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Abstract

Knowledge base completion (KBC) aims to automatically infer missing facts by
exploiting information already present in a knowledge base (KB). A promising
approach for KBC is to embed knowledge into latent spaces and make predictions
from learned embeddings. However, existing embedding models are subject to
at least one of the following limitations: (1) theoretical inexpressivity, (2) lack of
support for prominent inference patterns (e.g., hierarchies), (3) lack of support for
KBC over higher-arity relations, and (4) lack of support for incorporating logical
rules. Here, we propose a spatio-translational embedding model, called BoxE, that
simultaneously addresses all these limitations. BoxE embeds entities as points,
and relations as a set of hyper-rectangles (or boxes), which spatially characterize
basic logical properties. This seemingly simple abstraction yields a fully expressive
model offering a natural encoding for many desired logical properties. BoxE can
both capture and inject rules from rich classes of rule languages, going well beyond
individual inference patterns. By design, BoxE naturally applies to higher-arity
KBs. We conduct a detailed experimental analysis, and show that BoxE achieves
state-of-the-art performance, both on benchmark knowledge graphs and on more
general KBs, and we empirically show the power of integrating logical rules.

1 Introduction

Knowledge bases (KBs) are fundamental means for representing, storing, and processing information,
and are widely used to enhance the reasoning and learning capabilities of modern information
systems. KBs can be viewed as a collection of facts of the form r(e1, . . . , en), which represent a
relation r between the entities e1, . . . , en, and knowledge graphs (KGs) as a special case, where
all the relations are binary (i.e., composed of two entities). KBs such as YAGO [26], NELL [28],
Knowledge Vault [10], and Freebase [2] contain millions of facts, and are increasingly important in
academia and industry, for applications such as question answering [3], recommender systems [42],
information retrieval [47], and natural language processing [48].

KBs are, however, highly incomplete, which makes their downstream use more challenging. For
instance, 71% of individuals in Freebase lack a connection to a place of birth [45]. Knowledge base
completion (KBC), aiming at automatically inferring missing facts in a KB by exploiting the already
present information, has thus become a focal point of research. One prominent approach for KBC
is to learn embeddings for entities and relations in a latent space such that these embeddings, once
learned from known facts, can be used to score the plausibility of unknown facts.

Currently, the main embedding approaches for KBC are translational models [4, 37], which score
facts based on distances in the embedding space, bilinear models [39, 49, 1], which learn embeddings
that factorize the truth tensor of a knowledge base, and neural models [8, 34, 29], which score
facts using dedicated neural architectures. Each of these models suffer from limitations, most of

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.



which are well-known. Translational models, for instance, are theoretically inexpressive, i.e., cannot
provably fit an arbitrary KG. Furthermore, none of these models can capture simple sets of logical
rules: even capturing a simple relational hierarchy goes beyond the current capabilities of most
existing models [14]. This also makes it difficult to inject background knowledge (i.e., schematic
knowledge), in the form of logical rules, into the model to improve KBC performance. Additionally,
existing KBC models are primarily designed for KGs, and thus do not naturally extend to KBs
with higher-arity relations, involving 3 or more entities, e.g., DegreeFrom(Turing,PhD,Princeton)
[11], which hinders their applicability. Higher-arity relations are prevalent in modern KBs such as
Freebase [44], and cannot always be reduced to a KG without loss of information [11]. Despite the
rich landscape for KBC, no existing model currently offers a solution to all these limitations.

In this paper, we address these problems by encoding relations as explicit regions in the embedding
space, where logical properties such as relation subsumption and disjointness can naturally be
analyzed and inferred. Specifically, we present BoxE, a spatio-translational box embedding model,
which models relations as sets of d−dimensional boxes (corresponding to classes), and entities as
d−dimensional points. Facts are scored based on the positions of entity embeddings with respect to
relation boxes. Our contributions can be summarized as follows:

– We introduce BoxE and show that this model achieves state-of-the-art performance on both
knowledge graph completion and knowledge base completion tasks across multiple datasets.

– We show that BoxE is fully expressive, a first for translation-based models, to our knowledge.

– We comprehensively analyze the inductive capacity of BoxE in terms of generalized inference
patterns and rule languages, and show that BoxE can capture a rich rule language.

– We prove that BoxE additionally supports injecting a rich language of logical rules, and empirically
show on a subset of NELL [28], that this can significantly improve KBC performance.

All proofs for theorems, as well as experimental details, can be found as an appendix in the long
version of this paper.

2 Knowledge Base Completion: Problem, Properties, and Evaluation

In this section, we define knowledge bases and the problem of knowledge base completion (KBC).
We also give an overview of standard approaches for evaluating KBC models.

Consider a relational vocabulary, which consists of a finite set E of entities and a finite set R of
relations. A fact (also called atom) is of the form r(e1, . . . , en), where r ∈ R is an n-ary relation,
and ei ∈ E are entities. A knowledge base (KB) is a finite set of facts, and a knowledge graph (KG) is
a KB with only binary relations. In KGs, facts are also known as triples, and are of the form r(eh, et),
with a head entity eh and a tail entity et. Knowledge base completion (KBC) (resp., knowledge graph
completion (KGC)) is the task of accurately predicting new facts from existing facts in a KB (resp.,
KG). KBC models are analyzed by means of (i) an experimental evaluation on existing benchmarks,
(ii) their model expressiveness, and (iii) the set of inference patterns that they can capture.

Experimental evaluation. To evaluate KBC models empirically, true facts from the test set of a KB
and corrupted facts, generated from the test set, are used. A corrupted fact is obtained by replacing
one of the entities in a fact from the KB with a new entity: given a fact r(e1, . . . , ei, . . . , en) from the
KB, a corrupted fact is a fact r(e1, . . . , e′i, . . . , en) that does not occur in the training, validation, or
test set. KBC models define a scoring function over facts, and are optimized to score true facts higher
than corrupted facts. KBC performance is evaluated using metrics [4] such as mean rank (MR), the
average rank of facts against their corrupted counterparts, mean reciprocal rank (MRR), their average
inverse rank (i.e., 1/rank), and Hits@K, the proportion of facts with rank at most K.

Expressiveness. A KBC modelM is fully expressive if, for any given disjoint sets of true and false
facts, there exists a parameter configuration forM such thatM accurately classifies all the given
facts. Intuitively, a fully expressive model can capture any knowledge base configuration, but this
does not necessarily correlate with inductive capacity: fully expressive models can merely memorize
training data and generalize poorly. Conversely, a model that is not fully expressive can fail to fit its
training set properly, and thus can underfit. Hence, it is important to develop models that are jointly
fully expressive and capture prominent and common inference patterns.
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Inference patterns. Inference patterns are a common means to formally analyze the generalization
ability of KBC systems. Briefly, an inference pattern is a specification of a logical property that
may exist in a KB, which, if learned, enables further principled inferences from existing KB facts.
One well-known example inference pattern is symmetry, which specifies that when a fact r(e1, e2)
holds, then r(e2, e1) also holds. If a model learns a symmetry pattern for r, then it can automatically
predict facts in the symmetric closure of r, thus providing a strong inductive bias. We present some
prominent inference patterns in detail in Section 5, and also in Table 1. Intuitively, inference patterns
captured by a model serve as an indication of its inductive capacity.

3 Related Work

In this section, we give an overview of closely related embedding methods for KBC/KGC and
existing region-based embedding models. We exclude neural models [8, 35, 29], as these models are
challenging to analyze, both from an expressiveness and inductive capacity perspective.

Translational models. Translational models represent entities as points in a high-dimensional vector
space and relations as translations in this space. The seminal translational model is TransE [4], where
a relation r, modeled by a vector r, holds between e1 and e2 iff e1 + r = e2. However, TransE
is not fully expressive, cannot capture one-to-many, many-to-one, many-to-many, and symmetric
relations, and can only handle binary facts. This motivated extensions [43, 23, 17, 12], which each
address some, but not all, these limitations. Beyond translations, RotatE [37] uses rotations to model
relations, and thus can model symmetric relations with rotations of angle θ = ±π, but is otherwise as
limited as TransE. Translational models are interpretable and can capture various inference patterns,
but no known translational model is fully expressive.

