A Single hint setting

In this section, we modify the construction of [2] in the single hint setting to take into account
knowledge of the parameter c. Our goal is to prove Theorem 1. The algorithm is nearly identical
to that of [2] and most of the analysis is the same. We refer the reader to the original reference for
complete details.

Algorithm 3 1-HINT,,

Input: Parameter «
Define \g = landrg =1
Set procedure A to be Algorithm 2 in [2].
fort=1,...,7Tdo
Get hint h;
Get 7, from procedure A, and set

_ 2
T —1
o em o Uml =1,
2’["t
Play z; and receive cost ¢;
Set rey1 \/rf A R it maxl(gg’&f)ct’hm
Define o, = [{ct,he)l
T
Define \; as the golution to:
2
c
N 1
ZT:]. or + )\T

Define the loss £;(z) = (¢, z) + |<c§}}:t>‘ (|lz||* = 1). Send the loss function ¢, to A
end for /

The only difference between our algorithm 1-HINT,, and Algorithm 1 of [2] is the definition of r;:

when we set 71 = \/7“? + %W, [2] instead sets 71 = /77 + max(0, —(ct, hy)). We

can now prove Theorem 1, which we restate below for reference:

Theorem 1. For any 0 < « < 1, there exists an algorithm 1-HINT,, that runs in O(d) time per
update, takes a single hint sequence h, and guarantees regret:

I 1 logT logT) 2 max(0, —(cs, h
R, (B, & {h}) < 3 +4 Z lleell? + log L +2\/( 8T) > i ( {ct, he))
\/ teBh “

(log T)|B§| n logT
o o

<0

Proof. Following [2], we observe that since A always returns T; € 3, z; € BB. Further,

(ctyxp —u) < l(xy) — e(u) + max(0, _<Ct7ht>)7

Tt

and ¢, is o4-strongly convex.

Next, by [2] Lemma 3.4, we have

T

ma ,he)) _

Ritiwe, (B, & {R}) < x(0, —{es, b + 3" (@) — ()
t=1 =
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‘We can bound the first sum as:

ET: max(0, —(ct, hy)) < logT ET: amax(0, —(c, he))/logT
Tt N Tt

t=1 t=1

< 2logT i amax(0, —(ct, hy))
« P log T

- \/ o =1 (log T) max(0, —(er, he)

«

For the second sum, we appeal to Lemma 3.6 of [2], which yields:

T
1 r(logT
S b)) < 3 44 {3 fef - 10T
t=1 te B
| . \/ (log® T) + (log T)a 1, max(0, (1, he))
sl 20 el + -
teBh
1 logT (log T) 21—, max(0, —(ct, ht))
<gtal, [ el ¢ -
teBE

Combining these identities now yields the desired theorem. O

IN

B Full proofs: Constrained setting

B.1 Proof of Theorem 2

Theorem 2. Let o € (0, 1) be given. There exists a randomized algorithm Ayw for OLO with K
hint sequences that has a regret bound of

(log T)(| BV | 4 log K) N log T
a a

E[R (B¢ | H) < O [ int ¢

€K

Proof. At each time step ¢, our goal is to pick a single hint h; € {hgl), ce th)}. We instantiate
this problem as an instance of the standard prediction with K experts problem with binary losses
defined as follows.

PP LI R e
’ 1 otherwise.

Let h(") denote the hint sequence with minimum loss in hindsight, i.e., * = argmin, Zt 4. We

note that by definition of the losses £, we have 3, £, = = [BA" | Let ®MW = (h{") h{?) .. )
be the sequence of hints obtained by running the classical Multiplicative Weights algorithm with a
decay factor of n = % Then by standard analysis (e.g., Theorem 2.1 of Arora et al. [1]), we have the
following.

1
E[> (b, — i) < 2log K + 5 Xt: (Cri) . (6)

t

Substituting \BZ“ )| = >, ¥+~ and rearranging,

E[|BF™| = Z‘th <? Bh( '| +2log K. 0
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We then run an instance of the single hint algorithm, 1-HINT,,, with the hint sequence MW Applying
Theorem 1 yields the following.

(log T)| BE™|
(%

E[RAMW(B7E| H)] § O|E

(log T)E || BE™|
<0 [ } n logT
« o

PG)
<0 \/(10gT)(|Baa +log K) . loiT

where the first inequality follows from Jensen’s inequality and the second one follows from (7). [

B.2 Proof of Proposition 4

Before proving Proposition 4, we apply the analysis of adaptive follow-the-regularized-leader (FTRL)
as in [19] to obtain:

Proposition 14. For any w, € Ak, we have:

T T
D (L(we) = L(w,)) < 2| (log” K) + (log K) ) llge %
t=1

Proof. To begin, recall that the entropic regularizer ¢(w) = log(K) + Z Lw (log w®) is 1-
strongly-convex with respect to the 1-norm over A, has minimum value 0 and maximum value
log K.

