
A Other related work

Kearns and Mansour [KM99] (see also [Kea96]) analyzed top-down impurity-based heuristics from
the perspective of boosting, where the attributes queried in the tree are viewed as weak hypotheses.

Recent work of Blanc et al. [BLT20b] gives a top-down algorithm for learning decision trees that
achieves provable guarantees for all target functions f . However, their algorithm makes crucial use of
membership queries, which significantly limits its practical applicability and relevance. Furthermore,
their guarantees only hold in the realizable setting, requiring that f is itself a size-s decision tree
(i.e. opts = 0).

There has been extensive work in the learning theory literature on learning the concept class of
decision trees [EH89, Blu92, KM93, OS07, GKK08, HKY18, CM19]. However, none of these
algorithms proceed in a top-down manner like the practical heuristics that are the focus of this work;
indeed, with the exception [EH89], these algorithms do not return a decision tree as their hypothesis.
([EH89]’s algorithm constructs its decision tree hypothesis in a bottom-up manner.)

B Proof of Fact 2.1

Fact 2.1 is a simple consequence of the following lemma, whose proof also appears in [Jon16]:
Lemma B.1. For all f : {±1}n → {±1} and i ∈ [n],

NSδ(f) = 1
2 NSδ(fxi=−1) + 1

2 NSδ(fxi=1) + δ
2(1−δ) · Inf

(δ)
i (f).

Proof. Let x ∼ {±1}n be uniform random, and x̃ ∼δ x be a δ-noisy copy of x. We first note that

E[f(x)f(x̃)] = Pr[xi = x̃i] · E[f(x)f(x̃) | xi = x̃i] + Pr[xi 6= x̃i] · E[f(x)f(x̃) | xi 6= x̃i]

=
(
1− δ

2

)(
1
2 E[f(xi=1)f(x̃i=1)] + 1

2 E[f(xi=−1)f(x̃i=−1)]
)

+ δ
2

(
1
2 E[f(xi=1)f(x̃i=−1)] + 1

2 E[f(xi=−1)f(x̃i=1)]
)
. (7)

Next, we have that

E[Dif(x)Dif(x̃)] = 1
4 E

[
(f(xi=1)− f(xi=−1))(f(x̃i=1)− f(x̃i=−1))

]
= 1

4 E[f(xi=1)f(x̃i=1)] + 1
4 E[f(xi=−1)f(x̃i=−1)]

− 1
4 E[f(xi=1)f(x̃i=−1)]− 1

4 E[f(xi=−1)f(x̃i=1)]. (8)

Combining Equations (7) and (8),

E[f(x)f(x̃)] = 1
2 E[f(xi=1)f(x̃i=1)] + 1

2 E[f(xi=−1)f(x̃i=−1)]− δE[Dif(x)Dif(x̃)]

= 1
2 E[fxi=1(x)fxi=1(x̃)] + 1

2 E[fxi=−1(x)fxi=−1(x̃)]− δ
1−δ · Inf

(δ)
i (f).

Since NSδ(f) = Pr[f(x) 6= f(x̃)] = 1
2 −

1
2 E[f(x)f(x̃)], the lemma follows from the above by

rearranging.

Proof of Fact 2.1. We first note that

NSδ(f, T
◦
`?→xi) =

∑
leaves ` ∈ T◦`?→xi

2−|`| ·NSδ(f`)

=
∑

leaves ` ∈ T◦
2−|`| ·NSδ(f`)

+ 2−(|`?|+1) ·NSδ(f`?,xi=−1) + 2−(|`?|+1) ·NSδ(f`?,xi=1)− 2−|`
?| ·NSδ(f`?)

= NSδ(f, T
◦) + 2−|`

?|( 1
2 NSδ(f`?,xi=−1) + 1

2 NSδ(f`?,xi=1)−NSδ(f`?)
)
.

Applying Lemma B.1 with its ‘f ’ being f`? , we have that

1
2 NSδ(f`?,xi=−1) + 1

2 NSδ(f`?,xi=1)−NSδ(f`?) = − δ
2(1−δ) · Inf

(δ)
i (f`?),

and this completes the proof.
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C Proof of Theorem 3

Proof. We apply Theorem 2 with ‘T ’ being T ?, ‘g’ being f≤dδ , and ρ being the semimetric ρ(a, b) =
(a− b)2/2. As shown by [OSSS05] (and as can be easily verified), Defk(ρ) ≤ k for this choice of ρ,
and so

Covρ(T
?, f≤dδ ) ≤ k

n∑
i=1

λi(T
?) · 1

2 E
[
(f≤dδ (x)− f≤dδ (x∼i))2

]
. (9)

We first analyze the quantity on the LHS of Equation (9). For x,x′ ∼ {±1}n uniform and indepen-
dent,

