
Appendix

A1 Two Algorithms in Literature

The two algorithm discussed in Section 5.1 are Algorithm 2 and Algorithm 3.

Algorithm 2 Dynamic Learning Algorithm (first proposed in [3] and then refined in [20])

1: Input: d
2: Let p1 = 0
3: for t = 1, 2, ..., n do
4:

xt =

{
1, if rt > a>t pt

0, if rt ≤ a>t pt

5: The scaled primal LP is

max

t∑
j=1

rjxj

s.t.
t∑

j=1

aijxj ≤ tdi, i = 1, ...,m

0 ≤ xj ≤ 1, j = 1, ..., t

6: Solve its dual problem and obtain the optimal dual variable pt+1

pt+1 = arg min
p≥0

m∑
i=1

dipi +
1

t

t∑
j=1

(
rj −

m∑
i=1

aijpi

)+

7: end for

Algorithm 3 Primal-beats-dual Algorithm [18]

1: Input: d
2: Let p1 = 0
3: for t = 1, 2, ..., n do
4: Solve the scaled LP

max

t∑
j=1

rjxj

s.t.
t∑

j=1

aijxj ≤ tdi, i = 1, ...,m

0 ≤ xj ≤ 1, j = 1, ..., t

5: Denote the optimal solution as x̃(t) = (x̃
(t)
1 , ..., x̃

(t)
t)

6:

xt =

{
1, with probability x̃(t)

t

0, with probability 1− x̃(t)
t

7: end for

11

B1 Concentration Inequalities under Random Permutation

Lemma 4. Let U1, ..., Un be a random sample without replacement from the real numbers {c1, ..., cN}. Then
for every s > 0,

P(|Ūn − c̄N | ≥ s) ≤



2 exp
(
− 2ns2

∆2
N

)
(Hoeffding),

2 exp
(
− 2ns2

(1−(n−1)/N)∆2
N

)
(Serfling),

2 exp
(
− ns2

2σ2
N

+s∆N

)
(Hoeffding-Bernstein),

2 exp
(
− ns2

mσ2
N

)
if N = mn (Massart),

where c̄N = 1
N

N∑
i=1

ci, σ2
N = 1

N

N∑
i=1

(ci − c̄N)2 and ∆N = max
1≤i≤N

ci − min
1≤i≤N

ci.

Proof. See Theorem 2.14.19 in [28].

B2 Proof of Lemma 1

Proof. By taking expectation with respect to the elements in (5), the function fn(p) in (5) can be viewed as a
sample average approximation of the following stochastic program

min
p

f(p) = d>p + E(r,a)∼P

[(
r − a>p

)+
]

(SP)

s.t. p ≥ 0.

Denote the optimal solution to (SP) as p∗. For p∗, we have

d‖p∗‖1 ≤ dTp∗
(a)

≤ Er ≤ r̄,
where inequality (a) is due to that if otherwise, p∗ cannot be the optimal solution because it will give a larger
objective value of f(p) than setting p = 0. Given the non-negativeness of p∗, we have ‖p∗‖2 ≤ ‖p∗‖1. So we
obtain the first inequality in the lemma.

For pt specified by Algorithm 1, we have,

‖pt+1‖22 ≤ ‖pt + γt (atxt − d)‖22
= ‖pt‖22 + γ2

t ‖atxt − d‖22 + 2γt(atxt − d)>pt

≤ ‖pt‖22 + γ2
tm(ā+ d̄)2 + 2γta

>
t ptxt − 2γtd

>pt

where the first inequality comes from the projection (into the non-negative orthant) step in the algorithm. Note
that

a>t ptxt = a>t ptI(rt > a>t pt) ≤ rt ≤ r̄.
Therefore,

‖pt+1‖22 ≤ ‖pt‖22 + γ2
tm(ā+ d̄)2 + 2γtr̄ − 2γtd

>pt,

and it holds with probability 1.

Next, we establish that when ‖pt‖2 is large enough, then it must hold that ‖pt+1‖2 ≤ ‖pt‖2. Specifically,
when ‖pt‖2 ≥ 2r̄+m(ā+d̄)2

d
, we have

‖pt+1‖22 − ‖pt‖22 ≤ γ2
tm(ā+ d̄)2 + 2γtr̄ − 2γtd

>pt

≤ γ2
tm(ā+ d̄)2 + 2γtr̄ − 2γtd‖pt‖1

≤ γ2
tm(ā+ d̄)2 + 2γtr̄ − 2γtd‖pt‖2

≤ 0

when γt ≤ 1. On the other hand, when ‖pt‖2 ≤ 2r̄+m(ā+d̄)2

d
,

‖pt+1‖2 ≤ ‖pt + γt (atxt − d)‖2
(b)

≤ ‖pt‖2 + γt‖atxt − d‖2

≤ 2r̄ +m(ā+ d̄)2

d
+m(ā+ d̄)

12

where (b) comes from the triangle inequality of the norm.