Bilinear models. Bilinear models capture relations as a bilinear product between entity and relation
embeddings. RESCAL [30] represents a relation r as a full-rank d× d matrix M , and entities as d-
dimensional vectors e. DistMult [49] simplifies RESCAL by making M diagonal, but cannot capture
non-symmetric relations. ComplEx [39] defines a diagonal M with complex numbers to capture
anti-symmetry. SimplE [18] and TuckER [1] build on canonical polyadic (CP) [15] and Tucker
decomposition [40], respectively. TuckER subsumes RESCAL, its adaptations, and SimplE [1].
Generally, all bilinear models except DistMult are fully expressive, but they are less interpretable
compared to translational models.

Higher-arity KBC. KBs can encode knowledge that cannot be encoded in a KG [11]. Hence, models
such as HSimplE [11], m-TransH [44], m-DistMult, and m-CP [11] are proposed as generalizations
of SimplE, TransH [43], DistMult, and CP, respectively. HypE [11] tackles higher-arity KBC through
convolutions. Generalizations to TuckER, namely, m-TuckER and GETD [24], are also proposed, but
these do not apply to KBs with different-arity relations. For most existing KGC models, there are
conceptual and practical challenges (e.g., scalability) against generalizing them to KBC.

Region-based models. Region-based models explicitly define regions in the embedding space where
an output property (e.g., membership to a class) holds. For instance, bounded axis-aligned hyper-
rectangles (boxes) [41, 36, 22] are used for entity classification to define class regions and hierarchies,
in which entity point embeddings appear. As boxes naturally represent sets of objects, they are also
used to represent answer sets in the Query2Box query answering system [16]. Query2Box can be
applied to KBC but reduces to a translational model with a box correctness region for tail entities.
Furthermore, entity classification approaches cannot be scalably generalized to KBC, as this would
involve introducing an embedding per entity tuple.

4 Box Embeddings for Knowledge Base Completion

In this section, we introduce an embedding model for KBC, called BoxE, that encodes relations as
axis-aligned hyper-rectangles (or boxes) and entities as points in the d-dimensional Euclidian space.

Representation. In BoxE, every entity ei ∈ E is represented by two vectors ei, bi ∈ Rd, where ei
defines the base position of the entity, and bi defines its translational bump, which translates all the
entities co-occuring in a fact with ei, from their base positions to their final embeddings by “bumping”
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Figure 1: A sample BoxE model is shown on the left for d = 2. The binary relation r is encoded via
the box embeddings r(1) and r(2). Every entity ei has an embedding ei, and defines a bump on other
entities, as shown with distinct colors. This model induces the KG on r, shown on the right.

them. The final embedding of an entity ei relative to a fact r(e1, . . . , en) is hence given by:

e
r(e1,...,en)
i = (ei − bi) +

∑
1≤j≤n

bj . (1)

Essentially, the entity representation is dynamic, as every entity can have a potentially different final
embedding relative to a different fact. The main idea is that every entity translates the base positions
of other entities co-appearing in a fact, that is, for a fact r(e1, e2), b1 and b2 translate e2 and e1
respectively, to compute their final embeddings.

In BoxE, every relation r is represented by n hyper-rectangles, i.e., boxes, r(1), . . . , r(n) ∈ Rd,
where n is the arity of r. Intuitively, this representation defines n regions in Rd, one per arity
position, such that a fact r(e1, ..., en) holds when the final embeddings of e1, ..., en each appear in
their corresponding position box, creating a class abstraction for the sets of all entities appearing at
every arity position. For the special case of unary relations (i.e., classes), the definition given in Eq. 1
implies no translational bumps, and thus the base position of an entity is its final embedding.
Example 4.1. Consider an example over a single binary relation r and the entities e1, e2, e3, e4.
A BoxE model is given on the left in Figure 1, for d = 2, where every entity is represented as a point,
and the binary relation r is represented with two boxes r(1) and r(2). Every entity is translated by
the bump vectors of all other entities. For example, r(e1, e4) is a true fact in the model (e.g., to be
ranked high), since (i) er(e1,e4)1 = (e1 + b4) is a point in r(1) (e1 appears in the head box), and (ii)
e
r(e1,e4)
4 = (e4+b1) is a point in r(2) (e4 appears in the tail box). Similarly, r(e3, e3) is a true fact

in the model, as er(e3,e3)3 = (e3 + b3), which is a point in r(1) and r(2), i.e., the entity is reflexive
in r. The model encodes all (and only) the facts from the KG, shown on the right in Figure 1.

Translational bumps are very powerful, as they allow us to model complex interactions across entities
in an effective manner. Observe that for the sample KG, there are 42 potential facts that can hold, and
therefore 216 possible configurations. Nonetheless, they can all be compactly captured by choosing
appropriate translational bumps to force entity embeddings in or out of the respective relation boxes
as needed. Indeed, we later formally show that such a configuration can always be found for any KB,
given sufficiently many dimensions, proving full expressiveness of the model.

Scoring function. In the above example, we identified facts that ideally need to be ranked higher by
our scoring function, to reflect the model properties adequately. To this end, we first define a distance
function for evaluating entity positions relative to the box positions. The idea is to define a function
that grows slowly if a point is in the box (relative to the center of the box), but grows rapidly if the
point is outside of the box, so as to drive points more effectively into their target boxes and ensure
they are minimally changed, and can remain there once inside.

Formally, let us denote by l(i),u(i) ∈ Rd the lower and upper boundaries of a box r(i), respectively,
by c(i) = (l(i) + u(i))/2 its center, and by w(i) = u(i) − l(i) + 1 its width incremented by 1. We say
that a point ei is inside a box r(i), denoted ei ∈ r(i), if l(i) ≤ ei ≤ u(i). Furthermore, we denote
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the element-wise multiplication, division, and inversion operations by ◦,� and ◦−1 respectively.
Then, the distance function for the given entity embeddings relative to a given target box is defined
piece-wise over two cases, as follows:

dist(e
r(e1,...,en)
i , r(i)) =

{
| er(e1,...,en)
i − c(i) | � w(i) if ei ∈ r(i),

| er(e1,...,en)
i − c(i) | ◦ w(i) − κ otherwise,

where κ = 0.5 ◦ (w(i) − 1) ◦ (w(i) −w(i)◦−1

), is a width-dependent factor.

−4 −3 −2 −1 1 2 3 4

1

2

3

4

5

6

7

8

9

e
r(e1,...,en)
i − c(i)

d
is

tw(i) = 1

w(i) = 3

w(i) = 5

Figure 2: The dist function for
width w(i) = 1, 3, 5.

In both cases, dist factors in the size of the target box in its
computation. In the first case, where the point is in its target
box, distance inversely correlates with box size, to maintain low
distance inside large boxes and provide a gradient to keep points
inside. In the second case, box size linearly correlates with
distance, to penalize points outside larger boxes more severely.
Finally, κ is subtracted to preserve function continuity.

Plots for dist for one-dimensional w(i) are shown in Figure 2.
Observe that, when w(i) = 1, r(i) is point-shaped, and dist
reduces to standard L1 distance. Conversely, as w(i) increases,
dist gives lower values (and gradients) to the region inside
the box, and severely punishes points outside. This function
thus achieves three objectives. First, it treats points inside the
box preferentially to points outside the box, unlike standard
distance, which is agnostic to boxes. Second, it ensures that
outside points receive high gradient through which they can
more easily reach their target box, or escape it for negative samples. Third, it gives weight to the size
of a box in distance computation, to yield a more comprehensive scoring mechanism.

Finally, we define the scoring function as the sum of the L-x norms of dist across all n entities and
relation boxes, i.e.:

score(r(e1, ..., en)) =
n∑
i=1

∥∥∥dist(e
r(e1,...,en)
i , r(i))

∥∥∥
x
.

5 Model Properties

We analyze the representation power and inductive capacity of BoxE and show that BoxE is fully
expressive, and can capture a rich language combining multiple inference patterns. We additionally
show that BoxE can lucidly incorporate a given set of logical rules from a sublanguage of this
language, i.e., rule injection. Finally, we analyze the complexity of BoxE in the appendix, and prove
that it runs in time O(nd) and space O((|E|+ n|R|)d), where n is the maximal relation arity.

5.1 Full expressiveness

We prove that BoxE is fully expressive with d = |E|n−1|R| dimensions. For KGs, this result implies
d = |E||R|, so BoxE is fully expressive over KGs with dimensionality linear in |E|. The proof
uses translational bumps to make an arbitrary true fact F false, while preserving the correctness
of other facts. This result requires a careful technical construction, which (i) pushes a single
entity representation within F outside its corresponding relation box at a specific dimension, and
(ii) modifies all other model embeddings to prevent a change in the truth value of any other fact.
Theorem 5.1. BoxE is a fully expressive model with the embedding dimensionality d of entities,
bumps, and relations set to d = |E|n−1|R|, where n > 1 is the maximal arity of the relations in R.

