
Appendix — Non-reversible Gaussian processes
for identifying latent dynamical structure in neural data

A Boundedness of the reversibility index

In this section, we prove that for a stationary multi-output GP, the reversibility index defined in Eq. 6
is bounded between 0 and 1. Recall the definition of the (squared) reversibility index:

ζ2 =

∫∞
−∞ ‖K(τ)−K(−τ)‖2F dτ∫∞
−∞ ‖K(τ) +K(−τ)‖2F dτ

. (18)

Since ‖X‖2F = Tr(XX>), we can expand this into:

ζ2 =
Tr
∫∞
−∞K(τ)K(τ)> dτ − Tr

∫∞
−∞K(τ)K(τ) dτ

Tr
∫∞
−∞K(τ)K(τ)> dτ + Tr

∫∞
−∞K(τ)K(τ) dτ

. (19)

The first term in both the numerator and the denominator is non-negative because the integral of outer
products K(τ)K(τ)> is positive semi definite (PSD). We are left to show that the second term is
non-negative too, which would then imply 0 ≤ ζ ≤ 1. From Parseval’s theorem, we have that:∫ ∞

−∞
K(τ)K(τ) dτ =

∫ ∞
−∞

K̂(ω)K̂(ω) dω (20)

where ·̂ denotes the Fourier transform (assumed to exist) and · denotes the complex conjugate.
Furthermore, from Cramér’s theorem, since K(·) is a stationary cross-covariance function, K̂(ω) is

Hermitian PSD, and so is K̂(ω), for any ω. Finally, for any two Hermitian PSD matrices, A and B, it
can be shown that Tr(AB) ≥ 0 (Theorem 4.3.53 in Horn and Johnson, 2012). Thus, we have shown
that:

Tr

∫ ∞
−∞

K(τ)K(τ)>dτ ≥ 0 (21)

Tr

∫ ∞
−∞

K(τ)K(τ)dτ ≥ 0 (22)

from which we can conclude that: 0 ≤ ζ ≤ 1.

B General Kronecker decomposition of stationary multi-output covariances

Here, we prove the existence of the decomposition of Eq. 7. Let K(τ) be a matrix-valued (i.e. multi-
output) cross-covariance function; we assume that each scalar cross-covariance function Kij(·) is in
L2. From the singular value decomposition theorem for compact operators in Hilbert spaces (Crane
et al., 2020), there exist a basis set of M2 functions {f`(·) ∈ L2}M2

`=1, a matching set of matrices
{A` ∈ RM×M}M2

`=1, and a corresponding set of positive singular values {λ` ∈ R+}M2

`=1 such that:

K(τ) =

M2∑
`=1

λ`A` · f`(τ) (23)

with the following orthonormality conditions:

Tr
(
A`A`′

>
)

= δ``′ (24)∫
f`(τ)f`′(τ) dτ = δ``′ . (25)

We will refer to Eq. 23 as a “generalized SVD”. We now show that the pairs {A`, f`} are either
symmetric/even, or skew-symmetric/odd, as stated in Section 3.1. Let k̃(τ) = vec(K(τ)) ∈ RM2

be the vectorized cross-covariance matrix at time lag τ . Let P ∈ {0, 1}M2×M2

be the commutation
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matrix operating on the vectorized space of all M2 pairs of outputs (i.e. the space of k̃), which
swaps index (i+ jM) with index (j + iM). In other words, for any matrix X ∈ RM×M , we have
that P vec(X) = vec

(
X>
)
. Let R be the reflection (or ‘time-reversal’) operator in L2, such that

R[f ](τ) = f(−τ). It is easy to show that any multi-output cross-covariance function K(τ) obeys
the symmetry K(−τ) = K(τ)>, which can also be written as:

R[k̃](τ) = P k̃(τ) (26)

whereR[·] is applied elementwise to the element functions in k̃. In other words, reversing time and
transposing space are two equivalent operations. The generalized SVD in Eq. 23 can be written in
vectorized form as

k̃(τ) = (ã1, . . . , ãM2)︸ ︷︷ ︸
U

diag(λ1, . . . , λM2)︸ ︷︷ ︸
S

(f1(τ), . . . , fM2(τ))>︸ ︷︷ ︸
v(τ)

(27)

where ã` = vec(A`). Thus, the symmetry of Eq. 26 can be re-expressed as

(PU)S(R[ṽ](τ)) = USṽ(τ). (28)