Combining these two scenarios with the fact that p1 = 0, we have

‖pt‖2 ≤
2r̄ +m(ā+ d̄)2

d
+m(ā+ d̄)

for t = 1, ..., n with probability 1.

B3 Proof of Theorem 1

Proof. First, the primal optimal objective value is no greater than the dual objective with p = p∗. Specifically,

R∗n = P-LP = D-LP

≤ nd>p∗ +

n∑
j=1

(
rj − a>j p

∗
)+

.

Taking expectation on both sides,

E [R∗n] ≤ E

[
nd>p∗ +

n∑
t=1

(
rt − a>t p

∗
)+
]

≤ nf(p∗).

Thus, the optimal objective value of the stochastic program (by a factor of n) is an upper bound for the expected
value of the primal optimal objective. Hence

E[R∗n −Rn] ≤ nf(p∗)−
n∑
j=1

E
[
rtI(rt > a>t pt)

]
≤

n∑
t=1

E [f(pt)]−
n∑
t=1

E
[
rtI(rt > a>t pt)

]
≤

n∑
t=1

E
[
d>pt +

(
rt − a>t pt

)+

− rtI(rt > a>t pt)

]

=

n∑
t=1

E
[(

d> − atI(rt > a>t pt)
)>

pt

]
.

where the expectation is taken with respect to (rt,at)’s. In above, the second line comes from the optimality of
p∗, while the third line is valid because of the independence between pt and (rt,at).

The importance of the above inequality lies in that it relates and represents the primal optimality gap in the dual
prices pt – which is the core of Algorithm 1. From the updating formula in Algorithm 1, we know

‖pt+1‖22 ≤ ‖pt‖22 −
2√
n

(
d− atI(rt > a>t pt)

)>
pt +

1

n

∥∥∥d− atI(rt > a>t pt)
∥∥∥2

2

≤ ‖pt‖22 −
2√
n

(
d− atI(rt > a>t pn)

)>
pt +

m(ā+ d̄)2

n
.

Moving the cross-term to the right-hand-side, we have
n∑
t=1

(
d− atI(rt > a>t pt)

)>
pt ≤

n∑
t=1

(√
n‖pt‖22 −

√
n‖pt+1‖22 +

m(ā+ d̄)2

√
n

)
≤ m(ā+ d̄)2√n.

Consequently,
E[R∗n −Rn] ≤ m(ā+ d̄)2√n

hold for all n and distribution P ∈ Ξ.

For the constraint violation, if we revisit the updating formula, we have

pt+1 ≥ pt +
1√
n

(atxt − d)

13

where the inequality is elementwise. Therefore,

n∑
t=1

atxt ≤ nd +

n∑
t=1

√
n(pt+1 − pt)

≤ b +
√
npn+1

In the second line, we remove the term involve p1 with the algorithm specifying p1 = 0. Then with Lemma 1,
we have

E [v(x)] = E
[
‖ (Ax− b)+ ‖2

]
≤
√
nE‖pn+1‖2 ≤

(
2r̄ +m(ā+ d̄)2

d
+m(ā+ d̄)

)√
n.

B4 Proof of Proposition 1

Proof. Define SLP(s, b0) as the following LP

max

s∑
j=1

rjxj

s.t.
s∑
j=1

aijxj ≤
sbi
n

+ b0i

0 ≤ xj ≤ 1 for j = 1, ..., s.

where b0 = (b01, ..., b0m) denotes the constraint relaxation quantity for the scaled LP. Denote the optimal
objective value of SLP(s, b0) as R∗(s, b0). Also, denote x(p) = (x1(p), ..., xn(p)) and xj(p) = I(rj >
a>j p). It denotes the decision variables we obtain with a dual price p.

We prove the following three results:

(i) The following bounds hold for R∗n,

n∑
j=1

rjxj(p
∗
n) ≤ R∗n ≤

n∑
j=1

rjxj(p
∗
n) +mr̄.

(ii) When s ≥ max{16ā2, exp {16ā2}, e}, then the optimal dual solution p∗n is a feasible solution to

SLP
(
s, log s√

s
1
)

with probability no less than 1− m
s

.

(iii) The following inequality holds for the optimal objective values to the scaled LP and its relaxation

R∗s ≥ R∗
(
s,

log s√
s
1

)
− r̄
√
s log s

d
.

For part (i), this inequality replace the optimal value with bounds containing the objective values obtained by
adopting optimal dual solution. The left hand side of the inequality comes from the complementarity condition
while the right hand side can be shown from Lemma 2.

