
BoxE: A Box Embedding Model for
Knowledge Base Completion
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Abstract

Knowledge base completion (KBC) aims to automatically infer missing facts by
exploiting information already present in a knowledge base (KB). A promising
approach for KBC is to embed knowledge into latent spaces and make predictions
from learned embeddings. However, existing embedding models are subject to
at least one of the following limitations: (1) theoretical inexpressivity, (2) lack of
support for prominent inference patterns (e.g., hierarchies), (3) lack of support for
KBC over higher-arity relations, and (4) lack of support for incorporating logical
rules. Here, we propose a spatio-translational embedding model, called BoxE, that
simultaneously addresses all these limitations. BoxE embeds entities as points,
and relations as a set of hyper-rectangles (or boxes), which spatially characterize
basic logical properties. This seemingly simple abstraction yields a fully expressive
model offering a natural encoding for many desired logical properties. BoxE can
both capture and inject rules from rich classes of rule languages, going well beyond
individual inference patterns. By design, BoxE naturally applies to higher-arity
KBs. We conduct a detailed experimental analysis, and show that BoxE achieves
state-of-the-art performance, both on benchmark knowledge graphs and on more
general KBs, and we empirically show the power of integrating logical rules.

1 Introduction

Knowledge bases (KBs) are fundamental means for representing, storing, and processing information,
and are widely used to enhance the reasoning and learning capabilities of modern information
systems. KBs can be viewed as a collection of facts of the form r(e1, . . . , en), which represent a
relation r between the entities e1, . . . , en, and knowledge graphs (KGs) as a special case, where
all the relations are binary (i.e., composed of two entities). KBs such as YAGO [24], NELL [26],
Knowledge Vault [9], and Freebase [2] contain millions of facts, and are increasingly important in
academia and industry, for applications such as question answering [3], recommender systems [39],
information retrieval [44], and natural language processing [45].

KBs are, however, highly incomplete, which makes their downstream use more challenging. For
instance, 71% of individuals in Freebase lack a connection to a place of birth [42]. Knowledge base
completion (KBC), aiming at automatically inferring missing facts in a KB by exploiting the already
present information, has thus become a focal point of research. One prominent approach for KBC
is to learn embeddings for entities and relations in a latent space such that these embeddings, once
learned from known facts, can be used to score the plausibility of unknown facts.

Currently, the main embedding approaches for KBC are translational models [4, 34], which score
facts based on distances in the embedding space, bilinear models [36, 46, 1], which learn embeddings
that factorize the truth tensor of a knowledge base, and neural models [7, 31, 27], which score
facts using dedicated neural architectures. Each of these models suffer from limitations, most of
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which are well-known. Translational models, for instance, are theoretically inexpressive, i.e., cannot
provably fit an arbitrary KG. Furthermore, none of these models can capture simple sets of logical
rules: even capturing a simple relational hierarchy goes beyond the current capabilities of most
existing models [13]. This also makes it difficult to inject background knowledge (i.e., schematic
knowledge), in the form of logical rules, into the model to improve KBC performance. Additionally,
existing KBC models are primarily designed for KGs, and thus do not naturally extend to KBs
with higher-arity relations, involving 3 or more entities, e.g., DegreeFrom(Turing,PhD,Princeton)
[10], which hinders their applicability. Higher-arity relations are prevalent in modern KBs such as
Freebase [41], and cannot always be reduced to a KG without loss of information [10]. Despite the
rich landscape for KBC, no existing model currently offers a solution to all these limitations.

In this paper, we address these problems by encoding relations as explicit regions in the embedding
space, where logical properties such as relation subsumption and disjointness can naturally be
analyzed and inferred. Specifically, we present BoxE, a spatio-translational box embedding model,
which models relations as sets of d−dimensional boxes (corresponding to classes), and entities as
d−dimensional points. Facts are scored based on the positions of entity embeddings with respect to
relation boxes. Our contributions can be summarized as follows:

– We introduce BoxE and show that this model achieves state-of-the-art performance on both
knowledge graph completion and knowledge base completion tasks across multiple datasets.

– We show that BoxE is fully expressive, a first for translation-based models, to our knowledge.

– We comprehensively analyze the inductive capacity of BoxE in terms of generalized inference
patterns and rule languages, and show that BoxE can capture a rich rule language.

– We prove that BoxE additionally supports injecting a rich language of logical rules, and empirically
show on a subset of NELL [26], that this can significantly improve KBC performance.

