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A Derivation of the dynamical mean-field equations

The derivation of the self-consistent stochastic process discussed in the main text can be obtained
using tools of statistical physics of disordered systems. In particular, it has been done very recently
for a related model, the spherical perceptron with random labels, in [1]. Our derivation extends the
known DMFT equations by including

• structure in the data;

• a stochastic version of gradient descent as discussed in the main text;

• the relaxation of the spherical constraint over the weights and the introduction of a Ridge
regularization term.

There are at least two ways to write the DMFT equations. One is by using field theoretical techniques;
otherwise one can employ a dynamical version of the so-called cavity method [2]. Here we opt for
the first option that is generically very compact and immediate and it has a form that resembles very
much a static treatment of the Gibbs measure of the problem [3]. We use a supersymmetric (SUSY)
representation to derive the dynamical mean-field (DMFT) equations [1, 4]. We do not report all the
details, that can be found in [1] along with an alternative derivation based on the cavity method, but
we limit ourselves to provide the main points. We first consider the dynamical partition function,
corresponding to Eq. (11) in the main text

Zdyn =

〈∫ [
dw(0)

(2π)
d
2

e−
1
2‖w

(0)‖22

]∫
w(0)=w(0)

Dw(t)

×
d∏
j=1

δ

[
−ẇj(t)− λwj(t)−

n∑
µ=1

sµ(t)Λ′
(
yµ,

w(t)>xµ√
d

)
xµ,j√
d

]〉
,

(A.1)

where the brackets 〈·〉 stand for the average over sµ(t), yµ and the realization of the noise in the
training set. The average over the initial condition is written explicitly. Note that we choose an
initial condition that is Gaussian, but we could have chosen a different probability measure over
the initial configuration of the weights. The equations can be generalized to other initial conditions
as soon as they do not depend on quenched random variables that enter in the stochastic gradient
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descent (SGD) dynamics and their distribution is separable. As observed in the main text, we have
that Zdyn = 〈Zdyn〉 = 1. We can write the integral representation of the Dirac delta function in Eq.
A.1 by introducing a set of fields ŵ(t)

Zdyn =

〈∫
Dw(t)Dŵ(t) eSdyn

〉
, (A.2)

where the dynamical action Sdyn is defined as in Eq. (13) of the main text

Sdyn =

d∑
j=1

∫ +∞

0

dt iŵj(t)

(
−ẇj(t)− λwj(t)−

n∑
µ=1

sµ(t)Λ′
(
yµ,

w(t)>xµ√
d

)
xµ,j√
d

)
. (A.3)

A.1 SUSY formulation

The dynamical action Sdyn (A.3) can be rewritten in a supersymmetric form, by extending the time
coordinate to include two Grassman coordinates θ and θ̄, i.e. ta → a = (ta, θa, θ̄a). The dynamic
variable w(ta) and the auxiliary variable iŵ(ta) are encoded in a super-field

w(a) = w(ta) + i θaθ̄aŵ(ta). (A.4)
From the properties of Grassman variables [5]

θ2 = θ̄2 = θθ̄ + θ̄θ = 0,∫
dθ =

∫
dθ̄ = 0,

∫
dθ θ =

∫
dθ̄ θ̄ = 1,

∂θg(θ) =

∫
dθ g(θ) for a generic function g,

(A.5)

it follows that ∫
da f (w(a)) =

∫ +∞

0

dta iŵ(ta)f ′ (w(ta)) . (A.6)

We can use Eq. (A.6) to rewrite Sdyn. We obtain

Sdyn = −1

2

∫
dadbK(a, b)w(a)>w(b)−

n∑
µ=1

∫
da sµ(a) Λ (yµ, hµ(a)) , (A.7)

where we have defined hµ(a) ≡ w(a)>xµ/
√
d and we have implicitly defined the kernel K(a, b)

such that

−1

2

∫
dadbK(a, b)w(a)>w(b) =

d∑
j=1

∫ +∞

0

dt iŵj(t) (−ẇj(t)− λwj(t)) . (A.8)

By inserting the definition of hµ(a) in the partition function, we have

Zdyn =

〈∫
Dw(a)Dhµ(a)Dĥµ(a) exp

[
−1

2

∫
dadbK(a, b)w(a)>w(b)

−
n∑
µ=1

∫
da sµ(a) Λ (yµ, hµ(a))

]
exp

[
n∑
µ=1

∫
da i ĥµ(a)

(
hµ(a)− w(a)>xµ√

d

)]〉
.