For part (ii), the motivation to introduce a relaxed form of the scaled LP is to ensure the feasibility of p∗n. The
key idea for the proof is to utilize the feasibility of p∗n for (2). To see that, let αij = aijI(rj > aTj p

∗) and

cα = max
i,j

αij −min
i,j

αij ≤ 2ā,

ᾱi =
1

n

n∑
j=1

αij =
1

n

n∑
j=1

aijxt(p
∗
n) ≤ di,

σ2
i =

1

n

n∑
j=1

(αij − ᾱi)2 ≤ 4ā2.

(7)

Here the first and third inequality comes from the bounds on aij’s while the second one comes from the feasibility
of the optimal solution for (2).

14

Then, when k > max{16ā2, exp {16ā2}, e}, by applying Hoeffding-Bernstein’s Inequality

P

(
k∑
j=1

αij − kdi ≥
√
k log k

)
(e)

≤ P

(
k∑
j=1

αij − kᾱi ≥
√
k log k

)
(f)

≤ exp

(
− k log2 k

8kā2 + 2ā
√
k log k

)
(g)

≤ 1

k
for i = 1, ...,m. Here inequality (e) comes from (7), (f) comes from applying Lemma 4, and (g) holds when
s > max{16ā2, exp {16ā2}, e}.

Let event

Ei =

{
s∑
j=1

αij − sdi <
√
s log s

}

andE =
m⋂
i=1

Ei. The above derivation tells P(Ei) ≥ 1− 1
s

By applying union bound, we obtain P(E) ≥ 1− m
s

and it completes the proof of part (ii).

For part(iii), denote the optimal solution to SLP
(
s, log s√

s
1
)

as p̃s.

R∗
(
s,

log s√
s
1

)
= s

(
d +

log s√
s
1

)>
p̃∗s +

s∑
j=1

(
rj − a>j p̃

∗
s

)+

≤ s
(
d +

log s√
s
1

)>
p∗s +

s∑
j=1

(
rj − a>j p

∗
s

)+

≤ r̄
√
s log s

d
+R∗s .

where the first inequality comes from dual optimality of p̃∗s and the second inequality comes from the upper
bound of ‖p∗s‖ and the duality of the scaled LP R∗s . Therefore,

R∗s ≥ R∗
(
s,

log s√
s
1

)
− r̄
√
s log s

d
.

Finally, we complete the proof with the help of the above three results.

1

s
E [IER∗s] ≥

1

s
E
[
IER∗

(
s,

log s√
s
1

)]
− r̄
√
s log s

d

≥ 1

s
E

[
IE

s∑
j=1

rjxj(p
∗)

]
− r̄
√
s log s

d

where IE denotes an indicator function for event E. The first line comes from applying part (iii) while the
second line comes from the feasibility of p∗ on event E. Then,

1

s
E [R∗s] ≥

1

s
E

[
s∑
j=1

rjxj(p
∗)

]
− r̄
√
s log s

d
− mr̄

s

=
1

n
E

[
n∑
j=1

rjxj(p
∗)

]
− r̄
√
s log s

d
− mr̄

s

≥ 1

n
R∗n −

r̄
√
s log s

d
− mr̄

s
− mr̄

n

where the first line comes from part (ii) – the probability bound on event E, the second line comes from the
symmetry of the random permutation probability space, and the third line comes from part (i). We complete the
proof.

B5 Proof of Theorem 2

Proof. For the regret bound,

R∗n − E [Rn] = R∗n −
n∑
t=1

E [rtxt]

15

where xt’s are specified according to Algorithm 1. Then

R∗n − E [Rn] = R∗n −
n∑
t=1

1

t
E [R∗t] +

n∑
t=1

1

t
E [R∗t]−

n∑
t=1

E [rtxt]

=

n∑
t=1

(
1

n
R∗n −

1

t
E [R∗t]

)
+

n∑
t=1

E
[

1

n+ 1− t R̃
∗
n−t+1 − rtxt

]
(8)

where R̃∗n−t+1 is defined as the optimal value of the following LP

max

n∑
j=t

rjxj

s.t.
n∑
j=t

aijxj ≤
(n− t+ 1)bi

n

0 ≤ xj ≤ 1 for j = 1, ...,m.

For the first part of (8), we can apply Proposition 1. Meanwhile, the analyses of the second part takes a similar
form as the previous stochastic input model. Specifically,

E
[

1

n+ 1− t R̃
∗
n−t+1 − rtxt

]
≤
(
d− atI(rt > a>t pt)

)>
pt.