All proofs for theorems, as well as experimental details, can be found as an appendix in the long
version of this paper.

2 Knowledge Base Completion: Problem, Properties, and Evaluation

In this section, we define knowledge bases and the problem of knowledge base completion (KBC).
We also give an overview of standard approaches for evaluating KBC models.

Consider a relational vocabulary, which consists of a finite set E of entities and a finite set R of
relations. A fact (also called atom) is of the form r(e1, . . . , en), where r ∈ R is an n-ary relation,
and ei ∈ E are entities. A knowledge base (KB) is a finite set of facts, and a knowledge graph (KG) is
a KB with only binary relations. In KGs, facts are also known as triples, and are of the form r(eh, et),
with a head entity eh and a tail entity et. Knowledge base completion (KBC) (resp., knowledge graph
completion (KGC)) is the task of accurately predicting new facts from existing facts in a KB (resp.,
KG). KBC models are analyzed by means of (i) an experimental evaluation on existing benchmarks,
(ii) their model expressiveness, and (iii) the set of inference patterns that they can capture.

Experimental evaluation. To evaluate KBC models empirically, true facts from the test set of a KB
and corrupted facts, generated from the test set, are used. A corrupted fact is obtained by replacing
one of the entities in a fact from the KB with a new entity: given a fact r(e1, . . . , ei, . . . , en) from the
KB, a corrupted fact is a fact r(e1, . . . , e′i, . . . , en) that does not occur in the training, validation, or
test set. KBC models define a scoring function over facts, and are optimized to score true facts higher
than corrupted facts. KBC performance is evaluated using metrics [4] such as mean rank (MR), the
average rank of facts against their corrupted counterparts, mean reciprocal rank (MRR), their average
inverse rank (i.e., 1/rank), and Hits@K, the proportion of facts with rank at most K.

Expressiveness. A KBC modelM is fully expressive if, for any given disjoint sets of true and false
facts, there exists a parameter configuration forM such thatM accurately classifies all the given
facts. Intuitively, a fully expressive model can capture any knowledge base configuration, but this
does not necessarily correlate with inductive capacity: fully expressive models can merely memorize
training data and generalize poorly. Conversely, a model that is not fully expressive can fail to fit its
training set properly, and thus can underfit. Hence, it is important to develop models that are jointly
fully expressive and capture prominent and common inference patterns.
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Inference patterns. Inference patterns are a common means to formally analyze the generalization
ability of KBC systems. Briefly, an inference pattern is a specification of a logical property that
may exist in a KB, which, if learned, enables further principled inferences from existing KB facts.
One well-known example inference pattern is symmetry, which specifies that when a fact r(e1, e2)
holds, then r(e2, e1) also holds. If a model learns a symmetry pattern for r, then it can automatically
predict facts in the symmetric closure of r, thus providing a strong inductive bias. We present some
prominent inference patterns in detail in Section 5, and also in Table 1. Intuitively, inference patterns
captured by a model serve as an indication of its inductive capacity.

3 Related Work

In this section, we give an overview of closely related embedding methods for KBC/KGC and
existing region-based embedding models. We exclude neural models [7, 32, 27], as these models are
challenging to analyze, both from an expressiveness and inductive capacity perspective.

Translational models. Translational models represent entities as points in a high-dimensional vector
space and relations as translations in this space. The seminal translational model is TransE [4], where
a relation r, modeled by a vector r, holds between e1 and e2 iff e1 + r = e2. However, TransE
is not fully expressive, cannot capture one-to-many, many-to-one, many-to-many, and symmetric
relations, and can only handle binary facts. This motivated extensions [40, 21, 16, 11], which each
address some, but not all, these limitations. Beyond translations, RotatE [34] uses rotations to model
relations, and thus can model symmetric relations with rotations of angle θ = ±π, but is otherwise as
limited as TransE. Translational models are interpretable and can capture various inference patterns,
but no known translational model is fully expressive.

Bilinear models. Bilinear models capture relations as a bilinear product between entity and relation
embeddings. RESCAL [28] represents a relation r as a full-rank d× d matrix M , and entities as d-
dimensional vectors e. DistMult [46] simplifies RESCAL by making M diagonal, but cannot capture
non-symmetric relations. ComplEx [36] defines a diagonal M with complex numbers to capture
anti-symmetry. SimplE [17] and TuckER [1] build on canonical polyadic (CP) [14] and Tucker
decomposition [37], respectively. TuckER subsumes RESCAL, its adaptations, and SimplE [1].
Generally, all bilinear models except DistMult are fully expressive, but they are less interpretable
compared to translational models.