Covρ(T
?, f≤dδ ) = 1

2

(
E
[
(T ?(x)− f≤dδ (x′))2

]
− E

[
(T ?(x)− f≤dδ (x))2

])
≥ 1

4 E
[
(f≤dδ (x)− f≤dδ (x′))2

]
− E

[
(T ?(x)− f≤dδ (x))2

]
= 1

2 Var(f≤dδ )− E
[
(T ?(x)− f≤dδ (x))2

]
, (10)

where the inequality uses the “almost-triangle" inequality (a − c)2 ≤ 2((a − b)2 + (b − c)2) for
a, b, c ∈ R. Furthermore, we have

Var(fδ) =
∑
S 6=∅

(1− δ)2|S|f̂(S)2 (Fourier formulas for fδ (5) and variance (4))

=
∑
S 6=∅
|S|≤d

(1− δ)2|S|f̂(S)2 +
∑
|S|>d

(1− δ)2|S|f̂(S)2

≤ Var(f≤dδ ) +
∑
|S|>d

e(−δ)2|S|f̂(S)2 (1 + a ≤ ea)

≤ Var(f≤dδ ) + e−2dδ
∑
|S|>d

f̂(S)2 (Since |S| > d)

≤ Var(f≤dδ ) + e−2dδ (Parseval’s identity (3):
∑
S⊆[n] f̂(S)2 = 1)

≤ Var(f≤dδ ) + ε. (Since d = log(1/ε)/δ)

Similarly,

E
[
(T ?(x)− f≤dδ (x))2

]
≤ 2

(
E[
(
T ?(x)− fδ(x))2

]
+ E

[
(fδ(x)− f≤dδ (x))2

])
(“almost-triangle" inequality)

= 2
(
E[
(
T ?(x)− fδ(x))2

]
+
∑
|S|>d

(1− δ)|S|f̂(S)2
)

≤ 2
(
E[
(
T ?(x)− fδ(x))2

]
+ ε). (Since d = log(1/ε)/δ)

Combining these bounds with Equation (10), we have the following lower bound on the LHS
of Equation (9):

Cov(T ?, f≤dδ ) ≥ 1
2 (Var(fδ)− ε)−

(
2E[

(
T ?(x)− fδ(x))2

]
+ 2ε

)
.

= 1
2 Var(fδ)−

(
2E[(T ?(x)− fδ(x))2] + 5

2ε
)
. (11)
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We now turn to analyzing the RHS of Equation (9):

k

n∑
i=1

λi(T
?) · 1

2 E
[
(f≤dδ (x)− f≤dδ (x∼i))2

]
= k

n∑
i=1

λi(T
?) · 1

4 E
[
(f≤dδ (x)− f≤dδ (x⊕i))2

]
(x⊕i = x with its i-th coordinate flipped)

= k

n∑
i=1

λi(T
?) · E

[
Dif

≤d
δ (x)2

]
= k

n∑
i=1

λi(T
?) · Infi(f

≤d
δ ) (Definition 2)

= k ·max
i∈[n]

{
Infi(f

≤d
δ )

}
·
n∑
i=1

λi(T
?) ≤ k ·max

i∈[n]

{
Infi(f

≤d
δ )

}
· log s, (12)

where the final inequality holds because

n∑
i=1

λi(T
?) =

n∑
i=1

Pr[ T ? queries xi ] =
∑

leaves ` ∈ T?
2−|`| · |`| ≤ log s.

Finally, we note that:

Infi(f
≤d
δ ) =

∑
S3i
|S|≤d

(1− δ)2|S|f̂(S)2 (Fourier formula for influence; Definition 2)

≤
∑
S3i
|S|≤d

(1− δ)|S|f̂(S)2 = Inf
(δ,d)
i (f).

Combining this with Equations (9), (11) and (12) and rearranging completes the proof.

D Proofs of Facts 4.1 and 4.2 and Propositions E.1 and E.2

Proof of Fact 4.1. This follows by combining the bounds Inf(T ) ≤ log s (see e.g. [OS07]) and
NSδ(f) ≤ δ · Inf(f) for all f : {±1}n → {±1} [O’D14, Exercise 2.42].

Proof of Fact 4.2. Let x ∼ {±1}n be uniform random and x̃ ∼δ x be a δ-noisy copy of x. Then

NSδ(f) = Pr[f(x) 6= f(x̃)]

≤ Pr[T (x) 6= T (x̃)] + Pr[T (x) 6= f(x)] + Pr[T (x̃) 6= f(x̃)]

≤ NSδ(T ) + 2 Pr[T (x) 6= f(x)],

where the final inequality uses that fact that x and x̃ are distributed identically.