Similar to the stochastic input model,

‖pt+1‖22 ≤ ‖pt‖22 −
2√
n

(
d− atI(rt > a>t pt)

)>
pt +

1

n

∥∥∥d− atI(rt > a>t pt)
∥∥∥2

2

≤ ‖pt‖22 −
2√
n

(
d− atI(rt > a>t pt)

)>
pt +

m(ā+ d̄)2

n
.

Thus, we have
n∑
t=1

E
[(

d− atI(rt > a>t pt)
)>

pt

]
≤

n∑
t=1

E
[√
n(‖pt‖22 − ‖pt+1‖22)

]
+

n∑
t=1

m(ā+ d̄)2

√
n

≤ m(ā+ d̄)2√n.
Combine two parts above, finally we have

R∗n − E[Rn(π)] ≤ mr̄ +
r̄ logn

√
n

d
+mr̄ logn+

max{16ā2, exp {16ā2}, e}r̄
n

+m(ā+ d̄)2√n

= O((m+ logn)
√
n)

Thus, we complete the proof for the regret. The proof for the constraint violation part follows exactly the same
way as the stochastic input model.

B6 Proof of Proposition 2

First, we define the notion of permutational Rademacher complexity. Consider set Zn = {z1, ..., zn} where
zj ∈ Rk, j = 1, ..., n and a family of functions F = {f : Rk → R} (to be specified later). Throughout
this section, we use the subscript to indicate the cardinality of a set. For function f ∈ F and S ⊂ Z ,
denote f̄(S) = 1

|S|
∑
x∈S f(x) as the mean function value on the set S. The definition of the permutational

Rademacher complexity and its analysis largely mimic the analyses of the transductive learning problem in [27].
Definition 1 (Permutational Rademacher Complexity and Conditional Rademacher Complexity (See Definition
3 in [27])). For any 1 ≤ s ≤ t− 1, permutational Rademacher complexity (PRC) is defined as follows:

Qt,s(F ,Zt) = E sup
f∈F

∣∣∣f̄(Zs)− f̄(Z̃l)
∣∣∣ ,

where Zs is subset of Zt with s elements sampled uniformly without replacement and Z̃l = Zt\Zs, l = t− s.
The expectation is taken with respect to the random sampling of Zs.

Conditional Rademacher complexity (CRC) is defined as follows:

Rt(F ,Zt) = E sup
f∈F

∣∣∣∣∣1t
t∑

j=1

εjf(zj)

∣∣∣∣∣ ,
where Zt = {z1, ..., zt} and εj’s are i.i.d. random variables following Rademacher distribution (P (εj = 1) =
P (εj = −1) = 1/2). The expectation here is taken with respect to εj’s.

16

Both the above two quantities are dependent on the set Zt because for the PRC, the two subsets Zs and Z̃l
are sampled from Zt and for CRC, it is computed based on the function values of the elements in Zt. Both
PRC and CRC are deterministic with a given function class F and conditional on Zt. However, they could be
random variables if the set Zt is random. The following lemma explains the motivation for the definition of
permutational Rademacher complexity and it is inspired from Theorem 2 in [27].

Lemma 5. Zt is a subset of Zn obtained by uniform sampling without replacement, and Z̃t′ = Zn\Zt,
t′ = n− t. Without loss of generality, assume t ≥ t′, then the following inequality holds for all s < t′,

E
[

sup
f∈F

∣∣∣f̄(Zt)− f̄(Z̃t′)
∣∣∣ ∣∣∣Zn] ≤ E

[
Qt,s(F ,Zt)

∣∣∣Zn]
where the expectation is taken with respect to the random sampling of Zt from Zn

Proof. We have

E
[

sup
f∈F

∣∣∣f̄(Zt)− f̄(Z̃t′)
∣∣∣ ∣∣∣Zn] = E

[
sup
f∈F

∣∣∣E [f̄(Zt−s)|Zt
]
− E

[
f̄(Z̃s)|Z̃t′

]∣∣∣ ∣∣∣Zn]
≤ E

[
sup
f∈F

∣∣∣f̄(Zt−s)− f̄(Z̃s)
∣∣∣ ∣∣∣Zn] = E

[
Qt,s(F ,Zt)

∣∣Zn] .
For the first line, on the right hand side, the two inner expectations are taken with respect to a uniform random
sampling on Zt and Z̃t′ respectively. Specifically, Zt−s (or Z̃s) can be viewed as a random sampled subset
from Zt (or Z̃t′). For the second line, the first part comes from Jensen’s inequality and the expectation in the
second part is taken with respect to the random sampling of Zt from Zn.