Then, standard bounds for FTRL (e.g., [19, Theorem 1]) tell us that:

T . .
log K) + 2 i 2 Zo log K
> Et(wt)_gt(w*)g\/( 8 )IOZ;{_ngtH )+ Y g \/ﬁ
° =1 2,/og K) + X1 g, 2

T
\/aogK>+zZ_l|gt|zo oy + 3" B VIOER
- log K - ,
8 =N SINPATY

g \/ (log K) + 0, llge 2

T
N log K 2
i)+ G0 K) 3l

T

<2,|(log? K) + (log K) > _ ||9¢%-
t=1

Now with Proposition 14 in hand, we can restate and prove:

Proposition 4. Let w; € Ak be chosen via FTRL on the losses ¢y as in Algorithm 1. Then, for any
w, € Ak, we have

T
th(wt —2210gK ZZ& (w,).
t=1
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Proof. From Proposition 3, we have

T T 4
Dollgelz <> b(wy).
t=1 t=1

Combining this with the regret bound of Proposition 14 yields:

I 4log K L
> l(wy) = e(w,) < 2, | (log? K) + > li(wy).
t=1 a

t=1

If we set R = ZtT:l Ly (wy) — £y (wy), we can rewrite the above as:

T
4log K 4log K
2
R<2,|(log” K) + . R+ " ;Zlét(w*).

Now we use va + b < v/a + v/b and solve for R:

T
16log K 16log K
RS%—F 410g2K+6iE O (wy)
o

(&%
t=1

T
18log K 16log K
< 00087 B2 t(w.)

- « «

t=1

T T T
18log K 16log K
= th(wt) < th(w*) + + " Zﬁt(w*).
t=1 t=1

(0%
t=1

Next, observe that vVaX < X + % for all a, X > 0, so that

T T
22log K
<2 % _
;&(wt) S ;ﬁt(w ) + a

as desired. O

C Lower bound proofs

Theorem 7. For any o and T > é log é there exists a sequence C of costs and a set H of hint
sequences, |H| = K for some K, such that: (i) there is a convex combination of the K hints that

log K
2c0 °

always has correlation o with the costs and (ii) the regret of any online algorithm is at least

Proof. Consider a one-dimensional problem with K = % hint sequences for B = aT'. Suppose
T> W, so that 28 > % and log K < 2B = 2T a. We group the hint sequences into % groups
each of size 2Z. We now specify the hint sequence in the ith such group for some arbitrary 4. All
hints in the ith group are O for all ¢ ¢ [(i — 1)B,iB — 1] and for t € [iB, (i + 1)B), the hints take
on the 27 possible sequences of 1. Then it is clear that for any sequence of £1 costs, there is a
convex combination of hints that places weight B /T on exactly one hint sequence in each of the
T/ B groups such that the linear combination always has correlation o« = B/T with the cost.

Let the costs be random +1, so that the expected regret is v/7'. Then we conclude by observing

VIog K /\/2a < V2aT/v2a = VT. O
Theorem 8. In the two-dimensional constrained setting, there is a sequence hand & of hints and

costs (K = 1) such that: (i) Vt, (h¢, i) > «, and (ii) the regret of any online algorithm is at least
Q(1/a).
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Proof. Let ey and e; be orthogonal unit vectors, and let h; = eg for all £. Suppose that ¢; =
aeg = v 1 — a2e; for all ¢, where the sign is chosen uniformly at random. Note that any online
algorithm has expected reward at most a7 (since it cannot gain anything in the e; direction, so it is
best to place all the mass along eg).

