A Other related work

Kearns and Mansour [KM99] (see also [Kea96]) analyzed top-down impurity-based heuristics from
the perspective of boosting, where the attributes queried in the tree are viewed as weak hypotheses.

Recent work of Blanc et al. [BLT20b] gives a top-down algorithm for learning decision trees that
achieves provable guarantees for all target functions f. However, their algorithm makes crucial use of
membership queries, which significantly limits its practical applicability and relevance. Furthermore,
their guarantees only hold in the realizable setting, requiring that f is itself a size-s decision tree
(i.e. opt, = 0).

There has been extensive work in the learning theory literature on learning the concept class of
decision trees [EH89, Blu92, KM93| |I0S07, IGKKO08, HKY 18| (CM19]]. However, none of these
algorithms proceed in a top-down manner like the practical heuristics that are the focus of this work;
indeed, with the exception [EH89], these algorithms do not return a decision tree as their hypothesis.
([EHS89]I’s algorithm constructs its decision tree hypothesis in a bottom-up manner.)

B Proof of [Fact 2.1

is a simple consequence of the following lemma, whose proof also appears in [Jon16]:
Lemma B.1. Forall f : {+1}" — {*+1} andi € [n),

s
NSs(f) = $NSs(fri=—1) + A NS5(fa,=1) + 5557 - Infl” (£).
Proof. Letx ~ {£1}" be uniform random, and & ~s x be a d-noisy copy of x. We first note that

E[f(@)(#)] = Prle; = &) - E[f(@)[(%) | @ = &) + Prle; # &) Elf (@) /(&) | & # &
= (1= HGEUE) /@) + S Elf@=)fE=)

+ S (3 Elf (@) (@@= +  E[f (&=1) f(2=)]). )
Next, we have that
E[D;f(x)Dif(2)] = 1 E[(f(=") = f(&=""))(f(@=") - f(&=1))]
= JElf @)@ + (B[ @) (@)
— 1 E[f@ ) f@ =) - Elf @@= f@ ). (8)

Combining and
E[f(2)f(2)] = 3 Elf(='=") /(@ 7")] + 3 Elf (==~ f(@="")] = 6 E[D:if (x) D f (%))
= 3 Elfom1 @) frma ()] 4 § Blfsem1 (@) foi =1 (2)] — 125 - I (/)
Since NS;s(f) = Pr[f(x) # f(&)] = 3 — 2 E[f(z) f(2)], the lemma follows from the above by
rearranging. O

Proof o We first note that
NSs(f, Tese) = >, 27 VNSs(f)

leaves £ € T _,
z;

=Y NS

leaves £ € T°
+ 27D NS (for 1) + 27D NS (for =) — 271971 NS5 (o)
= NS5(£,7°) + 2711 (F NSs(fer os=—1) + 5 NS5 (fer wi=1) = NS5(fer)).-
Applying with its ‘ f* being fy~, we have that
5 NS5(fieai=—1) + § NSs(fer o,=1) = NSs(fie) = =527 - Ity (fer),

and this completes the proof. O
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C Proof of Theorem 3

Proof. We apply with “T” being T, ‘g’ being fégd, and p being the semimetric p(a, b) =
(a — b)?/2. As shown by [OSSS03] (and as can be easily verified), Defy(p) < k for this choice of p,
and so

Cov, (T, f5) <k Y N(T*) - 3 E[(f5 () — £ ()] ©)

i=1

We first analyze the quantity on the LHS of [Equation (9)| For ¢, 2’ ~ {+1}" uniform and indepen-
dent,

Cov,(T*, f£4) = L(E [(T*(x) - f5%(x))?] - E[(T*(z) — f54))?])
> LE[(f7 (=) - f£9(2)?] - B [(T*(2) - 7 ())?]
= LVar(f5)) - E [(T*(z) - f5(2))?], (10)

where the inequality uses the “almost-triangle" inequality (a — ¢)? < 2((a — b)? + (b — ¢)?) for
a, b, ¢ € R. Furthermore, we have

Var(fs) = Z(l —§)281f(9)? (Fourier formulas for f5 (§) and variance (@)

S#0

S-SR+ X (- sy
S#0 IS|>d
|S|<d

< Var(f Z e~ 6)2‘S‘f 14+a<e?

|S|>d
< Var(f5h) +e72% Y f(S (Since |S] > d)
|S|>d
< Var(fégd) 4 e 240 (Parseval’s identity : > sCin] F(8)2=1)
< Var(ffd) +e. (Since d = log(1/¢)/9)

Similarly,

E[(T*(2) - 5" (@))"] < 2(E[(T"(@) - fs(2))*] + E [(fs(@) - f5(2))*])
(“almost-triangle" inequality)

2 (BT (@) — fs@)?] + Y (1= 9)If(5)?)

|S|>d
<2(E[(T*(=) — fs(x))*] +¢). (Since d = log(1/¢)/6)
Combining these bounds with we have the following lower bound on the LHS

of [Equation O}

Cov(T*, f5*) > J(Var(f5) — &) — (RE[(T* (@) — fs5(x))?] + 2¢).
= 3 Var(fs) — (2E[(T*(z) - f5(2))?] + 3¢). (11)
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We now turn to analyzing the RHS of
kZA ) 3B [(f5 (@) = £7(2™))?]

