3

2.3 Performance Measures

We analyze the algorithm under two metrics — optimality gap/regret and constraint violation. The
optimality gap measures the difference in objective values for the algorithm output and the true
optimal solution. The bi-objective performance measure is widely used in the literature on the
online convex optimization with constraints (0COwC). Specifically, the same objective is considered
in [22}1311 132} [1} [2]]. In the following two sections, we will formalize the assumptions and analyze
the algorithm in two different settings.

3 Stochastic Input Model

In this section, we formalize and analyze the algorithm under the statistical assumption proposed
in the last section. Concretely, we discuss the performance of Algorithm [I]when the inputs of an
(integer) LP follow the stochastic input model which assumes the column-coefficient pair (r;,a;)’s
are i.i.d. generated. LPs and integer LPs that satisfy this model naturally arise from some application
contexts where each pair represents a customer/order/request. In particular, at each time ¢, a, can be
interpreted as a customer request for the resources while r, represents the revenue that the decision
maker receives from accepting this request. The binary decision variable x; represents the decision
of acceptance or rejection of the t-th request.

3.1 Assumptions and Performance Measures

The following assumption formalizes the statistical assumption on (r;, @;) in an i.i.d. setting.
Assumption 1 (Stochastic Input). We assume

(a) The column-coefficient pair (r;,a;)’s are i.i.d. sampled from an unknown distribution P.

(b) There exist constants 7 and @ such that |rj| < 7 and ||a;|| < aforj=1,...,n.

(c) The right-hand-side b = nd and there exist d,d € R, suchthatd < d; < dfori =1,...,m.

We emphasize that the constants 7, @, d and d only serve for analysis purpose and are assumed
unknown a priori for algorithm implementation. Also, we allow dependence between components
in (75, a;)’s. Besides the boundedness, we have put minimal assumption on r; and a;. For part
(c), the assumption on right-hand-side side provides a service level guarantee, i.e., it ensures a fixed
proportional of customers/orders can be fulfilled as the total number of customers (market size) n
increases. We use = to denote the family of distributions that satisfy Assumption|I](b).

Next, we formally define the regret and the constraint violation. Denote the optimal objective values
of the ILP and P-LP as Q) and R, respectively. The objective value obtained by the algorithm

output is
n

Rn = E rjxj.

Jj=1



The quantity of interest is the optimality gap @)} — R,,, which has an upper bound @} — R,, <
R} — R, The expected optimality gap is A” = E [R} — R,,] where the expectation is taken with
respect to (7, a;)’s. Define regret as the worst-case optimality gap
A, = sup A”.
PeE

Thus the regret bound derived in this paper has a two-fold meaning: (i) an upper bound for the
optimality gap of solving the integer LP; (ii) a regret bound for the regret of solving online LP problem.
Provided that we do not assume any knowledge of the distribution P, this type of distribution-free
bound is legitimate. We emphasize that the definition of regret for the canonical online LP problem
differs from that for the online convex optimization problem [16] where the decision variables for the
offline optimal are restricted to take the same value over time; in contrast, here we allow 1, ..., x,,
to take different values and thus consider a dynamic oracle in defining R;;. Another performance
measure for Algorithm I]is the constraint violation,

v(x) = | (Az — )" |5

where A is the constraint coefficient matrix, b is the right-hand-side constraint, and « is the solution.
We aim to quantify the expected Ly norm of the constraint violation. Similar to the regret, we seek
for an upper bound for the constraint violation that is not dependent on the distribution P.

3.2 Algorithm Analyses

First, we analyze the dual price sequence p;’s. The following lemma states that the dual price p;’s
under Algorithm [T]will remain bounded throughout the process, and this is true with probability 1.

Lemma 1. Under Assumption if the step size v; < 1 in Algorithm then ||p*||2 < %, and

2F a+d)? -
med»

with probability 1 for t = 1,...,n, where p,’s are specified by Algorithm|I]

P2 <

Essentially, this boundedness property arises from the updating formula. The intuition is that if the
dual price p; becomes large, then most of the “buying” requests (with a; being positive) will not be
rejected, and this will lead to a decrease of the dual price when computing p;11. As we will see later,
the norm of p; will appear frequently in the algorithm performance analyses. Therefore the implicit
boundedness of p; becomes important in that it saves us from doing explicit projection. On one hand,
projecting p; into a compact set at every step might be computational costly; on the other hand, this
compact set requires more prior knowledge on underlying LP.