On the other hand, we have
2

=a’T? +T(1 - o?),

T
D e
t=1

and thus the optimal vector in hindsight achieves a reward \/ a2?T? + T(1 — a2). Thus the regret is

T(1—a?) o T(1-a?) S 1
ol +/2T2 + T(1—a?) ~ 2aT + /T(1 —a2) ~ o’
for sufficiently large 7. O

D Proofs from Section 4

Theorem 10. Suppose A1, ..., Ax are deterministic OLO algorithms that are associated with
monotone regret bounds Sy, . .., Sk. Suppose Vt, sup,, ,cp(ct,* —y) < 1. Then, we have:

Reyo(B,8) < K (4 -+ 4minSi([1,7],9))

Proof. We can divide the operation of Algorithm 2 into phases in which + is constant. Each phase
may be further subdivided into sub-phases in which ¢ is constant. First, let us bound the regret in
a single phase with fixed . Suppose this phase has N < K sub-phases'. Let ¢;,...,¢y be the
time indices at which each sub-phase begins, and let ¢ N+1 — 1 be the last time index belonging to
this phase. Notice that for all i < N, we must have r;” "i1—t;—1 = 7 since the ith sub-phase lasts

for ¢;41 — t; iterations. Then since sup, ,(ct,,,~1,7 —y) < 1 foralliand z,y € X, we have

(201 (21 ; ; ; .
Teyi—t; STe,,—t,—1 T 1 <7+ 1. Now we can write the regret incurred over this phase as:

tnN+1—1 tiy1—1
sup Z Ct, Ty — u) <Zsup Z Ct, Ty — U <2:7’,51+1 4, SN(v+1) < Ky+ K.
LR — i—1 VEX 4y,
Let P denote the total number of phases. We now show that P < 2 +

max(—1,log, (min; S;([1,7],¢))). Suppose otherwise. Let j = argmin, S;([1,T],¢) be the al-
gorithm with the least total regret. Let us consider the (P — 1)th phase. In this phase, vy = 2772,
Since P > 2 + log, (min; S;([1,T], €)), we must have min; S;([1, 77, &) < . Consider the jth sub-
phase in this phase. Since y will eventually increase, this sub-phase must eventually end. Therefore
there must be some ¢ and 7 such that ¢ + 7 < T" and

sup Cipr!, Wy — U) > 7,

sup TZZI< - )
where w, is the output of A; after seeing input ¢, . .., ¢4 —1. By the increasing property of R;,
we also have:

sup Z (Copr, W —u) < Si([t,t+7],8) < S;([1,T),8) <.
ueX =1

which is a contradiction. Therefore P < 2 + max(—1, log, (min; S;([1,7],¢))).

Now we are in a position to calculate the total regret. Let 1 = 77, ..., Tp be the start times of the P
phases, and let Tp1 — 1 = T for notational convenience. Then we have:
Tet1-1
sup Z (er,xe —u) < Z sup Z Ct, Ty — U).
uEX e=1 ueX t=T,

"All phases except maybe the last phase have exactly K sub-phases.
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Now since the regret in an phase is at most Ky + K, and y doubles every phase,

P
< ZKze—l + K <KP+ K2F
e=1

< K2P+1

<K (4 +4miin31'([17T]75)) )

where the second-to-last inequality follows from x < 2% for x > 1, and the last inequality is from
case analysis. O

Algorithm 4 Randomized combiner.

Input: Online algorithms Aj, ..., Ag
Reset A;
Sety«+ 1,7+ 1
Initialize the candidate indices C' + [K]
Choose index ¢ uniformly at random from C
fort=1,...,Tdo
for j € C do
Get yZ, the Tth output of A;
end for
Respond z; < &
Get cost ¢, define g, <+ ¢
for j € C'do
Send g to A; as Tth cost

Set 127 < sup,ep Y7y (9 — u)
if 727 > ~ then
SetC + C\ {j}
end if
end for
if i ¢ C then
if C = () then
Set C' + [K]
Set v < 2v
end if
SetT 1
Reset A; forall j € C
Select index 4 uniformly at random from C'
end if
Sett+—1+1
end for

Theorem 11. Suppose Ai, ..., Ak are deterministic OLO algorithms with monotone regret bounds
S1, ..., Sk. Suppose for all t, supx7y65<ct, x — y) < 1. Then for any fixed sequence ¢ of costs (i.e.,
an oblivious adversary), Algorithm 4 guarantees:

E [Re,pa (B, 6)] < logy(K + 1) - (4 +4minSi([1,7), 5‘)) _

Further, if ¢ is allowed to depend on the algorithm’s randomness (i.e., an adaptive adversary), then

R (B, 0) < K (4+ 4minS,([1,T],0))

Proof. We divide the operation of Algorithm 4 into phases in which + is constant. Each phase is
further subdivided into sub-phases in which ¢ is constant. First, let us fix an phase e with a fixed value
of v and bound the expected regret incurred in this phase. Let N denote the number of sub-phases in
this phase. Just as in the proof of Theorem 10, we can show that the total regret incurred in this phase
is at most N (y + 1). However, while there are exactly K sub-phases in any phase of Algorithm 2
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(except perhaps the last one), the number of sub-phases in any phase of Algorithm 4 is a random
variable.