Since the two permutation operators P and R preserve orthonormality (of matrices and square-
integrable functions, respectively), the l.h.s. of Eq. 28 is a valid SVD for K(τ). Furthermore, when
the singular values are distinct and kept in decreasing order, the generalized SVD of k̃(τ) is unique
up to a simultaneous change of sign in any pair (ã`, f`(·)). Therefore, we must have that

PU = U± (29)
R[ṽ](τ) = ±ṽ(τ) (30)

where ± is a (shared) diagonal matrix composed of +1 and −1 elements only. Importantly, the
matrix± is the same in the two equations. From the spatial transpose meaning of P and time-reversal
meaning ofR, Eqs. 29 and 30 therefore imply that for any `:

• if ±` = +1, then ã` is invariant to the transposition operator P and f`(·) is invariant to time
reversal, implying that A` is a symmetric matrix and f` is an even function,

• if ±` = −1, then both ã` and f` have their sign flipped by spatial transposition and time
reversal, respectively, implying thatA` is a skew-symmetric matrix and f` is an odd function.

The decomposition of Eq. 7 follows from a simple, now justified renaming of symmetric/even and
skew-symmetric/odd pairs as {A±` , f

±
` }. Moreover, we now see that the + (resp. −) terms in Eq. 27

correspond to the generalized SVD of the symmetric (resp. antisymmetric) part of the covariance
function, K(τ) +K(−τ) (resp. K(τ)−K(−τ)) in Eq. 18. Given the known relationship between
the squared Frobenius norm of a linear operator and the sum of its squared singular values, this shows
that the non-reversibility index ζ can also be calculated using Eq. 8.

C Construction of valid non-reversible planar kernels

Here, we prove that Eq. 9 is a valid 2-output covariance function. We focus the proof on the purely
spherical case, σ1 = σ2 = 1 and ρ = 0 – extension to arbitrary instantaneous covariances is
straightforward but notationally cumbersome (and a more general proof was in fact already given in
Section 3.3).

In the frequency domain, the Hilbert transform has a simple interpretation as a constant phase shift
of π/2 at all frequencies; specifically, Ĥ[f ](ω) = −j · sgn(ω)f̂(ω), where ·̂ denotes the Fourier
transform and j2 = −1. As any scalar covariance function, f is even, and therefore f̂ is real and even.
In contrast, Ĥ[f ] is imaginary and odd. We now derive the eigendecomposition of K(·), and show
that all eigenvalues are positive. Due to the hybrid nature of K(·) (discrete space, continuous time),
an eigenfunction of K(·) is a time-varying 2-dimensional “vector” [g1(t), g2(t)]> which satisfies∫ ∞

−∞
K(τ − t)

[
g1(τ)
g2(τ)

]
dτ = λ

[
g1(t)
g2(t)

]
(31)
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or equivalently, ∫ ∞
−∞

[
f(τ)g1(τ + t) + αH[f ](τ)g2(τ + t)
f(τ)g2(τ + t)− αH[f ](τ)g1(τ + t)

]
dτ = λ

[
g1(t)
g2(t)

]
. (32)

Knowing that the eigenfunctions of any stationary scalar kernel are the Fourier modes, ejωt, we make
the following ansatz for the eigenfunctions of K(·):

g±ω (t) =

[
ejωt

b±e±jωt

]
for some b± ∈ C, (33)

(with the understanding that the two ± signs are “tied”, i.e. they are either both + or both −). Next,
we note that for any scalar function h and ω ∈ R,∫ ∞

−∞
h(τ)e±jω(t+τ)dτ = e±jωt

∫ ∞
−∞

h(τ)e±jωτdτ (34)

= e±jωt
∫ ∞
−∞

h(τ)e−j(∓ω)τdτ (35)

= e±jωtĥ(∓ω) (36)

where the last equality follows from the definition of the Fourier transform ĥ(·). Thus, for g±ω (t) to
be an eigenfunction of K(·) with eigenvalue λ±ω , b± must satisfy:

f̂(ω) + b±αĤ[f ](∓ω) = λ±ω (37)

−αĤ[f ](∓ω) + b±f̂(ω) = b±λ±ω (38)

(easily obtained from Eq. 32 and some straightforward algebra). Inserting Ĥ[f ](ω) = −j ·
sgn(ω)f̂(ω), the above system of equations imply:

either b± = +j → λ±ω = (1− sgn(±ω)α) f̂(ω) (39)

or b± = −j → λ±ω = (1 + sgn(±ω)α)f̂(ω).