Higher-arity KBC. KBs can encode knowledge that cannot be encoded in a KG [10]. Hence, models
such as HSimplE [10], m-TransH [41], m-DistMult, and m-CP [10] are proposed as generalizations
of SimplE, TransH [40], DistMult, and CP, respectively. HypE [10] tackles higher-arity KBC through
convolutions. Generalizations to TuckER, namely, m-TuckER and GETD [22], are also proposed, but
these do not apply to KBs with different-arity relations. For most existing KGC models, there are
conceptual and practical challenges (e.g., scalability) against generalizing them to KBC.

Region-based models. Region-based models explicitly define regions in the embedding space where
an output property (e.g., membership to a class) holds. For instance, bounded axis-aligned hyper-
rectangles (boxes) [38, 33, 20] are used for entity classification to define class regions and hierarchies,
in which entity point embeddings appear. As boxes naturally represent sets of objects, they are also
used to represent answer sets in the Query2Box query answering system [15]. Query2Box can be
applied to KBC but reduces to a translational model with a box correctness region for tail entities.
Furthermore, entity classification approaches cannot be scalably generalized to KBC, as this would
involve introducing an embedding per entity tuple.

4 Box Embeddings for Knowledge Base Completion

In this section, we introduce an embedding model for KBC, called BoxE, that encodes relations as
axis-aligned hyper-rectangles (or boxes) and entities as points in the d-dimensional Euclidian space.

Representation. In BoxE, every entity ei ∈ E is represented by two vectors ei, bi ∈ Rd, where ei
defines the base position of the entity, and bi defines its translational bump, which translates all the
entities co-occuring in a fact with ei, from their base positions to their final embeddings by “bumping”
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Figure 1: A sample BoxE model is shown on the left for d = 2. The binary relation r is encoded via
the box embeddings r(1) and r(2). Every entity ei has an embedding ei, and defines a bump on other
entities, as shown with distinct colors. This model induces the KG on r, shown on the right.

them. The final embedding of an entity ei relative to a fact r(e1, . . . , en) is hence given by:

e
r(e1,...,en)
i = (ei − bi) +

∑
1≤j≤n

bj . (1)

Essentially, the entity representation is dynamic, as every entity can have a potentially different final
embedding relative to a different fact. The main idea is that every entity translates the base positions
of other entities co-appearing in a fact, that is, for a fact r(e1, e2), b1 and b2 translate e2 and e1
respectively, to compute their final embeddings.

In BoxE, every relation r is represented by n hyper-rectangles, i.e., boxes, r(1), . . . , r(n) ∈ Rd,
where n is the arity of r. Intuitively, this representation defines n regions in Rd, one per arity
position, such that a fact r(e1, ..., en) holds when the final embeddings of e1, ..., en each appear in
their corresponding position box, creating a class abstraction for the sets of all entities appearing at
every arity position. For the special case of unary relations (i.e., classes), the definition given in Eq. 1
implies no translational bumps, and thus the base position of an entity is its final embedding.
Example 4.1. Consider an example over a single binary relation r and the entities e1, e2, e3, e4.
A BoxE model is given on the left in Figure 1, for d = 2, where every entity is represented as a point,
and the binary relation r is represented with two boxes r(1) and r(2). Every entity is translated by
the bump vectors of all other entities. For example, r(e1, e4) is a true fact in the model (e.g., to be
ranked high), since (i) er(e1,e4)

1 = (e1 + b4) is a point in r(1) (e1 appears in the head box), and (ii)
e
r(e1,e4)
4 = (e4+b1) is a point in r(2) (e4 appears in the tail box). Similarly, r(e3, e3) is a true fact

in the model, as er(e3,e3)
3 = (e3 + b3), which is a point in r(1) and r(2), i.e., the entity is reflexive

in r. The model encodes all (and only) the facts from the KG, shown on the right in Figure 1.

Translational bumps are very powerful, as they allow us to model complex interactions across entities
in an effective manner. Observe that for the sample KG, there are 42 potential facts that can hold, and
therefore 216 possible configurations. Nonetheless, they can all be compactly captured by choosing
appropriate translational bumps to force entity embeddings in or out of the respective relation boxes
as needed. Indeed, we later formally show that such a configuration can always be found for any KB,
given sufficiently many dimensions, proving full expressiveness of the model.