We now bound E[N], the expected number of sub-phases in any phase. For the fixed phase e, for any
time index ¢, let F'(4, t) be the smallest index 7 > ¢ such that sup,,c x >/, (¢, W' (t,7/) —u) > 7,
where we define w’(t, 7’) to be the output of A; after seeing input ¢y, . .., c,_1 and w(t,t) to be the
initial output of A;. We set F'(¢,t) = T if no such index 7 < T exists. Intuitively, F'(¢, t) denotes the
index 7 > t when the regret experienced by algorithm A; that is initialized at time ¢ first exceeds ~.

Let C(S, t) be the expected number of sub-phases (counting the current one) left in the phase if a sub-
phase starts at time ¢ with the specified set of active indices S. We define C'(S, T+ 1) = C(0,t) =0
for all S and ¢ for notational convenience. Note that C'(S,T') = 1 for all S. Further, by definition, we
have E[N] = C({1,2,..., K},t) for some t (corresponding to the start of the phase). We claim that
C satisfies:

C(S,t) = 1+EZC S\{jes | F(jt)<F(i,t)}, F(i,t) +1).
€S

To see this, observe that each index ¢ € S is equally likely to be selected for the fixed i throughout
the sub-phase starting at time ¢. By definition of F', the sub-phase will end at time F'(i,t) if the
selected index is . Further, at the end of the sub-phase, S willbe S\ {j € S | F(j,t) < F(i,t)}.
Therefore, conditioned on selecting index ¢ for this sub-phase, the expected number of sub-phases is
1+C(S\{jeS | F(4,t) < F(i,t)}, F(i,t) + 1). Since each index is selected with probability
1/|S], the stated identity follows. Now we apply Lemma 15 to conclude that C({1,..., K},t) <
log, (K + 1) for all ¢, which implies E[N] < log, (K + 1).

Finally, let P denote the total number of phases. We can show that P < 2 +
max(—1,log, (min; S;([1,7],¢))). The proof of this claim is identical to that in Theorem 10 and
is omitted for brevity. Let N, and y, = 2P~! denote the number of sub-phases in phase p and the
corresponding value for  respectively. We can then conclude the total expected regret experienced
by Algorithm 4 is

T P
El*’ﬂchwulﬁZ Nol(yp +1) < (27 + P) - logy (K +1)
ueX p=1
< log (K+1)<4+4m1n8([1,T],E’)).

To prove the second bound for an adaptive adversary, we simply observe that in the worst-case, we
cannot have more than K sub-phases in any phase. The rest of the argument is identical. [

In order to prove Theorem 11, we need the following technical Lemma:
Lemma 15. Let F' : [K] x [T] — [T] be such that F(i,t) > t for all i € [K],t € [T] and

C : 2K X [T] — R be a function that satisfies C(,t) = 0 for all t, C(S,T) = 1 for all S,
C(S, T+ 1) =0forall S, and C satisfies the recursion:

C(S,t) = 1+EZC (S\{j €S | F(j,t) < F(i,t)},F(i,t) +1).
€S

Then C({1,...,K},t) <log,(K + 1) forall t.

Proof. We define the auxiliary function Z(N) = sup, |5/<n C(S,t). Observe Z(0) =0, Z(1) =
and Z(N) is non-decreasing with V. Now suppose for purposes of induction that Z(n) < logy(n+1)
for n < N. Then we have

1
2N <14 sup s SO -G ES | FGit) < Fli 0}, Firt) + 1)
NN Ny js1=n £

<1+ sup ﬁ sup > Z(N'—|{j €8 | F(j,t) < F(i,0)}]).
N'<N tISI=N" 25
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Now since Z(n) is non-decreasing in n, this is bounded by:

<1+ su Z(N
N/<pNN’Z

<1+ su lo f—i41).
N/<pNN’Z go (N )

Now we apply Jensen inequality to the concave function log,(n):
N/

1
<1+ sup log, | — > N —i+1
e | 2

<1+ sup logy((N'+1)/2)
N'<N
= logy(N +1).
To conclude, note that clearly C'({1,..., K},t) < Z(K) for all ¢. O
E Other applications of the combiner

In this section we discuss a couple of direct applications of our combiner algorithms to other settings.