We note that this result makes BoxE the first translation-based model that is fully expressive.

5.2 Inference patterns and generalizations

We study the inductive capacity of BoxE in terms of common inference patterns appearing in the
KGC literature, and compare it with earlier models. A comparison of BoxE against these models
with respect to capturing prominent inference patterns is shown in Table 1.
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Table 1: Inference patterns/generalized inference patterns captured by selected KBC models. TuckER
coincides with ComplEx, so is omitted from the table.

Inference pattern BoxE TransE RotatE DistMult ComplEx

Symmetry: r1(x, y)⇒ r1(y, x) 3/3 7/7 3/3 3/3 3/3
Anti-symmetry: r1(x, y)⇒ ¬r1(y, x) 3/3 3/3 3/3 7/7 3/3
Inversion: r1(x, y)⇔ r2(y, x) 3/3 3/7 3/3 7/7 3/3
Composition: r1(x, y) ∧ r2(y, z)⇒ r3(x, z) 7/7 3/7 3/7 7/7 7/7
Hierarchy: r1(x, y)⇒ r2(x, y) 3/3 7/7 7/7 3/7 3/7
Intersection: r1(x, y) ∧ r2(x, y)⇒ r3(x, y) 3/3 3/7 3/7 7/7 7/7
Mutual exclusion: r1(x, y) ∧ r2(x, y)⇒ ⊥ 3/3 3/3 3/3 3/7 3/7

A model captures an inference pattern if it admits a set of parameters exactly and exclusively
satisfying the pattern. This is the standard definition of an inference pattern in the literature [37].
For example, TransE can capture composition [4, 37], but cannot capture hierarchy, as for TransE,
r1(x, y)⇒ r2(x, y) holds only if r1 = r2, and thus r2(x, y)⇒ r1(x, y), leading to loss of generality.
However, this definition only addresses single applications of an inference pattern, which raises the
question: can KBC models capture multiple, distinct instances of the same inference pattern jointly?

Capturing multiple inference patterns jointly is significantly more challenging. Indeed, TransE can
capture r1(x, y) ∧ r2(y, z)⇒ r3(x, z) and r1(x, y) ∧ r4(y, z)⇒ r3(x, z) independently, but jointly
capturing these compositions incorrectly forces r2 ∼ r4. Similarly, bilinear models can capture the
hierarchy rules r1(x, y)⇒ r3(x, y) and r2(x, y)⇒ r3(x, y) separately, but jointly capturing them
incorrectly imposes either r1(x, y)⇒ r2(x, y) or r2(x, y)⇒ r1(x, y) [14]. These examples are
clearly not edge cases, and highlight severe limitations in how the inductive capacity of KBC models
is analyzed. Therefore, we propose and study generalized inference patterns.

Definition 5.1. A rule is in one of the forms given in Table 1, where r1 6= r2 6= r3 ∈ R. To
distinguish between types of rules, we write σ rule, where σ ∈ {symmetry, . . . , mutual exclusion}.
A generalized σ pattern is a finite set of σ rules over R.

As before, a model captures a generalized inference pattern if the model admits a set of parameters,
exactly and exclusively satisfying the generalized pattern. Our results for BoxE and all relevant
models are summarized in Table 1, and proven in the following theorem.

Theorem 5.2. All the results given in Table 1 for BoxE and other models hold.

Intuitively, BoxE captures all these generalized inference patterns through box configurations. For
instance, BoxE captures (generalized) symmetry by setting the 2 boxes for a relation r to be equal,
and captures (generalized) inverse relations r1 and r2 by setting r

(1)
1 = r

(2)
2 and r

(2)
1 = r

(1)
2 .

Hierarchies are captured through box subsumption, i.e., r(1)1 and r
(2)
1 contained in r

(1)
2 and r

(2)
2

respectively, and this extends to intersection in the usual sense. Finally, anti-symmetry and mutual
exclusion, are captured through disjointness between relation boxes.

Generalized inference patterns are necessary to establish a more complete understanding of model
inductive capacity, and, in this respect, our results show that BoxE goes well beyond any other model.
However, generalized patterns are not sufficient. Indeed, different types of inference rules can appear
jointly in practical applications, so KBC models must be able to jointly capture them. This is not the
case for existing models. For instance, RotatE can capture composition and generalized symmetry,
but to capture a single composition rule such as cousins(x, y) ∧ hasChild(y, z) ⇒ relatives(x, z),
where relatives and cousins are symmetric relations, the model forces hasChild to be symmetric as
well, i.e., hasChild(x, y) ⇒ hasChild(y, x), which is clearly absurd. Therefore, we also evaluate
model inductive capacity relative to more general rule languages [14]. We define a rule language as
the union of different types of rules. Thus, generalized inference patterns are trivial rule languages
allowing only one type of rule. BoxE can capture rules from a rich language, as stated next.

Theorem 5.3. Let L be the rule language that is the union of inverse, symmetry, hierarchy, intersec-
tion, mutual exclusion, and anti-symmetry rules. BoxE can capture any finite set of consistent rules
from the rule language L.
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This result captures generalized inference patterns for BoxE as a special case. Such a result is implau-
sible for other KBC models, given their limitations in capturing generalized inference patterns, and
we are unaware of any analogous result in KBC. The only related result is for ontology embeddings,
and for quasi-chained rules [14], but this result merely offers region structures enabling capturing a
set of rules, without providing any viable model or means of doing so.

The strong inductive capacity of BoxE is advantageous from an interpretability perspective, as all the
rules that BoxE can jointly capture can be simply “read” from the corresponding box configuration.
Indeed, BoxE embeddings allow for rich rule extraction, and enable an informed understanding of
what the model learns, and how it reaches its scores. This is a very useful consequence of inductive
capacity, as better rule capturing directly translates into superior model interpretability. Finally, BoxE
can seamlessly and naturally represent entity type information, e.g., country(UK) by modeling types
as unary relations. In this setting, translational bumps are not applicable, and inference patterns
deducible from classic box configurations can additionally be captured and extracted. By contrast,
standard models require dedicated modifications to their parameters and scoring function [46, 6, 25]
to incorporate type information. This therefore further highlights the strong inductive capacity of
BoxE, and its position as a unifying model for multi-arity knowledge base completion.

5.3 Rule injection

We now pose a complementary question to capturing inference patterns: can a KBC model be injected
with a given set of rules such that it provably enforces them, improving its prediction performance?
Formally, we say that a rule φ⇒ ψ (resp., ψ ⇔ φ) can be injected to a model, if the model can be
configured to force ψ to hold whenever φ holds (resp., φ holds whenever ψ holds and vice versa).

There is a subtle difference between capturing and injecting an inference pattern. Indeed, rules with
negation, such a mutual exclusion, can be easily captured with any disjointness between r1 and r2,
but enforcing such a rule leads to non-determinism. To illustrate, r1 and r2 can be disjoint between
their (i) head boxes, or (ii) tail boxes, or (iii) both, and at any combination of dimensions. This
non-determinism only becomes more intricate as interactions across different rules are considered.
We show that the positive fragment of the rule language that can be captured by BoxE, can be injected.
Theorem 5.4. Let L+ be the rule language that is the union of inverse, symmetry, hierarchy, and
intersection rules. BoxE can be injected with any finite set of rules from the rule language L+.

Existing KGC rule injection methods (i) use rule-based training loss to inject rules [7, 32], potentially
leveraging fuzzy logic [13] and adversarial training [27], but cannot provably enforce rules, or (ii)
constrain embeddings explicitly [9, 32], but only enforce very limited rules (e.g., inversion, linear
implication). Indeed, most popular standard KGC methods fail to capture simple sets of rules [14].
BoxE is a powerful model for rule injection in that it can explicitly and provably enforce such rules
and incorporate a strong bias by appropriately constraining the learning space. Our study is related to
the broader goal of making gradient-based optimization and learning compatible with reasoning [21].

6 Experimental Evaluation

In this section, we evaluate BoxE on a variety of tasks, namely, KGC, higher-arity KBC, and rule
injection, and report state-of-the-art results, empirically confirming the theoretical strengths of BoxE.