Scoring function. In the above example, we identified facts that ideally need to be ranked higher by
our scoring function, to reflect the model properties adequately. To this end, we first define a distance
function for evaluating entity positions relative to the box positions. The idea is to define a function
that grows slowly if a point is in the box (relative to the center of the box), but grows rapidly if the
point is outside of the box, so as to drive points more effectively into their target boxes and ensure
they are minimally changed, and can remain there once inside.

Formally, let us denote by l(i),u(i) ∈ Rd the lower and upper boundaries of a box r(i), respectively,
by c(i) = (l(i) + u(i))/2 its center, and by w(i) = u(i) − l(i) + 1 its width incremented by 1. We say
that a point ei is inside a box r(i), denoted ei ∈ r(i), if l(i) ≤ ei ≤ u(i). Furthermore, we denote
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the element-wise multiplication, division, and inversion operations by ◦,� and ◦−1 respectively.
Then, the distance function for the given entity embeddings relative to a given target box is defined
piece-wise over two cases, as follows:

dist(e
r(e1,...,en)
i , r(i)) =

{
| er(e1,...,en)

i − c(i) | � w(i) if ei ∈ r(i),

| er(e1,...,en)
i − c(i) | ◦ w(i) − κ otherwise,

where κ = 0.5 ◦ (w(i) − 1) ◦ (w(i) −w(i)◦−1

), is a width-dependent factor.

−4 −3 −2 −1 1 2 3 4

1
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9

e
r(e1,...,en)
i − c(i)

d
is
tw(i) = 1

w(i) = 3

w(i) = 5

Figure 2: The dist function for
width w(i) = 1, 3, 5.

In both cases, dist factors in the size of the target box in its
computation. In the first case, where the point is in its target
box, distance inversely correlates with box size, to maintain low
distance inside large boxes and provide a gradient to keep points
inside. In the second case, box size linearly correlates with
distance, to penalize points outside larger boxes more severely.
Finally, κ is subtracted to preserve function continuity.

Plots for dist for one-dimensional w(i) are shown in Figure 2.
Observe that, when w(i) = 1, r(i) is point-shaped, and dist
reduces to standard L1 distance. Conversely, as w(i) increases,
dist gives lower values (and gradients) to the region inside
the box, and severely punishes points outside. This function
thus achieves three objectives. First, it treats points inside the
box preferentially to points outside the box, unlike standard
distance, which is agnostic to boxes. Second, it ensures that
outside points receive high gradient through which they can
more easily reach their target box, or escape it for negative samples. Third, it gives weight to the size
of a box in distance computation, to yield a more comprehensive scoring mechanism.

Finally, we define the scoring function as the sum of the L-x norms of dist across all n entities and
relation boxes, i.e.:

score(r(e1, ..., en)) =
n∑

i=1

∥∥∥dist(er(e1,...,en)
i , r(i))

∥∥∥
x
.

5 Model Properties

We analyze the representation power and inductive capacity of BoxE and show that BoxE is fully
expressive, and can capture a rich language combining multiple inference patterns. We additionally
show that BoxE can lucidly incorporate a given set of logical rules from a sublanguage of this
language, i.e., rule injection. Finally, we analyze the complexity of BoxE in the appendix, and prove
that it runs in time O(nd) and space O((|E|+ n|R|)d), where n is the maximal relation arity.

5.1 Full expressiveness

We prove that BoxE is fully expressive with d = |E|n−1|R| dimensions. For KGs, this result implies
d = |E||R|, so BoxE is fully expressive over KGs with dimensionality linear in |E|. The proof
uses translational bumps to make an arbitrary true fact F false, while preserving the correctness
of other facts. This result requires a careful technical construction, which (i) pushes a single
entity representation within F outside its corresponding relation box at a specific dimension, and
(ii) modifies all other model embeddings to prevent a change in the truth value of any other fact.
Theorem 5.1. BoxE is a fully expressive model with the embedding dimensionality d of entities,
bumps, and relations set to d = |E|n−1|R|, where n > 1 is the maximal arity of the relations in R.

We note that this result makes BoxE the first translation-based model that is fully expressive.

5.2 Inference patterns and generalizations

We study the inductive capacity of BoxE in terms of common inference patterns appearing in the
KGC literature, and compare it with earlier models. A comparison of BoxE against these models
with respect to capturing prominent inference patterns is shown in Table 1.
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Table 1: Inference patterns/generalized inference patterns captured by selected KBC models. TuckER
coincides with ComplEx, so is omitted from the table.