Let Fp =
{
fp : fp(r,a) = rI

(
r > aTp

)}
denote a family of functions f : Rm+1 → R indexed

by the parameter p, and let (r1,a1),, (rn,an) be a random permutation of the dataset D. Denote
Zt = {(r1,a1), ..., (rt,at)}, and then Zt can be viewed as a randomly sampled subset of D. The following
lemma relates the PRC with the classic notion of CRC, and the benefit is that the CRC under random permutation
model possesses a natural upper bound.

Lemma 6. The following inequalities hold for PRC and CRC of the family Fp and dataset D that satisfies
Assumption 2, ∣∣Qt,bt/2c(Fp,Zt)−Rt(Fp,Zt)

∣∣ ≤ 4r̄√
t
.

Rt(F , Zt) ≤
√

2r̄2m logn√
t

Proof. For the first inequality, we refer to Theorem 3 in [27]. For the second inequality, it is a direct application
of Massart’s Lemma (See Lemma 26.8 of [26]).

Proof of Proposition 2. Let Fp =
{
fp : fp(r,a) = rI

(
r > aTp

)}
, Zt = {(r1,a1), ..., (rt,at)}, and

Z̃n−t = {(rt+1,at+1), ..., (rn,an)}. Also, we assume n− t > t without loss of generality. Then,

E

[∣∣∣∣∣ 1

n− t

n∑
j=t+1

rjI(rj > a>j p)− 1

t

t∑
j=1

rjI(rj > a>j p)

∣∣∣∣∣
]
≤ E

[
sup
f∈Fp

∣∣∣f̄(Zt)− f̄(Z̃n−t)
∣∣∣ ∣∣∣Zn = D

]

≤ E
[
Qt,bt/2c(F ,Zt)

∣∣∣Zn]
≤ 4r̄

t
+

2
√

2r̄2m logn√
t

.

Here the first line comes from taking maximum over Fp, the second line comes from lemma 5 and the third line
comes from lemma 6.

Similarly, we can show that the inequality on aij’s holds. Thus the proof is completed.

17

B6.1 Proof for Theorem 3

Proof. At time t+ 1,

E [rt+1xt+1] = E
[
rt+1I(rt+1 > a>t+1pt+1)

]
=

1

n− tE

[
n∑

j=t+1

rjI(rj > ajpt+1)

]

≥ 1

t
E

[
t∑

j=1

rjI(rj > ajpt+1)

]
− 4r̄√

min{t, n− t}
−

2
√

2r̄2m logn√
min{t, n− t}

,

where the expectation is taken with respect to the random permutation. The first line comes from the algorithm
design, the second line comes from the symmetry over the last n− t terms, and the last line comes from the
application of Proposition 2. To relate the first term in the last line with the offline optimal R∗n, we utilize
Proposition 1. Then the optimality gap of Algorithm 2 is as follows,

R∗n − E

[
n∑
t=1

rtxt

]
= R∗n −

n∑
t=1

E [rtxt]

≤ R∗n −
n∑
t=2

(
1

t
E

[
t∑
j=1

rjI(rj > ajpt)

]
−

4r̄ + 2
√

2r̄2m logn√
min{t, n− t}

)

≤ mr̄ +
r̄

d

√
n logn+mr̄ logn+ r̄max{16ā2, e16ā2 , e}+

(
8r̄ + 4

√
2r̄2m logn

)√
n

= O(
√
mn logn)

where the last line comes from an application of Proposition 1. Next, we analyze the constraint; again, from
Proposition 2, we know

1

n− tE

[
n∑

j=t+1

aijI(rj > a>j pt)

]
≤ E

[
1

t

t∑
j=1

aijI(rj > a>j pt)

]
+

4ā√
min{t, n− t}

+
2
√

2ā2m logn√
min{t, n− t}

≤ di +
6
√

2ā2m logn√
min{t, n− t}

where the second line comes from the feasibility of the scaled LP solved at time t. Due to the symmetry of the
random permutation,

E
[
ai,t+1I(rt+1 > a>t+1pt+1)

]
≤ di +

6
√

2ā2m logn√
min{t, n− t}

.

Summing up the inequality, we have

E[Ax− b] ≤ O(
√
mn logn).

B7 Proof of Theorem 4

Proof. At time t, the optimal solution to the scaled LP is x̃(t) = (x̃
(t)
1 , ..., x̃

(t)
t). We have

E [rtxt] = E
[
rtx̃

(t)
t

]
=

1

t
E

[
t∑
j=1

rsx̃
(t)
j

]
.