Theorem 1. Under Assumptionif the step size v = ﬁ fort =1,...,n, the regret and expected

constraint violation of Algorithm|l|satisfy
E[R; — R,

E ()] < (

hold for all m,n € N and distribution P €

<m(a+d)>*/n
d

@ +d)” +m(a+J)) N

2r +m(a +

I

[1]

The number of constraints m decides the dimension of the dual price vectors p;’s. Both the regret
and the expected constraint violation is O(m+/n). Algorithmconducts subgradient descent updates
in the dual space but the performance is measured by the primal objective. The key idea for the
proof of Theorem [I]is to establish the connections between primal objective, dual objective, and
constraints violation through the lens of the updating formula for p;. The proof mimics the classic
analysis for convex online optimization problems [16]. This provides an explanation for why the
seemingly related problems of online LP and online convex optimization with constraints (0COwC)
are studied separately in the literature. On one hand, the online LP literature has been focused on
studying the primal objective value as the performance measure. On the other hand, the 0COwC
problem [22, 31} |32] also studied mainly the primal objective under online stochastic subgradient
descent algorithms. However, it is the dual problem of online LP that corresponds to a special form
of the primal problem in the 0COwC literature. Our contribution is to identify this correspondence and
to establish the primal-dual connection for online LP problem when applying stochastic subgradient
descent.



4 Random Permutation Model

In this section, we consider a random permutation model where the column-coefficient pair (r;, a;)
arrives in a random order. The values of (r;, a;)’s can be chosen adversarially at the start. However,
the arrival order of (7, a;)’s is uniformly distributed over all the permutations. There are two ways
to interpret Algorithm[TJunder this random permutation model. First, it can be interpreted as an online
algorithm that solves an online LP problem under data generation assumptions that are weaker than
the i.i.d. assumptions discussed in the last section. The stochastic input model therefore can be viewed
as a special case of the random permutation model. Second, from the perspective of solving integer
LPs, the permutation creates the randomness for integer LPs when there is no inherent randomness
with the coefficients. As we will see, this artificially created randomness is sufficient to provide
provable performance guarantee for Algorithm [ which is comparable to the case of the stochastic
input model. In this section, we analyze the regret and the constraint violation of Algorithm [[junder
the random permutation model, and later in Section [5} we provide a more systematic treatment of the
random permutation model and analyze the performance of two previously proposed algorithms.

4.1 Assumption and Performance Measures

In parallel to the stochastic input model, we formalize the random permutation model as follows.

Assumption 2 (Random Permutation). We assume
(a) The column-coefficient pair (r;, a;) arrives in a random order.
(b) There exist constants 7 and @ such that |rj| < 7 and ||aj|| < aforj=1,...n.

(c) The right-hand-side b = nd and there exist d,d € R, suchthatd < d; < dfori =1,...,m.

Assumption 2] part (b) and (c) are identical to the stochastic input model. Denote the input data set
D = {(rj,a;) : 1 < j < n}. Part (a) in Assumption[2]states that we observe a permuted realization
of the data set. Additionally, we make the following assumption on the data set D.

Assumption 3. The problem inputs are in a general position, namely for any price vector p, there
can be at most m columns such that a;'—p =r;.

This assumption is not necessarily true for all the data set D. However, as pointed out by [11]], one
can always randomly perturb r,’s by arbitrarily small amount. In this way, the assumption will be
satisfied, and the effect of this perturbation on the objective can be made arbitrarily small. Define
zj(p) =I(r; > aij) and z(p) = (x1(p), ..., n(P)). Lemmatells that x(p;;) should be feasible
and close to the primal optimal solution.

Lemma 2 (Lemma 1 in [3]). x;(p;,) < ] forall j = 1,...,n and under Assumption z;(p})
and x; differs for no more than m values of j. It implies that, under Assumption if one uses the
optimal dual solution p}, in the thresholding rule, the obtained solution will no greater than the
primal optimal solution and they will be different for at most m entries.

As for the performance measure, we use the same notations as in Section[3.1} The expected optimality
gap 62 = R — E[R,]. Throughout this section, the expectation is always taken with respect to
a random permutation on the data set D, unless otherwise stated. Given the data set D, R is a
deterministic quantity, so it is unnecessary to take an expectation for it. Define regret as the worst-case
optimality gap
6p = sup 6°
De=p

where Zp denotes all the data sets that satisfy Assumption [2|(b) and Assumption |3} In this way, the
regret quantifies the worst-case performance of the algorithm for all possible inputs data D.

4.2 Algorithm Analyses

First, the following lemma states that the boundedness property of the dual price remains the same as
in the stochastic input model. Its proof is identical to the stochastic input model, since the proof of
Lemma only relies on the boundedness assumption on (r;, a;)’s but not the statistical assumption.



Lemma 3. Under Assumption[2land Assumption 3] if the step size v, < 1 in Algorithm[I} we have

ol < 5, and

27 +m(a + d)?
d

with probability 1 for all t, where p,’s are specified by Algorithm([l]

1Pl < +m(a+d).

To facilitate our derivation, we define a scaled version of the primal LP @I)

max Z T;Tj (s-S-LP)

0<z;<1forj=1,..,s
for s = 1, ..., n. Denote its optimal objective value as .
Proposition 1. For s > max{16a2, ! e} the following inequality holds

Ygipy > Lpe o™ _Tlogs  mr ©)

S

s “n " n dy/s s
foralls <n €Nt andD € Ep.