(A.9)
Let us consider the last factor in the integral in (A.9). We can perform the average over the random
vectors zµ ∼ N (0, Id), denoted by an overline, as

exp

[
n∑
µ=1

∫
da i ĥµ(a)

(
hµ(a)− w(a)>xµ√

d

)]

= exp

[
n∑
µ=1

∫
da i ĥµ(a)

(
hµ(a)− cµm(a)−

√
∆

d
w(a)>zµ

)]

= exp

[
n∑
µ=1

∫
da i ĥµ(a) (hµ(a)− cµm(a))− ∆

2

n∑
µ=1

∫
da dbQ(a, b)ĥµ(a)ĥµ(b)

]
,

(A.10)
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where we have defined

m(a) =
1

d
w(a)>v∗,

Q(a, b) =
1

d
w(a)>w(b).

(A.11)

By inserting the definitions of m(a) and Q(a, b) in the partition function, we obtain

Zdyn =

∫
DQDm edS(Q,m), (A.12)

where Q = {Q(a, b)}a,b ,m = {m(a)}a and

S(Q,m) =
1

2
log det (Q(a, b)−m(a)m(b))− 1

2

∫
dadbK(a, b)Q(a, b) + α logZ,

Z =

〈∫
Dh(a)Dĥ(a) exp

[
−∆

2

∫
dadb Q(a, b)ĥ(a)ĥ(b)

+

∫
da iĥ(a) (h(a)− cm(a))−

∫
da s(a) Λ (y, h(a))

]〉
.

(A.13)

We have used that the samples are i.i.d. and removed the index µ = 1, ...n. The brackets denote the
average over the random variable c, that has the same distribution as the cµ, over y, distributed as yµ,
and over the random process of s(t), defined by Eq. (9) in the main text. If we perform the change of
variable Q(a, b)← Q(a, b) +m(a)m(b), we obtain

S(Q,m) =
1

2
log detQ(a, b)− 1

2

∫
dadbK(a, b) (Q(a, b) +m(a)m(b)) + α logZ,

Z =

〈∫
Dh(a)Dĥ(a) eSloc

〉
,

(A.14)

where the effective local action Sloc is given by

Sloc = −∆

2

∫
dadb Q(a, b)ĥ(a)ĥ(b)− ∆

2

(∫
da ĥ(a)m(a)

)2

+

∫
da iĥ(a) (h(a)− cm(a))−

∫
da s(a) Λ (y, h(a)) .

(A.15)

Performing a Hubbard-Stratonovich transformation on exp

[
−∆

2

(∫
da ĥ(a)m(a)

)2
]

and a set of

transformations on the fields h(a), we obtain that we can rewrite Z as

Z =

〈∫
dh0√

2π
e−

h2
0
2

∫
Dh(a)Dĥ(a) exp

[
−1

2

∫
dadb Q(a, b)ĥ(a)ĥ(b)

+

∫
da iĥ(a)h(a)−

∫
da s(a) Λ

(
y,
√

∆h(a) +m(a)(c+
√

∆h0)
)]〉

.

(A.16)

A.2 Saddle-point equations

We are interested in the large d limit of Zdyn, in which, according to Eq. (A.12), the partition function
is dominated by the saddle-point value of S(Q,m):

δS(Q,m)

δQ(a, b)

∣∣∣∣
(Q,m)=(Q̃,m̃)

= 0

δS(Q,m)

δm(a)

∣∣∣∣
(Q,m)=(Q̃,m̃)

= 0

. (A.17)

Q̃(a, b) is obtained from the equation

−K(a, b) +Q−1(a, b) +
2α

Z
δZ

δQ(a, b)
= 0. (A.18)
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The saddle-point equation for m̃(a) is instead

−
∫

dbK(a, b)m(b) +
α

Z
δZ

δm(a)
= 0. (A.19)

It can be easily shown by exploiting the Grassmann structure of Eqs. (A.18)-(A.19) that they lead to
a self consistent stochastic process described by

ḣ(t) = −λ̃(t)h(t)−
√

∆s(t)Λ′ (y, r(t)− Y (t)) +

∫ t

0

dt′MR(t, t′)h(t′) + ξ(t), (A.20)

where the initial condition is drawn from P (h(0)) ∼ e−h(0)2/(2R)/
√

2π, and r(t) =
√

∆h(t) +

m(t)(c+
√

∆h0), with P0(h0) ∼ e−h2
0/2/
√

2π. We have defined the auxiliary functions

µ(t) = α
〈
s(t)

(
c+
√

∆h0

)
Λ′ (y, r(t))

〉
λ̂(t) = α∆ 〈s(t)Λ′′ (y, r(t))〉
λ̃(t) = λ+ λ̂(t)

(A.21)

and kernels

MC(t, t′) = α∆ 〈s(t)s(t′)Λ′ (y, r(t)) Λ′ (y, r(t′))〉 ,

MR(t, t′) = α∆3/2
〈
s(t)s(t′)Λ′ (y, r(t)) Λ′′ (y, r(t′)) iĥ(t′)

〉
≡ α∆

δ

δY (t′)
〈s(t)Λ′(y, r(t))〉

∣∣∣∣
Y=0

.