Since f is itself a valid kernel whose real eigenvalues f̂(ω) are all strictly positive, we conclude that
K(·) is a valid 2-output covariance function (i.e. all λ±ω ≥ 0) if, and only if, |α| ≤ 1.

This derivation also provides a key connection between our measure of second-order non-reversibility,
ζ, and one’s intuitive understanding that a maximally non-reversible process should never “turn back
on itself”. Specifically, we note that when |α| = 1, Eq. 39 implies that half of the eigenvalues of
K(·) are exactly zero. By inspection of the corresponding eigenfunctions in Eq. 32, we see that for
any sample trajectory (x1(t), x2(t))> from K(·), which must lie in the span of the eigenfunctions
with non-zero eigenvalues, the time-reversed trajectory (x1(−t), x2(−t)) evolves in the span of
the eigenfunctions with zero eigenvalues. Therefore, these time-reversed trajectories have zero
probability density under our non-reversible prior when |α| = 1; this extreme case corresponds to
ζ = 1, i.e. maximal non-reversibility (c.f. Eq. 10).

D Derivatives of special functions

Optimization of the hyperparameters requires evaluating the gradient of the marginal likelihood,
which in turn requires gradients of all the functions involved in the multi-output kernel. We give
details of the gradients for the functions listed in Table 1 and present them graphically in Fig. 5. These
gradients are simple to evaluate numerically, enabling the addition of our non-reversible kernels to
standard automatic differentiation systems.

Dawson function The Hilbert transform of the squared-exponential kernel involves the so-called
Dawson function, given below along with its derivative:

D(τ) , e−τ
2

∫ τ

0

es
2

ds
dD

dτ
= 1− 2τD(τ). (40)
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Figure 5: Commonly used GP covariance functions and their Hilbert transforms. Please refer
to Table 1 for details.

Exponential integral The Hilbert transform of the exponential kernel involves the exponential
integral function:

Ei(τ) ,
∫ τ

−∞

es

s
ds

dEi
dτ

=
eτ

τ
. (41)

Faddeeva function The Hilbert transform of the spectral mixture kernel (Wilson and Adams,
2013) involves the imaginary component of the Faddeeva function w(·) (related to the complex error
function; Zaghloul and Ali, 2012). This is a new result that we derived which we were not able
to find in the existing literature. The Faddeeva function is available in most numerical computing
environments, and can be expressed as:

w(z) = V (x, y) + jL(x, y) with z = x+ jy (42)

where V (x, y) and L(x, y) are the real and imaginary Voigt functions respectively. Gradients are
given by:

∂L(x, y)

∂x
= −∂V (x, y)

∂y
= −2 Im[zw(z)] +

2√
π

(43)

and
∂L(x, y)

∂y
=

∂V (x, y)

∂x
= −2 Re[zw(z)]. (44)

Evaluating these expressions only requires evaluating the Fadeeva function itself.

E Beyond non-reversible planar processes: construction of
higher-dimensional non-reversible covariance functions

In Section 3.4, we built non-reversible M-output GP covariances as superpositions of planar kernels,
each associated with a (potentially) different scalar covariance function. Here, we introduce an
alternative construction motivated by the following considerations of model degeneracies. In Eq. 15,
if (i) the marginal variances in each plane are all identical (σij,1 = σij,2 = σ), (ii) each planar process
is spherical (ρij = 0) and (iii) the scalar covariance functions fij(τ) are all the same f , then K(τ) is
over-parametrized. Indeed, it can then be rewritten as

K(τ) ∝ IM︸︷︷︸
A+

f(τ) +


0 α12 α13 · · ·
−α12 0 α23 · · ·
−α13 −α23 0 · · ·

...
...

...
. . .


︸ ︷︷ ︸

A−

H[f ](τ) (45)

Now, since A− is antisymmetric, there exists a unitary transformation of the latent space in which
this covariance becomes

K(τ) ∝ IMf(τ) +


0 ω1 0 0 · · ·
−ω1 0 0 0 · · ·

0 0 0 ω2 · · ·
0 0 −ω2 0 · · ·
...

...
...

. . .