=k Z N(T*)-LE Sha) — f50(x®))? ] (x®® = z with its i-th coordinate flipped)

—kZAT* Dif5(x)?

=k Z X(T*) - Infi (£59) (Definition 2)
i=1
= k- max {Inf } Ai(T*) < k-max {Inf } log s, (12)
1€[n] Z 1€[n] (f6 ) g
where the final inequality holds because
n n
Z Xi(T) = ZPr[ T* queries x; | = Z 2714 14| < log s.
i=1 i=1 leaves £ € T

Finally, we note that:

Inf;(f5%) = Z (1—0)21517(9)? (Fourier formula for influence; [Definition 2)
53i
1S|<d

< D =0)Efs)? = mi(f),

S3i
|S|<d

Combining this with[Equations (9)} [(11)|and [(12)| and rearranging completes the proof. O

D Proofs of and 4.2 and and[E.2]

Proof of[Fact 4.1} This follows by combining the bounds Inf(7") < logs (see e.g. [OS07]]) and
NSs(f) < §-Inf(f) forall f: {£1}™ — {£1} [O’D14l Exercise 2.42]. O

Proof of[Fact 4.2] Let ¢ ~ {£1}" be uniform random and & ~s x be a d-noisy copy of x. Then

NSs(f) = Pr[f(z) # f(2)]
< PrT(z) # T()] + Pr[T(x) # f(x)] + Pr[T(2) # f(2)]
< NS5(T) +2Pr[T () # f(z)],

where the final inequality uses that fact that « and & are distributed identically. O

E The case analysis in the proof of

Case 1: ]lE[Var((fe)a)] > 4153 [I1(fe)s — Tam™|I3] + 7e.

In this case we claim that there is a leaf ¢* of T with a high score, where we recall that the score of
a leaf / is defined to be

score(f) :== 271l . max {Inf (fz)}.

i€[n]
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Applying with its “T™*” being Too* and its * f* being f; for each leaf £ € T°, we have
that

LE[Var(fe)s)] - (2E [ITon — (fo)sl3] + 3¢)

(5.4) - ‘
IeE [?el?n)]( {Infl (fe)}} - log(s/e)log s (Theorem J)
2 (13)

>
~ log(s/e)logs’

where the second inequality is by the assumption that we are in Case 1. Equivalently,

—10. max {Inf®? - c
Z 2 {I fz (fe)} > lOg(S/E)

Pt i€[n] log s’
and so there must exist a leaf /* € T° such that
) =271 max (It (f,.)} > -
score(£") ?;[a;z)]({ nfy " (fe )} = |T°|log(s/e)log s’

where |7°| denotes the size of T°.

Case 2: IE[Var((fe)é)] <4k [[1(fe)s — TopeclI3] + Te-

In this case, we claim that errory(T7) < O(opt, + k + £). We will need a couple of propositions:
K.

Proposition E.1. IZE[||(f[)5 — fell3] < 4

Proof. We first note that
E [1(fe)s — fell3] < 2k [1(fe)s — fell] (Since f; and (fy)s are [—1, 1]-valued)

=28 [E[|(fo)s(e) — fo(@)]]]
=28 | B [|(f0)@) - wa)H]

I
[\}
~=

2 Pr [fe(®) # fe(x)] ]

L &~z

= 4B [NS5(fe)] = 4NSs(f,1°).
By [Fact 2.1} we have that NSs(f, 7°) < NS;(f), and the claim follows. O

Proposition E.2. For each leaf ¢ € T°, we have E [(fo(z) — sign(E[f,])?] < 2E[(fo(x) — ¢)?]
for all constants c € R.

Proof. Let p := Pr[f;(z) = 1] and assume without loss of generality that p > 1. On one hand, we
have that E [(f¢(z) — sign(E[f¢])?] = E [(fe(x) — 1)?] = 4(1 — p). On the other hand, since

E[(fe(z) = ¢)*] =p(1 = ¢)* + (1 = p)(1 +¢)®

this quantity is minimized for ¢ = 2p — 1 and attains value 4p(1 — p) at this minimum. Therefore
indeed

min { B[(fe(x) — ¢)’]} = 4p(1 —p) > 2(1 - p) = %E [(fe(z) — sign(E[f2])?]

and the proposition follows. O
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With [Propositions E.1 andin hand, we are ready to bound error f(T;). Recall that 777 is the
completion of T that we obtain by labeling each leaf ¢ with sign(IE[ f¢]). Therefore,

errory (T7) = IE] [dist(fe, sign(E[fe]))]

= L[l - sign(ELfe]) 3]

<3 E [er ~ El(f05]ll3] (Proposiion E2)
<E (I fe = (fosl3] + B [[(fe)s — El(fe)s][13]

<an +1§[Var((fe)a)] (Proposition ExT)

By the assumption that we are in Case 2, we have that:

E[Var((fe)s)] < 4E [(fe)s — Tip|3] + 7=
< 8(4k+ B[l fe — Tom™|3]) +7e (Proposition E.1)
— 84k + 4T [dist(fe, Tog™)] ) + Te

= 8(4k + 4(opt, +¢)) + Te
< O(opty + K + ¢).

and so we have shown that error¢(77) < O(opt, + £ + ).
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