(A.22)

In addition, from (A.19) , one can derive an ordinary differential equation for the magnetization

ṁ(t) = −λm(t)− µ(t). (A.23)

The brackets in the previous equations denote, at the same time, the average over the label y, the
process s(t), as well as the average over the noise ξ(t) and both h0 and h(0), whose probability
distributions are given by P (h(0)) and P0(h0) respectively. In other words, one has a set of kernels,
such as MR(t, t′) and MC(t, t′), that can be obtained as average over the stochastic process for h(t)
and therefore must be computed self-consistently.

Finally, Eq. (A.18) gives rise to Eq. (20) of the main text while Eq. (A.19) gives rise to the equation
for the evolution of the magnetization. Note that the norm of the weight vector w(t) can be also
computed by sampling the stochastic process

ẇ(t) = −λ̃(t)w(t) +

∫ t

0

dt′MR(t, t′)(w(t′)−m(t′)h0) + ξ(t) + h0(λ̂(t)m(t)− µ(t)),

P (w0) =
1√
2πR

e−w2
0/(2R),

(A.24)

from which one gets
C(t, t′) = 〈w(t)2〉 . (A.25)

A.3 Numerical solution of DMFT equations

The algorithm to solve the DMFT equations that are summed up in Eq. (A.20) is the most natural
one. It can be understood in this way. The outcome of the DMFT is the computation of the kernels
and functions appearing in it, namely m(t), MC(t, t′) and so on. They are determined as averages
over the stochastic process that is defined through them. Therefore, one needs to solve the system of
equations in a self-consistent way. The straightforward way to do that is to proceed by iterations:
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1. We start from a random guess of the kernels, that we use to sample the stochastic process
(A.20) several times;

2. We compute the averages over these multiple realizations to obtain the updates of the
auxiliary functions (A.21) and kernels (A.22), along with the magnetization (A.23);

3. We use these new guesses to sample again multiple realizations of the stochastic process;
4. We repeat steps 2. and 3. until the kernels reach a fixed point.

As in all iterative solutions of fixed point equations, it is natural to introduce some damping in
the update of the kernels to avoid wild oscillations. Note that the DMFT fixed point equations are
deterministic, hence at given initial condition the solution is unique. Indeed, the kernels computed
by DMFT are causal and a simple integration scheme of the equations is just extending them
progressively in time starting from their initial value, which is completely deterministic given the
initial condition for the stochastic process. This procedure has been first implemented in [7, 8] and
recently developed further in other applications [9, 10]. However, DMFT has a long tradition in
condensed matter physics [11] where more involved algorithms have been developed.

B Generalization error

The generalization error at any time step is defined as the fraction of mislabeled instances:

εgen(t) ≡ 1

4
EX,y,xnew,ynew

[
(ynew − ŷnew (w(t)))

2
]
, (B.1)

where {X,y} is the training set, xnew is an unseen data point and ŷnew is the estimator for the new
label ynew. The dependence on the training set here is hidden in the weight vector w(t) = w(t,X,y).

B.1 Perceptron with linear activation function

In this case, the estimator for a new label is ŷnew (w(t)) = sign
(
w(t)>xnew

)
. The generalization

error in the infinite dimensional limit d→∞ has been computed in [6] and reads

εgen(t) =
1

2
erfc

(
m(t)√

2∆C(t, t)

)
. (B.2)

B.2 Perceptron with door activation function

In this case, the estimator for a new label is ŷnew (w(t)) = sign
(

1
d (w(t)>xnew)2 − L2

)
. From Eq.