H[f ](τ) (46)
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where {±jω1,±jω2, . . .} are the imaginary conjugate eigenvalues of A−. In GPFADS, this unitary
transformation can be absorbed in the mixing matrix C (Eq. 1). Thus, in this configuration, our model
does not truly possess M(M − 1)/2 free parameters as the parametrization of Eq. 15 suggests, but
only M/2, as Eq. 46 reveals. In other words, one can always rotate the latent space and directly
parametrize a set of independent planes – in which case one must enforce |ωi| < 1} to ensure positive
definiteness.

For these reasons, we also propose this alternative construction:

K(τ) =

Q∑
q=1

Uq


A

+
q1 0

. . .
0 A+

q2 0
. . . 0

. . .

 fq(τ) +

αq1A
−
q1 0

. . .
0 αq2A

−
q2 0

. . . 0
. . .

H[fq](τ)

U>q (47)

with some scalar covariance functions {fq(·)}, unitary matrices {Uq}, non-reversibility parameters
|αqi| < 1 associated with each of the M/2 planes, and 2× 2 matrix blocks {A+

qi, A
−
qi}. The latter

are parameterized exactly as the symmetric and antisymmetric matrices A+ and A− in Eq. 9. We
note that when such a kernel is used in GPFA, U1 can be set to the identity matrix without loss of
generality since it corresponds to a rotation of the latent space that can be absorbed in the mixing
matrix C (Eq. 1).

F Implementation notes and scalability

F.1 Stable computation of the log marginal likelihood

The log marginal likelihood in GPFA(DS) can be computed in a stable way as follows. Recall its
expression:

L(θ, Y ) ∝ − log |Kyy| − (ỹ − µ⊗ 1T )>K−1yy (ỹ − µ⊗ 1T ) (48)

with Kyy = (C ⊗ IT )Kxx(C> ⊗ IT ) + (R⊗ IT ) (49)

where both Kyy and µ depend on model parameters θ. A stable way to evaluate this is to begin with
a Cholesky decomposition of Kxx ∈ RMT×MT :

Kxx = LL> (50)

and then use the Woodbury identity to rewrite the inverse of Kyy ∈ RNT×NT as:

K−1yy = (R−1 ⊗ IT )− (R−1C ⊗ IT )
(
L−TL−1 + C>R−1C ⊗ IT

)−1
(C>R−1 ⊗ IT ), (51)

which can be further transformed into:

K−1yy = (R−1/2 ⊗ IT )
(
IN ⊗ IT −A>B−1A

)
(R−1/2 ⊗ IT ) (∈ RNT×NT ) (52)

where A ≡ L>(C>R−1/2 ⊗ IT ) (∈ RMT×NT ) (53)

and B ≡ IDT +AA> = IDT + L>(C>R−1C ⊗ IT )L (∈ RMT×MT ) (54)

Using the matrix determinant lemma, log |K−1yy | can be simplified to:

log |K−1yy | = log |(R−1/2 ⊗ IT )
[
IT ⊗ IN −A>B−1A

]
(R−1/2 ⊗ IT )| (55)

= 2 log |(R−1/2 ⊗ IT )|+ log |
[
IN ⊗ IT −A>B−1A

]
| (56)

= −T log |R|+ log |B −AA>|+ log |B−1| (57)
= −T log |R|+ log |IDT | − log |B| (58)
= −T log |R| − log |B| (59)
= −T log |R| − 2 log |W | (60)

where B = WW> is the Cholesky decomposition of matrix B. Thus, log |Kyy| is given by:

log |Kyy| = T log |R|+ 2 log |W | (61)
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where log |R| =
∑
i logRii and log |W | =

∑
i logWii.

Finally, to compute products of the form K−1yy v, we will need to compute B−1v′ for some v′. To do
this stably and efficiently, we solve two successive triangular systems via back-substitution: we first
solve Wv′′ = v′ for v′′, and then solve W>z = v′′ for z which returns B−1v′.

This direct method of computing the marginal likelihood avoids loss of numerical precision by
never explicitly computing any inverse. Moreover, it costs O((MT )3), which is typically much
less than the naive O((NT )3). In Appendix F.2, we show how this cost can be further reduced to
O(TMN +MT log T ) to enable large scale applications.

F.2 Scalability to very large datasets

Here, we show how to reduce both the computational complexity and memory requirements of
learning and inference in GP regression and GPFADS using the non-reversible kernels we have
proposed. The methods outlined below hinge on the ability to perform very fast matrix-vector
products with the Gram matrix, and contain a mix of well-known techniques and novel tricks to be
published elsewhere. We first describe a set of methodological building blocks that can be used to
scale up GP regression, and later explain how they apply to GPFADS too. Although the main text
focuses on theoretical concepts and small-scale applications that do not make use of these acceleration
techniques, we have implemented them to good effect.