Inference pattern BoxE TransE RotatE DistMult ComplEx

Symmetry: r1(x, y)⇒ r1(y, x) 3/3 7/7 3/3 3/3 3/3
Anti-symmetry: r1(x, y)⇒ ¬r1(y, x) 3/3 3/3 3/3 7/7 3/3
Inversion: r1(x, y)⇔ r2(y, x) 3/3 3/7 3/3 7/7 3/3
Composition: r1(x, y) ∧ r2(y, z)⇒ r3(x, z) 7/7 3/7 3/7 7/7 7/7
Hierarchy: r1(x, y)⇒ r2(x, y) 3/3 7/7 7/7 3/7 3/7
Intersection: r1(x, y) ∧ r2(x, y)⇒ r3(x, y) 3/3 3/7 3/7 7/7 7/7
Mutual exclusion: r1(x, y) ∧ r2(x, y)⇒ ⊥ 3/3 3/3 3/3 3/7 3/7

A model captures an inference pattern if it admits a set of parameters exactly and exclusively
satisfying the pattern. This is the standard definition of an inference pattern in the literature [34].
For example, TransE can capture composition [4, 34], but cannot capture hierarchy, as for TransE,
r1(x, y)⇒ r2(x, y) holds only if r1 = r2, and thus r2(x, y)⇒ r1(x, y), leading to loss of generality.
However, this definition only addresses single applications of an inference pattern, which raises the
question: can KBC models capture multiple, distinct instances of the same inference pattern jointly?

Capturing multiple inference patterns jointly is significantly more challenging. Indeed, TransE can
capture r1(x, y) ∧ r2(y, z)⇒ r3(x, z) and r1(x, y) ∧ r4(y, z)⇒ r3(x, z) independently, but jointly
capturing these compositions incorrectly forces r2 ∼ r4. Similarly, bilinear models can capture the
hierarchy rules r1(x, y)⇒ r3(x, y) and r2(x, y)⇒ r3(x, y) separately, but jointly capturing them
incorrectly imposes either r1(x, y)⇒ r2(x, y) or r2(x, y)⇒ r1(x, y) [13]. These examples are
clearly not edge cases, and highlight severe limitations in how the inductive capacity of KBC models
is analyzed. Therefore, we propose and study generalized inference patterns.

Definition 5.1. A rule is in one of the forms given in Table 1, where r1 6= r2 6= r3 ∈ R. To
distinguish between types of rules, we write σ rule, where σ ∈ {symmetry, . . . , mutual exclusion}.
A generalized σ pattern is a finite set of σ rules over R.

As before, a model captures a generalized inference pattern if the model admits a set of parameters,
exactly and exclusively satisfying the generalized pattern. Our results for BoxE and all relevant
models are summarized in Table 1, and proven in the following theorem.

Theorem 5.2. All the results given in Table 1 for BoxE and other models hold.

Intuitively, BoxE captures all these generalized inference patterns through box configurations. For
instance, BoxE captures (generalized) symmetry by setting the 2 boxes for a relation r to be equal,
and captures (generalized) inverse relations r1 and r2 by setting r

(1)
1 = r

(2)
2 and r

(2)
1 = r

(1)
2 .

Hierarchies are captured through box subsumption, i.e., r(1)1 and r
(2)
1 contained in r

(1)
2 and r

(2)
2

respectively, and this extends to intersection in the usual sense. Finally, anti-symmetry and mutual
exclusion, are captured through disjointness between relation boxes.

Generalized inference patterns are necessary to establish a more complete understanding of model
inductive capacity, and, in this respect, our results show that BoxE goes well beyond any other model.
However, generalized patterns are not sufficient. Indeed, different types of inference rules can appear
jointly in practical applications, so KBC models must be able to jointly capture them. This is not the
case for existing models. For instance, RotatE can capture composition and generalized symmetry,
but to capture a single composition rule such as cousins(x, y) ∧ hasChild(y, z) ⇒ relatives(x, z),
where relatives and cousins are symmetric relations, the model forces hasChild to be symmetric as
well, i.e., hasChild(x, y) ⇒ hasChild(y, x), which is clearly absurd. Therefore, we also evaluate
model inductive capacity relative to more general rule languages [13]. We define a rule language as
the union of different types of rules. Thus, generalized inference patterns are trivial rule languages
allowing only one type of rule. BoxE can capture rules from a rich language, as stated next.