Then, for the objective,

R∗n −
n∑
t=1

E [rtxt] = R∗n −
n∑
t=1

1

t
E

[
t∑

j=1

rsx̃
(t)
j

]

≤ mr̄ +
r̄

d
logn

√
n+mr̄ logn+ r̄max{16ā2, e16ā2 , e}.

where the second line comes from an application of Proposition 1. Then, we analyze the constraint violation.
From the construction of the algorithm, we have that E[aitxt] ≤ di. Let

Ait = aitxt − di

18

and then we know

Mit =

n∑
j=n−t+1

Aij

is a supermartingale with |Aij | ≤ ā+ d̄. Then if we apply Hoeffding’s lemma for supermartingale, we have

P
(
Min ≥ 2(ā+ d̄)

√
n logn

)
≤ exp

{
−2(ā+ d̄)2n log2 n

n(ā+ d̄)2

}
≤ exp{−2 log2 n} ≤ 1

n
,

when n > 3. Thus,

E

[(
n∑
t=1

aitxt − di

)+]
= E

[
(Min)+]

≤ 2(ā+ d̄)
√
n lognP

(
Min < 2(ā+ d̄)

√
n logn

)
+ ānP

(
Min ≥ 2(ā+ d̄)

√
n logn

)
≤ 2(ā+ d̄)

√
n logn+ ā

E [v(x)] ≤ 2(ā+ d̄)
√
mn logn+ ā

√
m.

C1 Algorithm Discussion

Obtaining Feasible Solution

We present a simple approach to convert the solution obtained from Algorithm 1 into a feasible solution. Let
x = (x1, ..., xn) be a solution by Algorithm 1, and S+ = {t : xt = 1, t = 1, ..., n} be the index set of nonzero
xt’s and n+ = |S+| be the cardinality of S+. The idea is to randomly select a subset of S+ and force xt = 0
for indices in this subset. Note that the expected total constraint violation is sublinear in n, we only need to
select a small proportion of xt’s and force them to be 0. Specifically, define the maximum constraint violation
quantity over all constraints:

v =
1√

n logn
max

i=1,...,m

{(
n∑
t=1

aitxt − bi

)+}
.

Moreover, we require v ≥ 1. We choose a set S0 ⊂ S+ uniformly with |S0| = min
{[

2vn+ logn

d
√
n

]
+ 1, n+

}
,

and let

x̂t =

{
0, t ∈ S0

xt, t /∈ S0

for t = 1, ..., n. The following theorem characterizes the properties of x̂t.

Theorem 5. If n > max

{
16, d2,

(
6ā
d

)4
}

and
√
n > 12ā(r̄+(ā+d)2m) logn

d2
, then x̂ = (x̂1, ..., x̂n) is a

feasible solution with probability at least 1− 2
n

. Also, a feasible solution x can be constructed based on x̂ s.t.,

E
[
R∗n − r>x

]
≤ O((m+ logn)

√
n)

for all m,n ∈ N+. The results hold under both the stochastic input model and the random permutation model,
and the expectation is taken with respect to P or the random permutation accordingly.

Theorem 5 tells that in a large-n-small-m regime, precisely when n ≥ O(m2 logn), we can easily obtain a
feasible solution with high probability based on the output of Algorithm 1 by randomly selecting O(

√
n logn)

number of xt and forcing them to be 0. Furthermore, the newly obtained solution does not change the regret
much. The theorem provides a guideline of the implementation of Algorithm 1 for the binary LP setting when a
feasible solution is desired.

Feasible Online Algorithm

Algorithm 4 is another natural variant of Algorithm 1 that outputs feasible solutions. Compared with Algorithm
1, Algorithm 4 sets xt = 1 only when the constraints permit. This design is more aligned with the online
LP algorithms that guarantees feasibility. [20] provided a regret analysis framework for this type of feasible

19

algorithms, and the key is to analyze the stopping time of constraint violation and the remaining resources for
binding constraints. In this paper, the assumptions on (rj ,aj) are parsimonious and they might be not sufficient
to derive an upper bound on these two key quantities. Numerically, we observe that this feasible algorithm, in
comparison with Algorithm 1, does not compromise the performance in terms of the regret. We will elaborate
more on its numerical performance in the next section and leave the regret analysis of this algorithm as an open
question.

Algorithm 4 Simple Feasible Algorithm

1: Input: d
2: Initialize p1 = 0
3: for t = 1, ..., n do
4: Set

x̃t =

{
1, rt > a>t pt

0, rt ≤ a>t pt

5: Compute

pt+1 = pt + γt (atx̃t − d)

pt+1 = pt+1 ∨ 0

6: If constraints permit, set xt = x̃t; otherwise set xt = 0.
7: end for
8: Output: x = (x1, ..., xn)

Nonstationary Algorithm

We consider another variant of the algorithm that takes into account the resource consumption while doing the
subgradient descent. The intuition is similar to the action-history-dependent algorithm in [20]. If excessive
resources are consumed in the early periods, the remaining resource bt will shrink, and this nonstationary
algorithm will accordingly push up the dual price and be more inclined to reject an order. On the contrary, if we
happen to reject a lot orders at the beginning and it results in too much remaining resources, the algorithm will
lower down the dual price so as to accept more orders in the future. In numerical experiments, this nonstationary
algorithm performs better, but it is still on the same order of regret and constraint violation as Algorithm 1. The
open question is if there exists a first-order algorithm that is free of re-solving any linear programs and could
achieve O(logn) regret, possibly under stronger statistical assumptions.