Fast matrix-vector products with the Gram matrix

The full Gram matrix Kxx ∈ RMT×MT associated with the M -output covariance of Eq. 47 for
a specific set of T time bins is a sum of 2Q space-time Kronecker products of the form A ⊗ F
where A ∈ RM×M and F ∈ RT×T . This allows us to write efficient routines for matrix-vector
multiplication with the Gram matrix, by exploiting the identity (A ⊗ F ) vec(V ) = vec

(
F>V A

)
.

When the time bins are regularly spaced on a grid, then F is a Toeplitz matrix that can be embedded
in a circulant matrix (see below), enabling the computation of F>V products in O(MT log T ).
Thus, the complexity of a Kxxvec(V ) product can be reduced from the naive O(M2T 2) down to
O(Q(M2T + MT log(T ))) (from now on, we will assume that log(T ) dominates M , in which
case this complexity simplifies to O(QMT log(T )). Importantly, as we will see below, this way of
computing products allows us to lower the memory requirements by never storing the Gram matrix
(not even any of its T × T blocks).

To compute fast F>V products with any temporal Gram matrix F ∈ RT×T (e.g. associated with
fq(·) orH[fq](·) in Eq. 47), we use the fact that F is symmetric Toeplitz when the T time bins form
a regular grid (Wilson and Nickisch, 2015):

F =


f0 f1 · · · fT−2 fT−1
f1 f0 · · · fT−3 fT−2
...

...
. . .

... · · ·
fT−2 fT−3 · · · f0 f1
fT−1 fT−2 · · · f1 f0

 (62)

One can embed this T × T Toeplitz matrix F into a 2(T − 1)× 2(T − 1) circulant matrix Fc, every
column being a cyclically shifted version of the previous:

Fc =



f0 f1 · · · fT−2 fT−1 fT−2 · · · f1
f1 f0 · · · fT−3 fT−2 fT−1 · · · f2
...

... · · ·
...

...
... · · ·

fT−2 fT−3 · · · f0 f1 f2 · · · fT−1
fT−1 fT−2 · · · f1 f0 f1 · · · fT−2
fT−2 fT−1 · · · f2 f1 f0 · · · fT−3

...
... · · ·

...
...

... · · ·
f1 f2 · · · fT−1 fT−2 fT−3 · · · f0


,

[
F S
S> F ′

]
. (63)

Notice that all the information is contained within the first column, which we denote by f . This is
the only part of the matrix that needs to be stored explicitly. It is well known that products with a
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circulant matrix can be performed in the Fourier domain as follows:

Fcz = DFT−1 [DFT(f)� DFT(z)] (64)

where DFT refers to the discrete Fourier transform and � denotes element-wise multiplication. Thus,
a product Fv can be computed by padding the vector v with zeroes to size 2(T − 1), then computing

Fc

[
v
0

]
=

[
Fv
S>v

]
(65)

and simply discarding the lower T − 2 elements. The DFT and inverse DFT of a T × 1 vector can be
computed efficiently in O(T log T ) using the Fast Fourier transform (FFT). Thus Cz can be used to
exactly compute Kw for any w in O(T log T ) computations and O(T ) memory.

Fast and low-memory evaluation of the marginal likelihood and its gradient

Evaluating and differentiating the marginal likelihood in GP regression involves solving linear systems
of the form Kxxz = b for z, as well as computing log |Kxx| and its gradient. Here we describe a set
of old and new approaches to performing these computations at scale.

Solving Kxxz = b systems Computing the quadratic form in the GP log marginal likelihood, i.e.
solving linear systems of the formKxxz = b, can be done to numerical precision via (preconditioned)
conjugate gradients (CG; Cutajar et al., 2016). This iterative method only involves Kxx through
matrix-vector products, which are fast (cf. above) and do not necessitate the explicit computation
and storage of this large matrix. However, CG poses a problem when optimization is performed
with the help of automatic differentiation (AD) software, an otherwise very useful way of obtaining
gradients of the marginal likelihood. Naively backpropagating through every CG iteration incurs a
memory cost proportional to the number of CG iterations, which is often prohibitive (in our case, the
worst case would be MT iterations, bringing the memory requirements close to O(M2T 2), i.e. the
very cost of storing Kxx which we seek to avoid in the first place). We were not able to find ways to
circumvent this problem in the existing literature.