E The case analysis in the proof of Theorem 4

Case 1: E
`
[Var((f`)δ)] ≥ 4E

`

[
‖(f`)δ − T trunc

opt ‖22
]

+ 7ε.

In this case we claim that there is a leaf `? of T ◦ with a high score, where we recall that the score of
a leaf ` is defined to be

score(`) := 2−|`| ·max
i∈[n]

{
Inf

(δ,d)
i (f`)

}
.

13



Applying Theorem 3 with its ‘T ?’ being T trunc
opt and its ‘f ’ being f` for each leaf ` ∈ T ◦, we have

that

E
`

[
max
i∈[n]

{
Inf

(δ,d)
i (f`)

}]
≥

1
2 E`

[Var(f`)δ)]−
(

2E
`

[
‖T trunc

opt − (f`)δ‖22
]

+ 5
2ε
)

log(s/ε) log s
(Theorem 3)

≥ ε

log(s/ε) log s
, (13)

where the second inequality is by the assumption that we are in Case 1. Equivalently,∑
`∈T◦

2−|`| ·max
i∈[n]

{
Infδ,di (f`)

}
≥ ε

log(s/ε) log s
,

and so there must exist a leaf `? ∈ T ◦ such that

score(`?) = 2−|`
?| ·max

i∈[n]

{
Inf

(δ,d)
i (f`?)

}
≥ ε

|T ◦| log(s/ε) log s
,

where |T ◦| denotes the size of T ◦.

Case 2: E
`
[Var((f`)δ)] < 4E

`

[
‖(f`)δ − T trunc

opt ‖22
]

+ 7ε.

In this case, we claim that errorf (T ◦f ) ≤ O(opts + κ+ ε). We will need a couple of propositions:

Proposition E.1. E
`
[‖(f`)δ − f`‖22] ≤ 4κ.

Proof. We first note that

E
`

[
‖(f`)δ − f`‖22

]
≤ 2E

`

[
‖(f`)δ − f`‖1] (Since f` and (f`)δ are [−1, 1]-valued)

= 2E
`

[
E
x

[
|(f`)δ(x)− f`(x)|

]]
= 2E

`

[
E
x

x̃∼δx

[
|(f`)(x̃)− f`(x)|

]]

= 2E
`

[
2 Pr

x
x̃∼δx

[
f`(x̃) 6= f`(x)

] ]
= 4E

`

[
NSδ(f`)

]
= 4 NSδ(f, T

◦).

By Fact 2.1, we have that NSδ(f, T
◦) ≤ NSδ(f), and the claim follows.

Proposition E.2. For each leaf ` ∈ T ◦, we have E
[
(f`(x) − sign(E[f`])

2
]
≤ 2E[(f`(x) − c)2]

for all constants c ∈ R.

Proof. Let p := Pr[f`(x) = 1] and assume without loss of generality that p ≥ 1
2 . On one hand, we

have that E
[
(f`(x)− sign(E[f`])

2
]

= E
[
(f`(x)− 1)2

]
= 4(1− p). On the other hand, since

E[(f`(x)− c)2] = p(1− c)2 + (1− p)(1 + c)2

this quantity is minimized for c = 2p− 1 and attains value 4p(1− p) at this minimum. Therefore
indeed

min
c

{
E[(f`(x)− c)2]

}
= 4p(1− p) ≥ 2(1− p) =

1

2
E
[
(f`(x)− sign(E[f`])

2
]

and the proposition follows.
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With Propositions E.1 and E.2 in hand, we are ready to bound errorf (T ◦f ). Recall that T ◦f is the
completion of T ◦ that we obtain by labeling each leaf ` with sign(E[f`]). Therefore,

errorf (T ◦f ) = E
`

[
dist(f`, sign(E[f`]))

]
=

1

4
E
`

[
‖f` − sign(E[f`])‖22

]
≤ 1

2
E
`

[
‖f` − E[(f`)δ]‖22

]
(Proposition E.2)

≤ E
`

[
‖f` − (f`)δ‖22

]
+ E

`

[
‖(f`)δ − E[(f`)δ]‖22

]
≤ 4κ+ E

`
[Var((f`)δ)] (Proposition E.1)

By the assumption that we are in Case 2, we have that:

E
`
[Var((f`)δ)] < 4E

`

[
‖(f`)δ − T trunc

opt ‖22
]

+ 7ε

≤ 8
(

4κ+ E
`

[
‖f` − T trunc

opt ‖22
])

+ 7ε (Proposition E.1)

= 8
(

4κ+ 4E
`

[
dist(f`, T

trunc
opt )

])
+ 7ε

= 8
(
4κ+ 4(opts + ε)

)
+ 7ε

≤ O(opts + κ+ ε).

and so we have shown that errorf (T ◦f ) ≤ O(opts + κ+ ε).
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