Algorithm 5 Simple Nonstationary Algorithm

1: Input: d
2: Initialize p1 = 0, b0 = b
3: for t = 1, ..., n do
4: Set

xt =

{
1, rt > a>t pt

0, rt ≤ a>t pt

5: Update
bt = bt−1 − atxt

6: Compute

pt+1 = pt + γt

(
atxt −

bt
n− t

)
pt+1 = pt+1 ∨ 0

7: end for
8: Output: x = (x1, ..., xn)

D1 Numerical Experiments

The first experiment compares the performance of Algorithm 1, Algorithm 4, and Algorithm 5 in terms of
regret and constraint violation. Algorithm 1 is implemented with two different choices of step size γt. In

20

this experiment, m = 10, aij’s and rj’s are sampled i.i.d. from Unif[0, 2]. For each value of n, we run 100
simulation trials and in each trial, di’s are sampled i.i.d. from Unif[1/3, 2/3]. The average regret and constraint
violation over all the simulation trials are shown in Figure 1. We plotted normalized regret and constraint
violation, which is absolute regret and constraint violation divided the optimal objective value and the L2 norm of
the constraint capacity, respectively. We observe that the step size of 1/

√
n results in larger constraint violation

but smaller regret compared with the step size of 1/
√
t. This is because for the step size of 1/

√
n, the updating

of the dual vector pt is slower. Consequently, more requests will be accepted at early stage and the constraint
violation is larger in the end. The non-stationary algorithm (Algorithm 5) performs better than the simple
algorithm (Algorithm 1) with γt = 1/

√
t. Also, the feasible algorithm (Algorithm 4) guarantees feasibility, i.e.

zero constraint violation; it produces slightly larger regret, but the regret is still on the order of
√
n.

(a) Regret (b) Constraint Violation

Figure 1: Experiment with Uniform i.i.d. input

In the second experiment (Figure 2), we compare the three algorithms in a setting where the boundedness of
the support of distribution P is violated. Specifically, m = 10, aij’s are generated i.i.d. from N (1, 1) and
rj =

∑m
i=1 aij − εj where εj ∼ Unif(0,m). For each value of n, we run 100 simulation trials, and in each

trial, di’s are sampled i.i.d. from Unif[1/3, 2/3]. In this experiment, the regret performances of Algorithm
1 (with step size of 1/

√
t) and Algorithm 5 are quite close to each other, while Algorithm 5 still performs

better in respect with constraint violation. The feasible algorithm (Algorithm 4) still achieves regret on the
order of

√
n. Note that our theoretical results, also all the previous literature on online LP problem, rely on the

boundedness assumption for the LP input. An open question is how to generalize these analyses to the case
when the distribution P has an unbounded support.

(a) Regret
(b) Constraint Violation

Figure 2: Experiment with Gaussian i.i.d. input

The third experiment (Figure 3) presents a negative result on all three algorithms. Specifically, aij’s are generated
i.i.d. from truncated Cauchy(1, 1) (with different thresholds) and rj =

∑m
i=1 aij − εj where εj ∼ Unif(0,m).

As before, for each value of n, we run 100 simulation trials, and in each trial, di’s are sampled i.i.d. from
Unif[1/3, 2/3]. We observe that the performance becomes unstable as the truncation threshold goes up. The

21

phenomenon is consistent with the previous analysis that the algorithm regret is positively affected by the upper
bound on aij’s and rj’s. The empirical finding suggests that a light-tail distribution is probably necessary for an
online LP algorithm to succeed.

(a) Regret
(b) Constraint Violation

Figure 3: Experiment with Cauchy i.i.d. input

Figure 4 presents the algorithm performance under the random permutation model. We first generate four groups
of data with equal size from four different distributions and then combine these groups as the LP input: (i) aij’s
are generated from Unif[0, 2]; (ii) aij are generated fromN (1, 1); (iii) aij are generated fromN (0, 1); (iv) aij
are generated from uniform distribution on {−1, 1, 3}. rj’s for all four groups are generated from Unif[0, 1].
Note this data set can not be generated from any distribution in the stochastic input model. For each value of n,
we run 100 simulation trials, and in each trial, di’s are sampled i.i.d. from Unif[1/3, 2/3]. In this experiment,
we observe that the algorithms all achieves O(

√
n) regret except for Algorithm 1 with step size 1/

√
n. The step

size results in a negative regret but much larger constraint violation than the other algorithms. All the presented
algorithms achieve O(

√
n) constraint violation.