To mitigate the memory requirements of CG, we went back to basic AD principles and derived a
novel, constant-memory way of updating the adjoint of b and θ from the adjoint of z = Kxx(θ)−1x
obtained through CG iterations. We use the notation X = ∂L/∂X to denote the adjoint of X , where
L is the loss (or objective) function of interest. First, recall the chain rule:

θi = Tr

(
Kxx

> ∂Kxx

∂θi

)
. (66)

Next, for any CG solve z = K−1xx b in the forward pass, the adjoint of Kxx must be updated in
the reverse pass according to Kxx ← Kxx −K−>xx zz> (Giles, 2008). Thus, the update for θi (the
gradient we need for training the model) is

θi ← θi + Tr

[
z(−K−1xx z)>

∂Kxx

∂θi

]
. (67)

At this stage, although K−1xx z can itself be computed in the reverse pass using CG without storing
Kxx, Eq. 67 suggests that one would still need to compute and store ∂Kxx/∂θi, a matrix that is
just as large as Kxx. We reasoned that automatic differentiation libraries can be used in a slightly
unconventional way to evaluate Eq. 67 without ever explicitly representing neither Kxx nor its
gradient, as long as a memory-efficient matrix-vector product routine is available (which is a premise
for the use of CG, anyways). The key is to note that for a matrix-vector product d = Kxx(θ)e, the
adjoint of d is to be propagated back to that of θ according to (Giles, 2008):

θi ← θi + Tr

[
ed
> ∂Kxx

∂θi

]
. (68)

Thus, when a matrix-vector product with Kxx(θ) is computed under automatic differentiation, the
reverse pass will automatically update the parameter vector θ in the correct way given by Eq. 68 but
without representing ∂Kxx/∂θi explicitly. Critically, Eq. 68 has exactly the same form as Eq. 67.
By identifying terms, we see that implementing Eq. 67 can be done by performing a dummy matrix-
vector product d = Kxx(θ)e with e = z, and performing a reverse pass on this dummy operation,
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taking care of “manually” seeding it with the adjoint d = −K−1xx z where z is obtained as part of the
primary reverse pass. Note that this requires hijacking the primary reverse-pass on the log marginal
likelihood computation, which can be done relatively easily in modern AD software (e.g. autograd,
Maclaurin et al., 2015).

Computing the log determinant and its gradient Exact computation of the log determinant is
generally difficult for large Gram matrices. However, stochastic estimators exist for both log |Kxx|
and its gradient that only require matrix-vector products with Kxx, again greatly alleviating the
memory burden. To estimate the log determinant, we use the approach advocated by Dong et al.
(2017) based on stochastic trace estimation (Filippone and Engler, 2015; Roosta-Khorasani and
Ascher, 2015):

log |Kxx| = Tr(logKxx) (69)

=
〈
ξ> log(Kxx)ξ

〉
ξ

(70)

where the expectation is over any spherical distribution p(ξ) with covariance equal to the identity
matrix (Hutchinson’s trace estimator). This expectation can be approximated with Monte Carlo
samples. For computing log(Kxx)ξ products in Eq. 70, we wish to exploit fast and memory-efficient
Kxxv products. One way of doing this, which we have not seen used in the GP literature, is to use the
following integral representation of the matrix logarithm (Davies and Higham, 2005; Wouk, 1965):

logKxx =

∫ 1

0

(Kxx − I) [tKxx + (1− t)I]
−1
dt (71)

Thus, we can estimate the log determinant ofKxx by drawing a set of P random vectors Ξ ∈ RMT×P

and using any numerical quadrature method to compute

log |Kxx| ≈
∫ 1

0

Tr
[
Z> (tKxx + (1− t)I)

−1
Ξ
]
dt with Z = (Kxx − I)Ξ. (72)

Here, the integrand can be computed via CG, based on matrix-vector products with Kxx. One can
substantially speed up CG convergence by initializing CG iterations at a given t with a previously
obtained solution at a neighbouring t′. Note that for ill-conditioned Kxx, solvers will typically need
to do more work for t near 1 – this is where adaptive solvers can help greatly.