Theorem 5.3. Let L be the rule language that is the union of inverse, symmetry, hierarchy, intersec-
tion, mutual exclusion, and anti-symmetry rules. BoxE can capture any finite set of consistent rules
from the rule language L.
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This result captures generalized inference patterns for BoxE as a special case. Such a result is implau-
sible for other KBC models, given their limitations in capturing generalized inference patterns, and
we are unaware of any analogous result in KBC. The only related result is for ontology embeddings,
and for quasi-chained rules [13], but this result merely offers region structures enabling capturing a
set of rules, without providing any viable model or means of doing so.

The strong inductive capacity of BoxE is advantageous from an interpretability perspective, as all the
rules that BoxE can jointly capture can be simply “read” from the corresponding box configuration.
Indeed, BoxE embeddings allow for rich rule extraction, and enable an informed understanding of
what the model learns, and how it reaches its scores. This is a very useful consequence of inductive
capacity, as better rule capturing directly translates into superior model interpretability. Finally, BoxE
can seamlessly and naturally represent entity type information, e.g., country(UK) by modeling types
as unary relations. In this setting, translational bumps are not applicable, and inference patterns
deducible from classic box configurations can additionally be captured and extracted. By contrast,
standard models require dedicated modifications to their parameters and scoring function [43, 5, 23]
to incorporate type information. This therefore further highlights the strong inductive capacity of
BoxE, and its position as a unifying model for multi-arity knowledge base completion.

5.3 Rule injection

We now pose a complementary question to capturing inference patterns: can a KBC model be injected
with a given set of rules such that it provably enforces them, improving its prediction performance?
Formally, we say that a rule φ⇒ ψ (resp., ψ ⇔ φ) can be injected to a model, if the model can be
configured to force ψ to hold whenever φ holds (resp., φ holds whenever ψ holds and vice versa).

There is a subtle difference between capturing and injecting an inference pattern. Indeed, rules with
negation, such a mutual exclusion, can be easily captured with any disjointness between r1 and r2,
but enforcing such a rule leads to non-determinism. To illustrate, r1 and r2 can be disjoint between
their (i) head boxes, or (ii) tail boxes, or (iii) both, and at any combination of dimensions. This
non-determinism only becomes more intricate as interactions across different rules are considered.
We show that the positive fragment of the rule language that can be captured by BoxE, can be injected.
Theorem 5.4. Let L+ be the rule language that is the union of inverse, symmetry, hierarchy, and
intersection rules. BoxE can be injected with any finite set of rules from the rule language L+.

Existing KGC rule injection methods (i) use rule-based training loss to inject rules [6, 29], potentially
leveraging fuzzy logic [12] and adversarial training [25], but cannot provably enforce rules, or (ii)
constrain embeddings explicitly [8, 29], but only enforce very limited rules (e.g., inversion, linear
implication). Indeed, most popular standard KGC methods fail to capture simple sets of rules [13].
BoxE is a powerful model for rule injection in that it can explicitly and provably enforce such rules
and incorporate a strong bias by appropriately constraining the learning space. Our study is related to
the broader goal of making gradient-based optimization and learning compatible with reasoning [19].

6 Experimental Evaluation

In this section, we evaluate BoxE on a variety of tasks, namely, KGC, higher-arity KBC, and rule
injection, and report state-of-the-art results, empirically confirming the theoretical strengths of BoxE.

6.1 Knowledge graph completion

In this experiment, we run BoxE on the KGC benchmarks FB15k-237, WN18RR, and YAGO3-
10, and compare it with translational models TransE [4] and RotatE [34], both with uniform and
self-adversarial negative sampling [34], and with bilinear models DistMult [46], ComplEx [36], and
TuckER [1]. We train BoxE for up to 1000 epochs, with validation checkpoints every 100 epochs
and the checkpoint with highest MRR used for testing. We report the best published results on every
dataset for all models, and, when unavailable, report our best computed results in italic. All results
are for models with d ≤ 1000, to maintain comparison fairness [1]. We therefore exclude results
by ComplEx [18] and DistMult [30] using d ≥ 2000. The best results by category are presented in
bold, and the best results overall are highlighted by a surrounding rectangle. “(u)” indicates uniform
negative sampling, and “(a)” denotes self-adversarial sampling. Further details about experimental
setup, as well as hyperparameter choices and dataset properties, can be found in the appendix.
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Table 2: KGC results (MR, MRR, Hits@10) for BoxE and competing approaches on FB15k-237,
WN18RR, and YAGO3-10. Other approach results are best published, with sources cited per model.