(B.1), we have that

εgen(t) =
1

2
(1− EX,y,xnew,ynew

[ynew · ŷnew(w(t))]) . (B.3)

We consider the second term of (B.3)

EX,y,xnew,ynew
[ynew · ŷnew(w(t))] = EX,y,xnew

[
sign

(ynew

d
(w(t)>xnew)2 − ynewL

2
)]
. (B.4)

In the high dimensional limit, the overlap between weight vector and data point at each time step
concentrates

w(t)>xnew√
d

=
w(t)>√

d

(
cnew

v∗√
d

+
√

∆ znew

)
→
d→∞

cnew m(t) +
√

∆C(t, t) z, (B.5)

where z ∼ N (0, 1). Therefore, we obtain

EX,y,xnew,ynew [ynew · ŷnew(w(t))] '

' Ecnew,z,ynew

[
sign

(
ynew

(
cnew m(t) +

√
∆C(t, t) z

)2

− ynewL
2

)]
= P

(
ynew

(
cnew m(t) +

√
∆C(t, t) z

)2

≥ ynewL
2

)
−P
(
ynew

(
cnew m(t) +

√
∆C(t, t) z

)2

< ynewL
2

)
(B.6)
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and the generalization error in the infinite dimensional limit d→∞ is

εgen(t) = (1−ρ)erfc

(
L√

2∆C(t, t)

)
+
ρ

2

(
erf

(
L−m(t)√
2∆C(t, t)

)
+ erf

(
L+m(t)√
2∆C(t, t)

))
. (B.7)

C Oracle error

We call oracle error the classification error made by an ideal oracle that has access to the vector v∗
that characterizes the centers of the clusters in the two models under consideration (see Sec. 2 in the
main text). We define the oracle’s estimator ŷOnew given a new data point xnew as

ŷOnew = arg max
ỹnew

p (ỹnew|xnew) , (C.1)

where the prior over the label ỹnew and the coefficient c̃new along with the channel distribution

p (xnew|c̃new) ∝ exp

[
− 1

2∆
‖xnew −

c̃new√
d
v∗‖22

]
(C.2)

are known. We can rewrite the probability in Eq. (C.1) as

p (ỹnew|xnew) ∝
∑

c̃new=0,±1

p (ỹnew, c̃new) p (xnew|c̃new) = (1− ρ)δ(ỹnew + 1)e−
1

2∆‖xnew‖22

+
ρ

2
δ(ỹnew − 1)

(
e
− 1

2∆‖xnew− 1√
d
v∗‖22 + e

− 1
2∆‖xnew+ 1√

d
v∗‖22

)
= e−

1
2∆‖xnew‖22

[
(1− ρ)δ(ỹnew + 1) + ρδ(ỹnew − 1)e−

1
2∆ cosh

(
1

∆
√
d
x>newv

∗
)]

.

(C.3)

The oracle error is then

εOgen = P
(
ŷOnew 6= ynew

)
= (1− ρ)P

(
ŷOnew = 1|ynew = −1

)
+ ρP

(
ŷOnew = −1|ynew = 1

)
. (C.4)

We can compute the two terms in the above equation separately

P
(
ŷOnew = 1|ynew = −1

)
= P

(
ρe−

1
2∆ cosh

(
1√
∆d

z>newv
∗
)
> 1− ρ

)
= P

(
ρe−

1
2∆ cosh

(
ζnew√

∆

)
> 1− ρ

)
= erfc

(√
∆

2

∣∣∣∣arccosh

(
(1− ρ)

ρ
e1/2∆

)∣∣∣∣
)
,

(C.5)

and

P
(
ŷOnew = −1|ynew = 1

)
= P

(
1− ρ > ρe−

1
2∆ cosh

(
cnew

∆
+

1√
∆d

z>newv
∗
))

= P
(

1− ρ > ρe−
1

2∆ cosh

(
cnew

∆
+
ζnew√

∆

))

=
1

2

erf

∆

∣∣∣∣arccosh
(

(1−ρ)
ρ e1/2∆

)∣∣∣∣+ 1

√
2∆

+ erf

∆

∣∣∣∣arccosh
(

(1−ρ)
ρ e1/2∆

)∣∣∣∣− 1

√
2∆


 ,

(C.6)

where znew ∼ N (0, Id), ζnew ∼ N (0, 1), and cnew = ±1 with probability 1
2 .

Finally, we obtain that the oracle error is

εBOgen = (1− ρ)erfc

(√
∆

2

∣∣∣∣arccosh

(
(1− ρ)

ρ
e1/2∆

)∣∣∣∣
)

+
ρ

2

erf

∆

∣∣∣∣arccosh
(

(1−ρ)
ρ e1/2∆

)∣∣∣∣+ 1

√
2∆

+ erf

∆

∣∣∣∣arccosh
(

(1−ρ)
ρ e1/2∆

)∣∣∣∣− 1

√
2∆


 .

(C.7)
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