Trace estimation also applies to the gradient of log |Kxx| (Cutajar et al., 2016; Dong et al., 2017):

∂ log |Kxx|
∂θi

= Tr

[
K−>xx

∂Kxx

∂θi

]
(73)

=

〈
ξ>K−>xx

∂Kxx

∂θi
ξ

〉
ξ

(74)

=

〈
Tr

[
ξ
(
K−1xx ξ

)> ∂Kxx

∂θi

]〉
ξ

(75)

As in the computation of the quadratic form in Eq. 67, Eq. 75 seems to require an explicit repre-
sentation of the large matrix ∂Kxx/∂θi. However, the same trick we introduced above can be used
here too to exploit the existing machinery of AD software to evaluate Eq. 75 without storing any
large matrix. Specifically, note that Eq. 75 has the exact same form as Eq. 68, such that it suffices to
compute a dummy matrix-vector product d = Kxxe with e = ξ and perform a dummy reverse pass
seeded with d = K−1xx ξ (obtained via CG).

In sum, these tricks reduce the complexity of estimating the model evidence and its gradient from
the naive O(M3T 3) to O(QMT log T ) (potentially with a large constant pre-factor determined by
the number of CG iterations, hence the importance of good preconditioning; Cutajar et al., 2016).
Similarly, the memory requirements scale as O(M2T ), instead of O(M2T 2).

Accelerating GPFADS

In GPFADS, since Kyy = (C ⊗ IT )Kxx(C> ⊗ IT ) + R ⊗ IT , efficient products with Kxx also
lead to efficient products with Kyy which do not necessitate explicit storage of Kyy. Therefore, the
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techniques described above apply to GPFADS directly. With C ∈ RM×N , computing a (C> ⊗ IT )v
product costs O(MNT ), and subsequent multiplication by Kxx costs O(QMT log T ) as detailed
above. Thus, the cost of a Kyyv product – which dominates the complexity of training the GP
model and computing posteriors – is O(MNT +QMT log T ) overall. The memory requirement is
O(NT +M2T ) (for small latent spaces, this is close to the cost of storing a data point in the first
place).

G Relation to Parra and Tobar (2017)

We are only aware of one other paper introducing a non-reversible GP kernel (Parra and Tobar, 2017).
Here, we outline the key differences between their models and ours, and show how our construction
affords both a cleaner handle on reversibility, and better scalability properties.

Parra and Tobar (2017)’s model extended the spectral mixture model (Wilson and Adams, 2013) to
the multi-output setting. In their model, the cross-spectrum of any two variables i and j is given by:

E
[
xi(ω)xj(ω)

]
=
wij
2

(
e
−

(ω−µij)
2

2σij
+j(θijω+φij)

+ e
−

(−ω−µij)
2

2σij
+j(−θijω+φij)

)
, (76)

where φij is a phase lag and θij is a pure delay. The parameters µij , σij and wij are directly
constrained by the marginal spectrum of the two variables (spectral mixture) ensuring that the
resulting multi-output covariance function be positive definite.

In the time domain, this leads to the following real-valued cross-covariance function:

Kij(τ) = wij (2πσij) exp
(
−σij

2
(τ + θij)

2
)

cos((τ + θij)µij + φij). (77)

A first notable difference between this kernel and ours lies in the ability – or lack thereof – to break
reversibility at low frequencies. Indeed when there are no hard delays (θij = 0), the Parra and Tobar
(2017) model becomes fully reversible in the limit of a non-resonant process (one whose power
spectrum has its maximum at ω = 0, modeled by setting µij = 0 in Eq. 76), no matter the choice of
phase lag parameters φij . Indeed, the non-reversibility index ζ is tied to the number of oscillatory
cycles that fit within the envelope of the autocovariance function (Fig. 5, right). In contrast, our
construction retains non-reversibility in this limit, because the Hilbert transform implies a constant
phase lag at all frequencies. For example, the non-reversible squared-exponential planar covariance
shown in Fig. 1 has full non-reversibility despite a complete lack of marginal oscillations in each
output.

The second major difference lies in the opportunity – or lack thereof – to scale learning and inference
to very large datasets. As explained in Appendix F.2, all kernels in the family that we propose take
the form of a sum of space/time-separable terms, implying a specific sum-of-Kronecker-products
structure for the associated Gram matrices. In contrast, Parra and Tobar (2017)’s model can never be
expressed in Kronecker form, if reversibility is to be broken via the introduction of non-zero phase
lags. In other words, to our knowledge, we have presented the first non-reversible multi-output kernel
that can realistically support scalable learning and inference on very large datasets.
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