Model FB15k-237 WN18RR YAGO3-10

MR MRR H@10 MR MRR H@10 MR MRR H@10
TransE(u) [30] - .313 .497 - .228 .520 - - -
RotatE(u) [34] 185 .297 .480 3254 .470 .564 1116 .459 .651
BoxE(u) 172 .318 .514 3117 .442 .523 1164 .567 .699

TransE(a) [34] 170 .332 .531 3390 .223 .529 - - -
RotatE(a) [34] 177 .338 .533 3340 .476 .571 1767 .495 .670
BoxE(a) 163 .337 .538 3207 .451 .541 1022 .560 .691

DistMult [30, 46] - .343 .531 - .452 .531 5926 .34 .54
ComplEx [30, 46] - .348 .536 - .475 .547 6351 .36 .55
TuckER [1] - .358 .544 - .470 .526 4423 .529 .670

Results. For every dataset and model, MR, MRR, and Hits@10 are reported in Table 2. On FB15k-
237, BoxE performs best among translational models, and is competitive with TuckER, especially in
Hits@10. Furthermore, BoxE is comfortably state-of-the-art on YAGO3-10, significantly surpassing
RotatE and TuckER. This result is especially encouraging considering that YAGO3-10 is the largest
of all three datasets, and involves a challenging combination of inference patterns, and many fact
appearances per entity. On YAGO3-10, we also observe that BoxE successfully learns symmetric
relations, and learns box sizes correlating strongly with relational properties (cf. Appendix). Strong
BoxE performance on FB15k-237, which contains several composition patterns, suggests that BoxE
can perform well with compositions, despite not capturing them explicitly as an inference pattern.

On WN18RR, BoxE performs well in terms of MR, but is less competitive with RotatE in MRR.
We investigated WN18RR more deeply, and identified two main factors for this. First, WN18RR
primarily consists of hierarchical knowledge, which is logically flattened into deep tree-shaped
compositions, such as hypernym(spoon, utensil). Second, symmetry is prevalent in WN18RR, e.g.,
derivationally_related_form accounts for 29,715 (∼34.5%) of WN18RR facts, which, combined with
compositions, also helps RotatE. Indeed, in RotatE, the composition of two symmetric relations is
(incorrectly) symmetric, but this is useful for WN18RR, where 4 of the the 11 relations are symmetric.
That is, the modelling limitations of RotatE become an advantage given the setup of WN18RR, and
enable it to achieve state-of-the-art performance on this dataset.

Overall, BoxE is competitive on all benchmarks , and is state of the art on YAGO3-10. Hence, it is a
strong model for KGC on large, real-world KGs. We also evaluated the robustness of BoxE relative
to dimensionality on YAGO3-10, and analyzed the resulting box configuration on this dataset from
an interpretability perspective. These additional experiments can be found in the appendix.

6.2 Higher-arity knowledge base completion

Table 3: KBC results on JF17K and FB-AUTO.

Model JF17K FB-AUTO
MRR H@10 MRR H@10

m-TransH .446 .614 .728 .728
m-DistMult .460 .635 .784 .845
m-CP .392 .560 .752 .837
HypE .492 .650 .804 .856
HSimplE .472 .649 .798 .855
BoxE(u) .553 .711 .837 .895
BoxE(a) .560 .722 .844 .898

In this experiment, we evaluate BoxE on
datasets with higher arity, namely the pub-
licly available JF-17K and FB-AUTO. These
datasets contain facts with arities up to 6 and
5, respectively, and include facts with differ-
ent arities, i.e., 2, 3, 4, and 5. We compare
BoxE with the best-known reported results
over the same datasets [10]. For this experi-
ment, we set d = 200, for fairness with other
models, and perform hyperparameter tuning
analogously to Section 6.1.

Results. MRR and Hits@10 for all evaluated
models are given in Table 3. On both datasets,
BoxE achieves state-of-the-art performance.
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This is primarily due to the natural extensibility of BoxE to non-uniform and higher arity. Indeed,
BoxE defines unique boxes for every arity position, enabling a more natural representation of entity
sets at every relation position. By contrast, all other models represent all relations with identical
embedding structures, which can bottleneck the learning process, in particular when arities vary.
Furthermore, the inductive capacity of BoxE also naturally extends to higher arities as a result of
its structure, namely for higher-arity hierarchy, intersection, and mutual exclusion, which further
improves its learning ability in this setting.