E.1 Adapting to different norms

For any ¢,-norm, p € (1, 2] there is an algorithm that guarantees regret sup,,c &%1 / ZtT 1 lledll2

where q is such that + = =1 (such bounds can be obtained by e.g., the adaptive FTRL analysis
described in [19], or see [24] for a non-adaptive version). However, it is not clear which p-norm
yields the best regret guarantee until we have seen all the costs. Fortunately, these are monotone regret
bounds, so by making a discrete grid of O(log d) p-norms in a d-dimensional space we can obtain
the best of all these bounds in hindsight up to an additional factor of log d in the regret. Specifically:

Theorem 16. Let K = [(logd)/2], let g9 = 2 and % = q'1_1 — 1Oédfori < K. Define p; by
qi + pi = 1. Foreachi € [K], let A; be an online learning algorithm that guarantees regret

llullp,

SUPueB 5ot 23:1 llct||2,. Then combining these algorithms using Algorithm 2 yields a worst-
case regret bound of:

BRA®B.0) < O | (loglogd) -inf sup JEIL i Zn |2

P ueB

E.2 Simultaneous Adagrad and dimension-free bounds

The adaptive online gradient descent algorithm of [15] obtains the regret bound Ds+/ Zthl llet |3,
where Dy is the /o-diameter of 5. In contrast, the Adagrad algorithm obtains the bound

D, Zle y/ Zthl cii where D is the {,,-diameter of B and c; ; is the ith component of c; [10].

Adagrad’s bound can be extremely good when the ¢, are sparse, but might be much worse than the
adaptive online gradient descent bound otherwise. However, both bounds are clearly monotone, so by
applying our combiner construction, we have:

Theorem 17. There is an algorithm A such that for any sequence of vectors c, the regret is at most:

T
E[RA(B,&)] < O (min{ Day |y leell3, D

t=1
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F Proof of Theorem 13

Theorem 13. There is an algorithm A for the unconstrained setting such that for any u € R% and
any a € (0,1), we have

ViogK | |BZ™
Ra(w,&| H) =0 | inf {[ull(ogT) [ o= +
wWEAK

Proof. Algorithm A instantiates one d-dimensional parameter-free OLO algorithm A’ that outputs
Z¢, gets costs ¢, and guarantees regret for some user specified e:

T

T
> lleel? log —
t=1 €

Where the O hides absolute constants. Such algorithms are described in several recent works [7, 8,
27, 17, 20]. Also, algorithm A instantiates K one-dimensional learning algorithms, .4; for the hint

sequence (). At time t, the ith such learner outputs yii), gets cost —{ct, h,@) and guarantees regret:

T
S eesar —u) < e+ O [ Jull log(T) + u]
t=1

d 4 b€ . i : KT
> (e i)Y — ") < 22 +0 (v 1og(T) + |y | (e, hi”)? log =
t=1 t=1
¢ d KT
< £ (i) (i) 2log 2t
< o O [ 1y log(T) + [y ;HCtH log —

These one-dimensional learners may simply be instances of the d-dimensional learner restricted to

one dimension. The algorithm A responds with the predictions &; = = — Zfil yt(i)hgi) and set
€ = 1. The regret is:

T T
ICERTESS
t=1 t=1 3
T K
_ ; i (7,' (t) (i) (4)
D IREIEENIE IS WD)

t=1 i=1
T K [ T
<0 f 2log T — + [y 2log(KT
<o| , mf ;HCtII og +; e ;Hctll og(KT)
K T K
Hul log(T) + > [y log(T) = <Cta S yOnd >}>
i=1 t=1 i=1
T T K A
<02+ inf 2| log(T) + 2] Z||ct|2logT—Z<ct,Zy“>h§”>
S ly @ I<llully/ ety t=1 t=1 i=1
Let w be an arbitrary element of Ax. We set () = |u]| N H(w)(;) ——— Notice that this implies
ol Ba "+ 2 o
S @D < |l /blg“gKTT) Also, we have
T T
=S e Hw)) < - 3 allel +21BH®)],  and
=1 t=1

3 ) ] TS 00:
S ey < — >~ alal+ 2lul =,

H(w 1
=\ i ol B | + D 1S
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Thus the regret bound for .4 becomes

3 B
Ra(u,@| H) < O | 2+ wlul| log(T) + 2|u]
4 Ju -
> lle]210g T — 3 alle?
t=1 \/a\Bf(w)| + 71050(;{7?1) t=1
lull(og T) /o BE )| + 65D |BE®)
<02+ +2/|ul
«
ul||l\/(log T)log(KT BE™
_o [ IvA a) BT utogry ] 1B

Since w was chosen arbitrarily in A g, the bound holds for all w € Ak and so we are done.

20