6.1 Knowledge graph completion

In this experiment, we run BoxE on the KGC benchmarks FB15k-237, WN18RR, and YAGO3-
10, and compare it with translational models TransE [4] and RotatE [37], both with uniform and
self-adversarial negative sampling [37], and with bilinear models DistMult [49], ComplEx [39], and
TuckER [1]. We train BoxE for up to 1000 epochs, with validation checkpoints every 100 epochs
and the checkpoint with highest MRR used for testing. We report the best published results on every
dataset for all models, and, when unavailable, report our best computed results in italic. All results
are for models with d ≤ 1000, to maintain comparison fairness [1]. We therefore exclude results
by ComplEx [20] and DistMult [33] using d ≥ 2000. The best results by category are presented in
bold, and the best results overall are highlighted by a surrounding rectangle. “(u)” indicates uniform
negative sampling, and “(a)” denotes self-adversarial sampling. Further details about experimental
setup, as well as hyperparameter choices and dataset properties, can be found in the appendix.
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Table 2: KGC results (MR, MRR, Hits@10) for BoxE and competing approaches on FB15k-237,
WN18RR, and YAGO3-10. Other approach results are best published, with sources cited per model.

Model FB15k-237 WN18RR YAGO3-10

MR MRR H@10 MR MRR H@10 MR MRR H@10
TransE(u) [33] - .313 .497 - .228 .520 - - -
RotatE(u) [37] 185 .297 .480 3254 .470 .564 1116 .459 .651
BoxE(u) 172 .318 .514 3117 .442 .523 1164 .567 .699

TransE(a) [37] 170 .332 .531 3390 .223 .529 - - -
RotatE(a) [37] 177 .338 .533 3340 .476 .571 1767 .495 .670
BoxE(a) 163 .337 .538 3207 .451 .541 1022 .560 .691

DistMult [33, 49] - .343 .531 - .452 .531 5926 .34 .54
ComplEx [33, 49] - .348 .536 - .475 .547 6351 .36 .55
TuckER [1] - .358 .544 - .470 .526 4423 .529 .670

Results. For every dataset and model, MR, MRR, and Hits@10 are reported in Table 2. On FB15k-
237, BoxE performs best among translational models, and is competitive with TuckER, especially in
Hits@10. Furthermore, BoxE is comfortably state-of-the-art on YAGO3-10, significantly surpassing
RotatE and TuckER. This result is especially encouraging considering that YAGO3-10 is the largest
of all three datasets, and involves a challenging combination of inference patterns, and many fact
appearances per entity. On YAGO3-10, we also observe that BoxE successfully learns symmetric
relations, and learns box sizes correlating strongly with relational properties (cf. Appendix). Strong
BoxE performance on FB15k-237, which contains several composition patterns, suggests that BoxE
can perform well with compositions, despite not capturing them explicitly as an inference pattern.

On WN18RR, BoxE performs well in terms of MR, but is less competitive with RotatE in MRR.
We investigated WN18RR more deeply, and identified two main factors for this. First, WN18RR
primarily consists of hierarchical knowledge, which is logically flattened into deep tree-shaped
compositions, such as hypernym(spoon, utensil). Second, symmetry is prevalent in WN18RR, e.g.,
derivationally_related_form accounts for 29,715 (∼34.5%) of WN18RR facts, which, combined with
compositions, also helps RotatE. Indeed, in RotatE, the composition of two symmetric relations is
(incorrectly) symmetric, but this is useful for WN18RR, where 4 of the the 11 relations are symmetric.
That is, the modelling limitations of RotatE become an advantage given the setup of WN18RR, and
enable it to achieve state-of-the-art performance on this dataset.

Overall, BoxE is competitive on all benchmarks , and is state of the art on YAGO3-10. Hence, it is a
strong model for KGC on large, real-world KGs. We also evaluated the robustness of BoxE relative
to dimensionality on YAGO3-10, and analyzed the resulting box configuration on this dataset from
an interpretability perspective. These additional experiments can be found in the appendix.

6.2 Higher-arity knowledge base completion

Table 3: KBC results on JF17K and FB-AUTO.

Model JF17K FB-AUTO
MRR H@10 MRR H@10

m-TransH .446 .614 .728 .728
m-DistMult .460 .635 .784 .845
m-CP .392 .560 .752 .837
HypE .492 .650 .804 .856
HSimplE .472 .649 .798 .855
BoxE(u) .553 .711 .837 .895
BoxE(a) .560 .722 .844 .898

In this experiment, we evaluate BoxE on
datasets with higher arity, namely the pub-
licly available JF-17K and FB-AUTO. These
datasets contain facts with arities up to 6 and
5, respectively, and include facts with differ-
ent arities, i.e., 2, 3, 4, and 5. We compare
BoxE with the best-known reported results
over the same datasets [11]. For this experi-
ment, we set d = 200, for fairness with other
models, and perform hyperparameter tuning
analogously to Section 6.1.

Results. MRR and Hits@10 for all evaluated
models are given in Table 3. On both datasets,
BoxE achieves state-of-the-art performance.
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This is primarily due to the natural extensibility of BoxE to non-uniform and higher arity. Indeed,
BoxE defines unique boxes for every arity position, enabling a more natural representation of entity
sets at every relation position. By contrast, all other models represent all relations with identical
embedding structures, which can bottleneck the learning process, in particular when arities vary.
Furthermore, the inductive capacity of BoxE also naturally extends to higher arities as a result of
its structure, namely for higher-arity hierarchy, intersection, and mutual exclusion, which further
improves its learning ability in this setting.

6.3 Rule injection

AgentBelongsToOrganization
TeamPlaysInLeague

PersonBelongsToOrganization
AthletePlayedForSchool

AthletePlaysForTeam

AthletePlaysInLeague
AthleteLedSportsTeam

CoachesInLeague

WorksFor
CoachesTeam

AthleteCoach

Figure 3: The SportsNELL ontology.

In this experiment, we investigate the impact of rule injection
on BoxE performance on the SportsNELL dataset, a subset
of NELL [28] with a known ontology, shown in Figure 3. We
also consider the dataset SportsNELLC, which is precisely
the logical closure of the SportsNELL dataset w.r.t. the given
ontology (i.e., completion of SportsNELL under the rules).

We compare plain BoxE with BoxE injected with the Sport-
sNELL ontology, denoted BoxE+RI. We train both models
for 2000 epochs on a random subset (90%) of SportsNELL.
First, we evaluate both models on all remaining facts from
SportsNELLC, which we refer to as the full evaluation set, to
measure the effect of rule injection. Second, we evaluate both
models on a subset of the full evaluation set, only consisting

of facts that are not directly deducible via the ontology from the training set (i.e., eliminating all
inferences that can be made by a rule-based approach alone). This subset, which we call the filtered
evaluation set, thus carefully tests the impact of rule injection on model inductive capacity.

Table 4: Rule injection experiment results on the Sport-
sNELL full and filtered evaluation sets.

Model Full Set Filtered Set

MR MRR H@10 MR MRR H@10
BoxE 17.4 .577 .780 19.1 .713 .824
BoxE+RI 1.74 .979 .997 5.11 .954 .984

Results. The results on both evaluation
datasets are shown in Table 4. On the full
evaluation dataset, BoxE+RI performs sig-
nificantly better than BoxE. This shows that
rule injection clearly improves the perfor-
mance of BoxE. Importantly, this perfor-
mance improvement cannot solely be at-
tributed to the facts that can be deduced
directly from the training set (with the help
of the rules), as BoxE+RI performs much
better than BoxE also over the filtered eval-
uation set. These experiments suggest that rule injection improves the inductive bias of BoxE, by
enforcing all predictions to also conform with the given set of rules, as required. Intuitively, all
predictions get amplified with the help of the rules, a very desired property, as many real-world KBs
have an associated schema, or a simple ontology.

While allowing to amplify predictions, rule injection can potentially lead to poor performance with
existing metrics. Indeed, if a model mostly predicts wrong facts, these would lead to further wrong
conclusions due to rule application. Hence, a low-quality prediction model can find its performance
further hindered by rule injection, as false predictions create yet more false positives, thereby lowering
the rank of any good predictions in evaluation. Therefore, rule injection must be complemented with
models having good inductive capacity (for sparser and simpler datasets) and expressiveness (for
more complex and rich datasets), such that they yield high-quality predictions in all data settings [38].