(a) Regret (b) Constraint Violation

Figure 4: Experiment with randomly permuted input

In addition, we conduct two groups of experiments to illustrate the computational aspect of our algorithms. The
algorithms are implemented on a PC with Intel Core i7-9700K Processor. We use the Gurobi solver - one of the
state-of-the-art LP and integer LP solvers - as benchmark and to compute the optimal solution. We emphasize
that the code for our algorithms, unlike the Gurobi solver, is not fully optimized in the experiment, so there is
still great room for improving the computational efficiency of our algorithms. Table 1 presents the experiments
under the worst-case example for online LP problem in [3]. The example is constructed under the random
permutation model, and it provides a lower bound on the right-hand-side of the constraint for the existence
of an (1 − ε)-competitiveness online LP algorithm. In this sense, it represents one of the most challenging
problem instances under the random permutation model. Gurobi solves the binary LP problem with 1% MIPGap
and all competitiveness ratios in the table are reported against the optimal objective value of the relaxed LP’s
optimal objective. Gurobi computes the optimal solution in an offline fashion while the other three algorithms

22

are online. The numbers are computed based on an average over 100 different problem instances. Algorithm 1 is
implemented with both step size of 1√

t
and 1√

n
. We stop the algorithm and set the rest decision variables to be

zero when any of the constraint is exhausted. Though Algorithm 2 and Algorithm 3 have provably smaller regret
bounds, our algorithm provides better empirical performance. For small value of m, our algorithm outputs a
near-optimal solution within much less time than Gurobi. Also, the competitiveness ratio decreases as m goes
larger, which is consistent with the O(m) term in the regret bound of our algorithm.

Gurobi Alg. 1 (1√
t
) Alg. 1 (1√

n
) Alg. 2 Alg. 3

m = 8, n = 103 CPU time 0.082 0.023 0.015 126.684 126.696
Cmpt. Ratio 100.0% 99.1% 99.7% 89.8% 97.9%

m = 128, n = 104 CPU time 0.408 0.141 0.138 2338.149 2338.285
Cmpt. Ratio 100.0% 99.3% 98.8% 94.8% 97.7%

m = 1024, n = 105 CPU time 52.496 3.479 3.270 >3000 >3000
Cmpt. Ratio 100.0% 94.6% 98.7%

m = 4096, n = 105 CPU time 114.96 27.093 32.020 >3000 >3000
Cmpt. Ratio 99.6% 73.1% 83.3%

m = 4096, n = 2× 105 CPU time 254.243 57.541 53.887 >3000 >3000
Cmpt. Ratio 99.7% 80.0% 89.1%

Table 1: Performance under worst-case example in [3]

In Table 2, we test the performance of our algorithm on some Multi-knapsack benchmark problems [7, 12].
As the last experiment, algorithm 1 is implemented with both step size of 1√

t
and 1√

n
, and the experiment

setup is the same as the last experiment. The competitiveness ratios are reported against the relaxed LP’s
optimal objective value. The computational advantage of our simple online algorithm is significant. Like the
last experiment, although Algorithm 2 and Algorithm 3 reduces the regret upper bound by a factor of

√
m, the

advantage of these two algorithms is not evident in practice. It deserves more efforts to understand whether the
current regret bound for Algorithm 1 is tight. Also, it merits more study on how to design online algorithms that
works effectively for a large-m-and-small-n regime.

Gurobi Alg. 1 (1√
t
) Alg. 1 (1√

n
) Alg. 2 Alg. 3

m = 5, n = 500
time 0.116 0.006 0.006 70 70

Cmpt. Ratio 99.6% 92.3% 75.05% 91.8% 91.5%

m = 10, n = 500
time 0.136 0.006 0.006 132 132

Cmpt. Ratio 99.6% 91.8% 80.9% 91.6% 90.7%

m = 30, n = 500
time 95.2 0.006 0.005 134 133

Cmpt. Ratio 99.4% 91.5% 89.4% 89.1% 90.4%

m = 103, n = 105 time 857 2.711 2.679 >3000 >3000
Cmpt. Ratio 99.8% 94.9% 97.3%

m = 3× 103, n = 105 time 1069 16.63 16.61 >3000 >3000
Cmpt. Ratio 94.0% 82.3% 86.8%

m = 3× 103, n = 2× 105 time 2799 40.21 34.84 >3000 >3000
Cmpt. Ratio 93.8% 84.7% 88.4%
Table 2: Multi-knapsack benchmark problem

23