6.3 Rule injection

AgentBelongsToOrganization
TeamPlaysInLeague

PersonBelongsToOrganization
AthletePlayedForSchool

AthletePlaysForTeam

AthletePlaysInLeague
AthleteLedSportsTeam

CoachesInLeague

WorksFor
CoachesTeam

AthleteCoach

Figure 3: The SportsNELL ontology.

In this experiment, we investigate the impact of rule injection
on BoxE performance on the SportsNELL dataset, a subset
of NELL [26] with a known ontology, shown in Figure 3. We
also consider the dataset SportsNELLC, which is precisely
the logical closure of the SportsNELL dataset w.r.t. the given
ontology (i.e., completion of SportsNELL under the rules).

We compare plain BoxE with BoxE injected with the Sport-
sNELL ontology, denoted BoxE+RI. We train both models
for 2000 epochs on a random subset (90%) of SportsNELL.
First, we evaluate both models on all remaining facts from
SportsNELLC, which we refer to as the full evaluation set, to
measure the effect of rule injection. Second, we evaluate both
models on a subset of the full evaluation set, only consisting

of facts that are not directly deducible via the ontology from the training set (i.e., eliminating all
inferences that can be made by a rule-based approach alone). This subset, which we call the filtered
evaluation set, thus carefully tests the impact of rule injection on model inductive capacity.

Table 4: Rule injection experiment results on the Sport-
sNELL full and filtered evaluation sets.

Model Full Set Filtered Set

MR MRR H@10 MR MRR H@10
BoxE 17.4 .577 .780 19.1 .713 .824
BoxE+RI 1.74 .979 .997 5.11 .954 .984

Results. The results on both evaluation
datasets are shown in Table 4. On the full
evaluation dataset, BoxE+RI performs sig-
nificantly better than BoxE. This shows that
rule injection clearly improves the perfor-
mance of BoxE. Importantly, this perfor-
mance improvement cannot solely be at-
tributed to the facts that can be deduced
directly from the training set (with the help
of the rules), as BoxE+RI performs much
better than BoxE also over the filtered eval-
uation set. These experiments suggest that rule injection improves the inductive bias of BoxE, by
enforcing all predictions to also conform with the given set of rules, as required. Intuitively, all
predictions get amplified with the help of the rules, a very desired property, as many real-world KBs
have an associated schema, or a simple ontology.

While allowing to amplify predictions, rule injection can potentially lead to poor performance with
existing metrics. Indeed, if a model mostly predicts wrong facts, these would lead to further wrong
conclusions due to rule application. Hence, a low-quality prediction model can find its performance
further hindered by rule injection, as false predictions create yet more false positives, thereby lowering
the rank of any good predictions in evaluation. Therefore, rule injection must be complemented with
models having good inductive capacity (for sparser and simpler datasets) and expressiveness (for
more complex and rich datasets), such that they yield high-quality predictions in all data settings [35].

7 Summary

We presented BoxE, a spatio-translational model for KBC, and proved several strong results about
its representational power and inductive capacity. We then empirically showed that BoxE achieves
state-of-the-art performance both for KGC, and on higher-arity and different-arity KGC. Finally, we
empirically validated the impact of rule injection, and showed it improves the overall inductive bias
and capacity of BoxE. Overall, BoxE presents a strong theoretical backbone for KBC, combining
theoretical expressiveness with strong inductive capacity and promising empirical performance.
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Broader Impact

The representation and inference of knowledge is essential for humanity, and thus any improvements
in the quality and reliability of automated inference methods can significantly support endeavors in
several application domains. This work provides a means for dealing with incomplete knowledge,
and offers users to complete their knowledge bases with the help of automated machinery. The
model predictions rely mostly on interpretable and explainable logical patterns, which makes it
easier to analyze the model behavior. Furthermore, this work enables safely injecting background
rules when completing knowledge bases, and this safety is of great value in settings where inferred
knowledge is critical (e.g., completing medical knowledge bases). This work thus also provides
a logically grounded approach that improves the quality of predictions and completions in safety-
critical settings. The ability of the proposed model to naturally handle more general knowledge bases
(beyond knowledge graphs) could also unlock the use of knowledge base completion technologies on
important knowledge bases which were previously ignored.
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