7 Summary

We presented BoxE, a spatio-translational model for KBC, and proved several strong results about
its representational power and inductive capacity. We then empirically showed that BoxE achieves
state-of-the-art performance both for KGC, and on higher-arity and different-arity KGC. Finally, we
empirically validated the impact of rule injection, and showed it improves the overall inductive bias
and capacity of BoxE. Overall, BoxE presents a strong theoretical backbone for KBC, combining
theoretical expressiveness with strong inductive capacity and promising empirical performance.
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Broader Impact

The representation and inference of knowledge is essential for humanity, and thus any improvements
in the quality and reliability of automated inference methods can significantly support endeavors in
several application domains. This work provides a means for dealing with incomplete knowledge,
and offers users to complete their knowledge bases with the help of automated machinery. The
model predictions rely mostly on interpretable and explainable logical patterns, which makes it
easier to analyze the model behavior. Furthermore, this work enables safely injecting background
rules when completing knowledge bases, and this safety is of great value in settings where inferred
knowledge is critical (e.g., completing medical knowledge bases). This work thus also provides
a logically grounded approach that improves the quality of predictions and completions in safety-
critical settings. The ability of the proposed model to naturally handle more general knowledge bases
(beyond knowledge graphs) could also unlock the use of knowledge base completion technologies on
important knowledge bases which were previously ignored.
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A Runtime and Space Complexity of BoxE

Runtime. For any fact r(e1, . . . , en), we can compute the entity representations er(e1,...,en), in time
O(nd), by first computing

∑
1≤i≤n bi in O(nd), then subtracting bi from the overall sum for every

entity e and finally adding the base position e, resulting in 3n d−dimensional addition/subtraction
operations. The distance function dist runs in O(d) for every box and entity, as it involves a fixed
number of d−dimensional operations. Thus, running dist for all n positions yields a running time
of O(nd). Hence, BoxE scoring runs in O(nd) overall. This implies that BoxE scales linearly with
the arity of the relations in a KB, and thus can be applied to this setting with minimal computational
overhead. Assuming that n is bounded, as is the case for KGs, BoxE runs in linear time with respect
to dimensionality d.

Space complexity. In terms of space complexity, BoxE stores 2 d−dimensional vectors per entity
e, namely its base position e and bump b, and stores 2 d−dimensional vectors per box, denoting
its lower and upper corners. Hence, for a KB with |E| entities and |R| relations with arity n, BoxE
requires (|E|+ n|R|)d parameters.

B Proof of Theorem 5.1 (Full Expressiveness)

We first prove the result for knowledge graphs, and then show how this can be lifted to arbitrary
knowledge bases with higher-arity relations.

The result is shown by induction. We start with a base case where the KG G contains all facts from
the universe as true facts, and subsequently prove in the induction step that a BoxE model with
d = |E||R| can make any arbitrary fact in G false without affecting the correctness of other facts.
In this induction step, facts are made false by pushing the representation of a single entity in the
fact outside its corresponding relation box at a specific dimension, and modifying the remaining
embeddings in the model to prevent a change in the truth value of any other fact.

Let us assume without loss of generality that all relations and entities are indexed. Specifically, we
consider relations ri ∈ R, and entities ej ∈ E, where 0 ≤ i ≤ |R| − 1, and 0 ≤ j ≤ |E| − 1. We
consider d-dimensional embedding vectors v with d = |E||R|, and write v(i, j) to refer to the vector
index i|E| + j. Intuitively, in our construction, the sequence of indices v(i, 0), . . . ,v(i, |E| − 1)
corresponds to a “chunk” reserved for the relation ri.

Base case: We initialize the KG G as the whole universe, i.e., the set of all possible facts over a
given vocabulary. BoxE can trivially express G, by simply setting all entity and bump vectors to 0,
and all boxes as the unit box centered at 0.

Induction step: In this step, we consider a true fact ri(ej , ek), and make this fact false without
affecting the remainder of G. This can be done as follows:

Step 1. Increment bj(i, k) by a value C, such that:

ek(i, k) + bj(i, k) + C > u
(2)
i (i, k).

Step 2. Decrement all entity embeddings except that of ek by C at dimension (i, k):

∀ k′ 6= k, ek′(i, k) = ek′(i, k)− C.

Step 3. For the relation ri, grow the head box byC at dimension (i, k) both upwards and downwards,
and grow the tail box downwards by C in this dimension:

l
(1)
i (i, k) = l

(1)
i (i, k)− C,

u
(1)
i (i, k) = u

(1)
i (i, k) + C,

l
(2)
i (i, k) = l

(2)
i (i, k)− C.

Step 4. For all other relations rx ∈ R, x 6= i, grow all boxes by C at dimension (i, k) in both
directions, that is, for β ∈ {1, 2}:

l(β)x (i, k) = l(β)x (i, k)− C,
u(β)
x (i, k) = u(β)

x (i, k) + C.
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Observe first that Step 1 makes ri(ej , ek) false, by pushing e
ri(ej ,ek)
k outside of r(2)i at dimension

(i, k) from above. This flips the truth value of ri(ej , ek), as required.

We now show that the results of Steps 1 & 2, combined with the changes to relation boxes made
in Steps 3 & 4, which affect facts involving ri and other relations respectively, preserve the cor-
rectness/falsehood of all facts other than ri(ej , ek). To this end, we consider any possible fact
F = ri′(ej′ , ek′) from the KG, and analyze the effect of the induction step at the head and tail of the
fact. We need to consider the following cases:

Case 1. The fact F is true: To verify that F = ri′(ej′ , ek′) remains true after the inductive step,
we analyze both the head entity eF

j′
and the tail entity eF

k′
.

(a) Head entity: Observe that (i) eF
j′

can change by at most C following Steps 1 & 2, and
(ii) all relation head boxes are grown by C in both directions in Steps 3 & 4. These
together imply that eF

j′
∈ r(1) is guaranteed to hold provided that it was true before

the induction step.
(b) Tail entity: If ek′ 6= ek, then eF

k′
is not changed if ej′ = ej , and decremented by C

at dimension (i, k) otherwise. Hence, the changes to both r
(2)
i and r

(2)
x , x 6= i in

Steps 3 & 4 are sufficient to maintain ek′ ∈ r(2). Conversely, if ek′ = ek, then eFt is
unchanged when ej′ 6= ej , and thus ek′ ∈ r(2) still holds. Otherwise, when ej′ = ej ,
eF
k′

is incremented by C, which, for r = ri, makes F false, as required, and for r 6= ri,
still keeps ek′ ∈ r(2), as all other tail boxes are grown upwards by C.

Hence, for any true fact in G, except the fact ri(ej , ek), we conclude that ej′ ∈ r(1) and
ek′ ∈ r(2) continues to hold after the induction step, as required.

Case 2. The fact F is false: To verify that F = ri′(ej′ , ek′) remains false, after the inductive step,
we again consider the head and tail entities.

(a) Head entity: By construction, all false facts ri′(ej′ , ek′) satisfy the inequality

e
ri′(ej′ ,ek′)

k′
(i′, k′) > u

(2)

i′
(i′, k′),

and any changes to eF
j′

do not affect this inequality.

(b) Tail entity: If ek′ 6= ek, then F verifies eF (i′, k′) > u
(2)

i′
(i′, k′), where k′ 6= k.

This inequality continues to hold regardless of the changes to eF
k′
(i, k). Otherwise, if

ek′ = ek, and ri′ = ri, then ej′ 6= ej , as F is initially false, and ri(ej , ek) is initially
true. Furthermore, since ej′ 6= ej , eFk′ is unchanged, which maintains the falsehood
inequality. Finally, if ri′ 6= ri, then the falsehood inequality for F holds at a dimension
different than (i, k). Therefore, none of the changes in the induction step affect this
inequality.

Hence, all false facts in G remain false after the induction step, as required.

Thus, the induction step can make any true fact ri(ej , ek) in G false in a BoxE model with d = |E||R|
without affecting the remainder of the facts in G. Hence, all fact configurations are possible and
expressible by such a BoxE model, and this model is fully expressive, as required.

This proof can be generalized to higher-arity knowledge bases. Indeed, for a maximum arity of n, a
dimensionality d = |E|n−1|R| is needed for full expressiveness. All proof steps shown above would
remain the same, except that (i) we define a higher-arity indexing function (θ1, θ2, ..., θK), which
refers to vector index

∑n
a=1 |E|n−aθi, and (ii) grow boxes for ri and all other rx at positions 3 and

onwards in both Steps 3 and 4, in addition to position 1, by C in both directions (while the changes at
position 2 remain the same).