Intuitively, in the random permutation model, the observations {(r;,a;)}7_; collected until time
s are less informative to infer the future observations than the case of the stochastic input model.
However, Proposition|[I]tells that the scaled LP constructed based on the first s observations
will achieve a similar expected optimal objective value (after scaling) compared with the original
problem with all n observations. Note that E[R?]/s = E[R}]/n is evidently true in the stochastic
input model, where the expectation is taken with respect to the distribution P. The additional terms on
the right-hand-side of (@) captures the information toll (on the order of log s/+/s) for the assumption
relaxation from the stochastic input model to the random permutation model.

Theorem 2. Under Assumptlon ' and if the step size v; = 1n fort = 1,...,n, the regret and
expected constraint violation of Algorithm[l]satisfy

R;, —E[R,] <O ((m +logn)y/n)
E[v(z)] < O(my/n)

forallm,n € Nt and D € Zp.

Compared to the stochastic input model, the regret upper bound under random permutation model
contains an extra term of O(+/nlogn), while the constraint violation in two models enjoys the same
upper bound. Note that Proposition [[]and Theorem 2] do not require the non-negativeness assumption
of the LP input. As far as we know, this is the first online LP analysis under the random permutation
model without the non-negativeness assumption [24} 3| [18} [15].

S Performance Analyses of Two ‘“‘Slower” Algorithms

In this section, we analyze the regret of two “slower” algorithms [3| [18]] of online LP under the
random permutation model. Since they all involved solving scaled LPs, they are slower than the
algorithm proposed in this paper. Both [3] and [18] derive competitiveness ratio guarantee while we
derive sublinear regret upper bound; also we relax the non-negativeness assumptions on the entries
a;; in the constraint matrix.

Recall that in Proposition[I] we establish the connection between the optimal solutions of the scaled
LP and the original LP. Now we extend the result and connect history and future observations (under
the random permutation model) in a more systematic way. The following proposition quantifies the
difference of objective value or constraint consumption between the past and future observations

based on the same dual vector p, and the expected difference is roughly on the order of 4/ %



Proposition 2. [f {(r;, a;)}}_, is a random permutation of dataset D and satisfy Assumption we

have
[ n t _ —
1 1 47 24/27mlogn
E |sup Z ril(r; > a;-rp) - = erf(rj > a;-rp) < - + : g
P20 n—t S t = Vmin{t,n —t} /min{t,n — t}
i n t _ —
1 1 4a 2¢/2a?mlogn
E [su ai;I(r; >a]p)— = aijl(rj > a] < +
o | —t j;l Ay >a;p) =5 ; iy >a;p) Vmin{t,n —t} /min{t,n — t}

forany1 <i<m,1<t<n-1

The proof of the above proposition builds upon the notion of permutational Rademacher Complexity
[27]. Tt first bounds the left hand with the permutational Rademacher Complexity of function
class Fp = {fp : fp(r,a) =71 (r > a”p)}. Then it mimics the analysis in [27] and relates the
permutational Rademacher Complexity with the conditional Rademacher Complexity of J, while the
latter has a natural upper bound based on Massart’s Lemma.

5.1 Regret Bounds for Two “Slower” Algorithms

The Dynamic Learning Algorithm was first proposed in [3] and then refined in [20] (See Algorithm
in supplementary document). The idea is to construct a dual price p; at each time ¢ based on solving
a scaled LP problem with the first ¢ — 1 observations, and then to use p; to decide the value
of x;. The algorithm is much slower than Algorithm I]since at each iteration, an LP (of growing size)
is solved to compute the dual price. For the analysis, the PRC theory presented earlier thus provides
a machinery to relate the evaluation of p; on the past ¢t — 1 samples with that of the incoming sample
at time ¢.

Theorem 3. Under Assumption [2land 3} the regret and expected constraint violation of the Dynamic
Learning Algorithm ([13, 120]) satisfy

R —E[R,] < O (v/mn)

E[Az — b] < O(v/mnlogn)

forallm,n € NV and D € Zp. Here x is the output of the Dynamic Learning Algorithm.

Theorem [3| shows that the regret and constraint violation can be reduced by a factor of O(y/m)
compared with Algorithm[I] with the price of computation cost.

The Primal-Beats-Dual Algorithm (See Algorithm 3]in the supplementary document) was proposed
in [18] and it can be viewed as a primal version of the Dynamic Learning Algorithm. At each time ¢,
it solves the primal scaled LP (s-S-LP) and projects the primal optimal solution :E,E” to a binary value.
Therefore it also involves solving an LP at each time period and is slower than Algorithm T}

Theorem 4. Under Assumption 2|and B} the regret and expected constraint violation of the Primal-
Beats-Dual Algorithm [18] satisfy

R —E[R,] <O (v/mn)

Elv()] < O(vmnlogn)

forallm,n € Nt and D € Zp.

Theorem E] states that the regret and constraint violation of Algorithm are on the order of O(y/mn).
The analysis of objective value builds upon the Proposition [I] and the analysis of the constraint
violation employs a backward super-Martingale argument. Like Algorithm 2] the extra computation
cost here also helps improve the algorithm performance in terms of m.

The numerical experiments and the proofs for all the theorems in this paper are included in the
supplementary materials. Also, we present a randomized approach to convert an infeasible solution
to a feasible one with provable guarantee.
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