Finally, we note that the proof can be trivially extended to knowledge bases with non-uniform arities
(i.e., KBs containing relations with different arities) by introducing extra parameters to relations of
lower arity, and setting the correctness of the n−arity facts solely based on the original facts. Hence,
BoxE is a fully expressive model for general KBs containing both distinct and large relation arities.
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C Proof of Theorem 5.2 (Inference Patterns and Generalizations)

We start by more explicitly reformulating Definition 5.1 in the main body of the paper.

Definition C.1. Generalized inference patterns are defined as follows:

• A symmetry rule is of the form r1(x, y)⇒ r1(y, x), where r1 ∈ R. A generalized symmetry
pattern is a finite set of symmetric rules over R.

• An anti-symmetry rule is of the form r1(x, y)⇒ ¬r1(y, x), where r1 ∈ R. A generalized
anti-symmetry pattern is a finite set of anti-symmetric rules over R.

• An inversion rule is of the form r1(x, y) ⇔ r2(y, x), where r1 6= r2 ∈ R. A generalized
inversion pattern is a finite set of inverse rules over R.

• A composition rule is of the form r1(x, y) ∧ r2(y, z)⇒ r3(x, z), where r1 6= r2 6= r3 ∈ R.
A generalized composition pattern is a finite set of composition rules over R.

• A hierarchy rule is of the form r1(x, y) ⇒ r2(x, y),where r1 6= r2 ∈ R. A generalized
hierarchy pattern is a finite set of hierarchy rules over R.

• An intersection rule is of the form r1(x, y)∧ r2(x, y)⇒ r3(x, y), where r1 6= r2 6= r3 ∈ R.
A generalized intersection pattern is a finite set of intersection rules over R.

• A mutual exclusion rule is of the form r1(x, y) ∧ r2(x, y) ⇒ ⊥, where r1 6= r2 ∈ R. A
generalized mutual exclusion pattern is a finite set of mutually exclusive rules over R.

Every generalized inference pattern defines a trivial rule language, consisting of a single type of
rule. We define more general rule languages, by taking the union of different types of rules. A rule
language L is defined in terms of the types of rules that are allowed in the language.

Remark. The requirement for setting the relations to be distinct is due to the existing conventions
in the literature. This may appear somewhat unintuitive, but it is required to study the rules in
isolation, i.e., a composition rule without this requirement can express transitivity by defining
r1(x, y) ∧ r2(y, z)⇒ r1(x, z) which cannot be captured by models that do capture composition.
Nevertheless, this assumption does not lead to loss of generality for our study of generalized inference
patterns, since we are allowed to use many rules, which in turn, can easily simulate cases that are
excluded. For instance, the following rules: r1(x, y) ∧ r2(y, z)⇒ r3(x, z), and r3(x, y)⇒ r1(x, y)
together simulate the transitivity rule given above.

We prove the statements in Theorem 5.2 in two seperate parts. First, we prove the results given for
BoxE from Table 1, and then we show the results given for the other models from Table 1.

C.1 Proof of Theorem 5.2: BoxE

We show that each generalized inference pattern can be captured by BoxE except for the composition
pattern. For the latter, we argue why BoxE cannot capture this explicitly, as an inference pattern.

Generalized intersection. We first introduce the concept of boxicity. Let G = (V,E) be a graph,
where V is the set of nodes, and E is the set of edges. The boxicity of G is the minimum embedding
dimension in which G can be represented as an intersection of axis-aligned boxes, such that (i) every
box corresponds to a specific node, (ii) boxes intersect iff an edge connects their respective nodes [31].
It has been shown that the boxicity of a graph with p edges is O(

√
p · log(p)) [5]. This implies that,

given a graph G, where every relation r ∈ R is represented as a node in the graph, and every edge
between them represents an intersection, any finite combination of intersections between relations can
be represented in a finite-dimensional vector space of worst-case dimensionality O(|R|

√
log(|R|)).

For a given knowledge graph, we define a relation intersection graph. That is, for every relation
r ∈ R, we define two nodes, corresponding to its head and tail boxes, and then set edges in the graph
based on desired intersections between relation boxes, which are dictated by intersection rules.

Prior to encoding rules into relation intersection graph edges, we first compute the deductive closure
of the set of intersection rules. In other words, we check whether any rule of the form ri(x, y) ⇒
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rj(x, y), or ri(x, y) ∧ rj(x, y)⇒ rk(x, y) for any i, j, k can be entailed from the given set of rules,
and keep adding new rules to this initial set, until no more rules can be deduced. That is, we compute
the logical closure of the initial set. This allows us to make all possible intersections between relations
explicit.

Then, we map all rules in the computed deductive closure to edges as follows:

• For every intersection rule r1(x, y) ∧ r2(x, y)⇒ r3(x, y), we set edges between the node
corresponding to the head of r3 and those of r1 and r2, with the same done for tail nodes.

• For every deduced hierarchy rule r1(x, y)⇒ r2(x, y), we set edges between the head nodes
of r2 and r1, with the same done for tail nodes.

With the resulting relation intersection graph G, we have encoded necessary conditions for all rules
to hold, namely that relations whose intersections are contained in other relations intersect with these
relations. We now leverage the boxicity argument, and show that there exists a box configuration of
finite dimensionality capturing all the intersections encoded in G. This box configuration captures
all intersections needed between the respective boxes for the rules to hold, but is not necessarily
sufficient to capture hierarchies and box containment. Hence, we modify the aforementioned box
configuration using a procedure, which we apply iteratively over every intersection rule, such that the
final configuration provably captures all rules, without capturing additional undesired rules.

Our box reconfiguration procedure is as follows:

1. Iterate over every intersection rule r1(x, y) ∧ r2(x, y)⇒ r3(x, y):
(a) If the r3 head and tail boxes do not contain the head and tail box intersections r1 ∩ r2,

then we grow these r3 boxes by the minimum possible amount to make this condition
hold and establish the rule. In other words, we grow the r3 boxes at every position
to equal the boundary of either the r1 boxes or the r2 boxes at the dimensions where
the rule does not hold due to r1 or r2. This growth operation preserves all existing
edges in G, and does not force new intersections, as all forced intersections due to rule
capturing are already encoded by the existing edges.

(b) Following Part (a), the growth of r3 can violate another rule in the set, in particular if
r3 is in the body of this rule. Hence, when any r3 boxes are grown in Part (a), check all
other intersection rules in the rule set: If the change in r3 makes a rule no longer hold
(i.e., the rule was captured prior to growing r3 and no longer is), then recursively call
this procedure for this rule.

We now show that this procedure is correct, and then prove that it terminates, particularly with respect
to the number of recursive calls made. First, we note that, following a successful iteration on a given
rule, a rule is successfully captured (Part (a)), and no other rules are violated in the process (Part (b)).
Thus, the final configuration returned by this procedure over the initial boxicity-given configuration
returns a valid BoxE configuration. In particular, this configuration captures all and only the provided
patterns within the deductive closure, which includes the original intersection rules. Furthermore,
growing r3 boxes in the configuration to satisfy an intersection rule does not induce any rules outside
their deductive closure. Indeed, when r3 boxes are grown, they are only grown in dimensions where
they fail to capture r1 ∩ r2. Thus, the procedure can only make r3 intersect with boxes that intersect
with r1 or r2. As a result, the procedure can only force intersections between boxes within the
deductive closure of the rule set.

It now remains to show that this procedure terminates, and thus that a configuration of this kind
indeed can be found. In particular, we study the maximal number of recursive calls needed. Consider
a rule ρ : r1(x, y) ∧ r2(x, y) ⇒ r3(x, y), where r3 boxes are grown. For simplicity, we only
consider a single box for r3, i.e., a unique arity position, as the analysis is analogous at every arity
position. We define boundaries as being the lower and upper limits of a box at every dimension.
Thus, a d-dimensional box has 2d boundaries. Therefore, in our binary BoxE configuration with |R|
relations and d = O(|R|

√
log |R|), there are O(|R|2

√
log |R|) boundaries. For our analysis, we

are interested in the number of distinct boundaries in our configuration.

We now consider the effect of an application of a call to Part (a) of the procedure on the number of
distinct boundaries. If ρ is already captured, then no action is needed. Otherwise, r3 needs to be
grown. Hence, in this scenario, there exists at least one dimension in which the lower (resp., upper)
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boundary of r3 is strictly higher (resp., lower) than the maximum (resp., minimum) lower (resp.,
upper) bound of either r1 or r2. Therefore, when r3 is grown, the value of the problematic bound(s)
at this dimension is made equal to the corresponding bound(s) of r1 or r2. As a result, the number of
distinct boundaries is guaranteed to strictly drop by at least 1 following any growth operation.

Furthermore, we consider the recursive calls made in Part (b), after any growth to r3. Observe
that recursion is only called when the change to r3 exclusively makes the checked rule false. This
condition ensures that all recursive calls are made only when the growing of the rule head boxes, in
this case r3, is the exclusive cause for rule violation, and so eliminates all other possible causes of
violation such that they are handled only when the outer loop iterating reaches the corresponding rule,
and thus greatly simplifies the analysis. Finally, we observe that box growth can only be triggered
when distinct boundaries exist. Hence, when the number of distinct boundaries drops to its (highly
pessimistic and loose) minimum possible value of 1, no more recursive calls can be made. This
observation, combined with the earlier finding that every box growth strictly reduces the number
of distinct boundaries by at least 1, implies that the number of recursive calls in this procedure is
upper bounded by O(|R|2

√
log |R|). Hence, this procedure terminates, and a BoxE configuration

capturing generalized intersections exists.

Generalized hierarchy. The proof for generalized intersection immediately applies to generalized
hierarchies.

Generalized symmetry. The symmetry inference pattern is a single-relation pattern, and can appear
at most once per relation. Symmetry can be easily captured for a relation r by setting r(1) and r(2)

to be identical boxes. This can be independently done for any relation, and thus BoxE captures
generalized symmetry.

Generalized anti-symmetry. Analogously to generalized symmetry, anti-symmetry is a single-
relation pattern. This pattern is captured by setting r(1) and r(2) to be disjoint for every anti-
symmetric r. Therefore, BoxE captures generalized anti-symmetry.

Generalized inversion. An inversion pattern r1(x, y)⇔ r2(y, x) can be captured by setting r
(1)
1

and r
(2)
2 , as well as r(2)1 and r

(1)
2 , to be identical boxes. This box sharing between inverse relations

can easily be extended to any arbitrary set of inversion rules.

Generalized mutual exclusion. It is sufficient to observe that there exists a BoxE configuration
for any arbitrary set of mutual exclusion rules due to the boxicity argument: simply consider a graph
G with no edges connecting mutually exclusive relations. A simpler argument can be given directly:
generalized mutual exclusion can be achieved by making one of the relation boxes (head, or tail)
disjoint in a fixed-dimensional space.

(Generalized) composition. Consider the composition pattern r1(x, y) ∧ r2(y, z)→ r3(x, z). In
this pattern, we see that the entity that will appear in lieu of variable x will be bumped differently in
every atom, as it appears with different entities. More concretely, if we replace variables x, y, z with
entities e1, e2, e3 respectively, then er11 = e1 + b2 and er31 = e1 + b3. We can also view bumps as
equivalently applying to boxes, i.e., instead of e1 + b2 ∈ r

(1)
1 , we write e1 ∈ r

(1)
1 − b2. Hence, it

is equivalent to view BoxE as bumping relation boxes in the opposite direction.

Now, we can see that r(1)1 is bumped by −b2, whereas r(1)3 is bumped by −b3. Therefore, since
bumps are entity-specific and unknown a priori since the bump stems from an abstract variable, one
cannot analyze the relative positions of r(1)1 and r

(1)
3 and draw conclusions. By contrast, all other

captured rules in BoxE are such that relation boxes corresponding to the same variable are bumped
identically, which in effect neutralizes the effect of bumping and enables the capturing of the patterns.
Hence, translational bumps, which allow BoxE to be fully expressive, prevent BoxE from capturing
compositions.
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C.2 Proof of Theorem 5.2: Other models

In what follows, we generally define KGC embedding models such that every KG entity is represented
by a vector in Rd, and every relation defines two map functions rh, rt : Rd → Rd, which apply to
head and tail embeddings, respectively. We further define the relation scoring function over a KG
triple sr : Rd × Rd → R as a map from entity pair representations following the application of rh
and rt to a real-valued score.

C.2.1 Translational models: TransE and RotatE

We note that some of the results stated below are taken from the literature, but we included them
nevertheless for completeness. The novel results are given for the generalized inference patterns.

For translational models, rh(e1) encodes the translation (resp. rotation) operation, rt(e2) = e2, and
sr(e1, e2) = ‖rt(e2)− rh(e1)‖.

Hierarchy. LetMr = s−1r ([0, ε]), where s−1r is the inverse map of sr, be the subset of embedding
pairs (v, w) ∈ Rd × Rd such that sr(v, w) ≤ ε, i.e., the decision region of the relation r with margin
ε. As a result, r1(x, y)⇒ r2(x, y) holds iffM1 ⊂M2. In TransE (resp., RotatE), (e1, e2) ∈Mr if
e1 + r− e2 ∈ Dε(0) (resp., ‖e1 ◦ r− e2‖ ∈ Dε(0)), where Dε(0) is the disk of center 0 and radius
ε. Since it is necessary that M1 ⊂M2, we require that the disk D1,ε(e1 + r1) (resp., D1,ε(e1 ◦ r1))
and radius ε is contained in the corresponding disk D2, defined analogously using r2. Since D1

and D2 have the same margin-induced radius, this is only possible if r1 = r2, effectively enforcing
relation equivalence. Thus, neither translational model can capture hierarchies.

Intersection. A model can represent the intersection pattern r1(x, y) ∧ r2(x, y) ⇒ r3(x, y) if
M1∩M2 ⊂M3. In TransE and RotatE, this is satisfied if r3 lies in the centre of the disk intersection
of Dε(r1) and Dε(r2), thus both models capture intersection. However, both models clearly fail to
capture generalized intersection. In particular, if we consider rules r1(x, y) ∧ r2(x, y)⇒ r3(x, y)
and r3(x, y) ∧ r2(x, y)⇒ r1(x, y), the rule r2(x, y)⇒ r1(x, y) is logically implied. But this is a
hierarchy rule that clearly cannot be captured by either model. Hence, TransE and RotatE cannot
capture generalized intersections.

Symmetry. In TransE, r(x, y)⇒ r(y, x) holds iff r = 0, which implies that r is reflexive. Thus,
TransE does not capture symmetry. In contrast, in RotatE, symmetry is captured iff r = {±kπ}d,
k ∈ N, i.e., a rotation vector consisting exclusively of multiples of π. Symmetry is a single-relation
pattern, and thus multiple rules, affecting different relations, can be captured independently. Hence,
RotatE captures generalized symmetry.

Anti-symmetry. In TransE, a relation r is anti-symmetric iff ‖r‖ ≥ ε. The result for RotatE is
proven in the original work [37]. As anti-symmetry is a single-relation pattern, it can be applied
independently across all relations. Thus, both TransE and RotatE capture generalized anti-symmetry.

Inversion. For both TransE and RotatE, inversion holds iff r1 = −r2. However, whereas RotatE
can capture generalized inversion through repeated application of the earlier equation across all
inversion rules, since it can handle any deduced symmetry results, TransE cannot. More concretely,
consider the rule set r1(x, y)⇔ r2(y, x), r2(x, y)⇔ r3(y, x), r3(x, y)⇔ r1(y, x). This rule set
implies r1(x, y)⇔ r1(y, x), which RotatE can capture, but which TransE cannot. More generally,
generalized inversion rules can yield symmetry rules, and thus only RotatE can capture generalized
inversion.

Mutual exclusion. To capture mutual exclusion between relations r1 and r2, the model must satisfy
M1 ∩M2 = ∅. In TransE, this holds iff ‖r1 − r2‖ ≥ 2ε. Analogously, for RotatE, this holds
if |ri − rj | ≥ arcsin(2ε) at every dimension and all node embeddings have a norm of at least 1.
Such constructions can be set up for arbitrarily many mutual exclusion pairs, through decreasing ε
or increasing the magnitude of embeddings. Thus, both TransE and RotatE can capture generalized
mutual exclusions.
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Composition. For TransE (resp., RotatE), two relations r1 and r2 compose a third relation r3 iff
r1+r2 = r3 (resp., r1 ◦r2 = r3). On the other hand, both fail to capture generalized compositions.
In particular, for the rules r1(x, y) ∧ r2(y, z) ⇒ r3(x, z) and r1(x, y) ∧ r4(y, z) ⇒ r3(x, z), both
models force r2 = r4 (In RotatE, the equality is modulo 2π).

C.2.2 Bilinear models: DistMult, ComplEx, TuckER

TuckER is shown to subsume DistMult and ComplEx [1], so all positive results for either ComplEx
and DistMult automatically follow for TuckER. Hence, these positive results for TuckER are omitted
from the presentation. Analogously, when negative results are shown for TuckER, they automatically
propagate to DistMult and ComplEx.

We now formally introduce TuckER. TuckER learns a tensorW ∈ Rde×dr×de , de, dr ∈ N, a vector
e ∈ Rde for every entity, and a vector r ∈ Rdr for every relation, and sr(e1, e2) =W · e1 · r · e2.
For ease of notation, we define v1,r =W × e1 × r. The scoring function can then be writ-
ten as sr(e1, e2) = vr,1 · e2. Given a head entity e1 and a relation r, we define the space
A1,r = {x ∈ Rde | vr,1 · x ≥ ε}.

Hierarchy. For bilinear models, it has been shown that individual hierarchies can be cap-
tured, but not generalized hierarchies [14]. In particular, to satisfy the rules r1(x, y)⇒ r3(x, y)
and r2(x, y)⇒ r3(x, y) simultanously, bilinear models must set either r1(x, y)⇒ r2(x, y) or
r2(x, y)⇒ r1(x, y).

Intersection. We show that TuckER cannot capture intersections. In TuckER, a rule of the
form r1(x, y) ∧ r2(x, y)⇒ r3(x, y) holds iff Ar2,1 ∩Ar1,1 ⊂ Ar3,1, ∀e ∈ Rde . This is true iff
vr1,1, vr2,1, vr3,1 are colinear, and thus that r1, r2, and r3 are colinear. However, this also implies that
either r1(x, y)⇒ r2(x, y), or r2(x, y)⇒ r1(x, y). Hence, TuckER fails to capture intersections.

Symmetry. ComplEx captures symmetry patterns by having real-only embedding matrices for its
relations. DistMult is inherently symmetric by construction. Since symmetry is a single-relation
pattern, multiple symmetries can be independently captured, and thus all three models can capture
generalized symmetry.

Anti-symmetry. DistMult cannot capture anti-symmetry, as it is inherently a symmetric model.
ComplEx captures anti-symmetry by having imaginary-only embedding matrices for its relations.
Analogously to symmetry, anti-symmetry is also a single-relation pattern, and thus ComplEx (and
TuckER) can capture generalized anti-symmetry.

Inversion. It is known that DistMult cannot capture inversions, while ComplEx can [37]. General-
ized inversion can also be captured in ComplEx, as symmetry, the only other type of rule deducible
from multiple inversions, is also captured by ComplEx.

Mutual exclusion. In TuckER, two relations r1 and r2 are mutually exclusive iff r1 = −r2. This
implies TuckER can capture mutual exclusion, but cannot capture generalized mutual exclusions. In
particular, to satisfy r1(x, y) ∧ r2(x, y)⇒ ⊥ and r1(x, y) ∧ r3(x, y)⇒ ⊥, TuckER forces r2 = r3.

Composition. It is shown that both ComplEx and DistMult cannot capture composition patterns
[37, 14]. Furthermore, it is also known that relation maps must be bijective to be able to represent
composition [37]. This is not the case in TuckER, as relations are surjective maps from Rde×dr to
Rde , and linear bijections between vector spaces are only possible with the same dimensionality.
Hence, TuckER also cannot capture compositions.

D Proof of Theorem 5.3 (Inference Patterns as Rule Languages)

We show that a BoxE model of dimensionality d = O(|R|2) captures the rule language specified in
Theorem 5.3. This is achieved by leveraging the ideas from the generalized inference patterns proof
in Appendix C. Indeed, our existence proof also builds on the boxicity argument used in this proof.
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Let S be a set of rules, and let Sp, Sa, and Sm be subsets of S, where Sp consists of hierarchy,
symmetry, inversion, and intersection rules, Sa consists of anti-symmetry rules, and Sm consists of
mutual exclusion rules. We first show that rules from Sp ∪ Sa can be captured, then extend this to
additionally capture Sm.

Step 1: Defining the relation intersection graph. We define a set of 2|R| nodes, where every
relation is encoded with 2 nodes for its head and tail boxes. We now constrain this graph to eventually
capture all rules in Sp. First, we capture all symmetry and inversion rules as follows:

1. Symmetry: For every symmetry rule, we combine the corresponding head and tail nodes
of a relation r to a single node. In other words, a single relation r is made symmetric by
encoding both r(1) and r(2) with one same node. This encoding enforces that the head and
tail boxes of r are identical, and thus that r is indeed symmetric, as required.

2. Inversion: For every inversion rule r1(x, y)⇒ r2(y, x), we combine the respective head
and tail nodes of r1 and r2 such that r(1)1 and r

(2)
2 , as well as r

(2)
1 and r

(1)
2 , are each

represented by one node. This makes that their corresponding boxes are equal, effectively
capturing inversion patterns.

Following this step, G now consists of at most 2|R| nodes, and captures symmetry and inversion
rules jointly. It now remains to define edges in G, as needed to later capture intersection and hierarchy
rules. This is done analogously to the proof for generalized intersections (cf. Appendix C.1): First,
the deductive closure of all intersection and hierarchy rules is computed, and the corresponding edges
are encoded in G. Note that the resulting graph G continues to capture inversion and symmetry, as
these rules are encoded through nodes, and also encodes the deductive closure of all rules in Sp.
Indeed, any box intersection imposed by the deductive closure of intersection and hierarchy rules
with a node capturing a symmetry or inversion rule automatically implies a box intersection with
the multiple boxes that the node represents. Hence, G enables capturing symmetry and inversion
rules a priori, as well as jointly sets up the necessary edges for hierarchy and inversion rules. Finally,
we leverage the boxicity argument, and our final graph G, to obtain a box configuration where all
the box intersections needed to later capture hierarchy and intersection rules are present (but not
necessarily capturing hierarchy and intersection patterns at this stage), and which also successfully
captures inversion and symmetry rules.

Step 2: Anti-symmetry (Sa). Anti-symmetry rules are captured by adding additional dimensions
to the box configuration resulting from Step 1 to distinguish between the head and tail boxes of an
anti-symmetric relation. S is consistent, therefore only anti-symmetry rules not contradicting the
set of rules Sp ∪ Sm can be given. For example, if symmetry rule r(x, y) ⇔ r(y, x) ∈ Sp, then
r(x, y)⇒ ¬r(y, x) /∈ Sa. This is important, as it implies that no combination of hierarchy, inversion,
intersection symmetry, and mutual exclusion rule can force an intersection between r(1) and r(2),
for any anti-symmetric r, and thus, that subsequent steps in this proof preserve the anti-symmetry
captured in this step.

We now capture anti-symmetry rules by dedicating a new “disjointness” dimension for all boxes, such
that, for an anti-symmetric relation r, the box ranges for head and tail boxes are made disjoint in this
dimension, i.e., [l(1), u(1)]∩ [l(2), u(2)] = φ, and are set arbitrarily for all other relations, such that, for
all rules in Sp, if an anti-symmetric r is the head of a hierarchy rule r1 =⇒ r, then the ranges of r1
in this dimension respect the hierarchy and, for an intersection rule r1 ∧ r2 =⇒ r, then r1 ∩ r2 ⊂ r.
This initialization exists, as S is consistent, so cannot create conflicting interval requirements for
relations in rules. One can also observe this by considering this initialization a recursive pass through
the rule sets affected by the anti-symmetric relations, where all other uninitialized relations in the
deductive closure are not yet set. Hence, this new dimension captures r(1) ∩ r(2) = φ, so correctly
captures anti-symmetry, and cannot be broken by subsequent rule-based box growth. It also is
compatible with all symmetry and inversion rules, as box sharing is maintained. Hence, our current
BoxE configuration captures any consistent set of anti-symmetry, symmetry, and inversion rules.
Given Sa, at most |Sa| additional dimensions are needed, and since at most |R| anti-symmetry rules
can exist, the worst-case dimensionality of our configuration remains O(|R|

√
log (|R|)). We now

build on this result and show that the current configuration can be modified to additionally capture
intersection and hierarchy rules.
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Step 3: Hierarchies and intersections. Given the box configuration at the end of Step 2, we
now apply the box reconfiguration procedure presented in the generalized intersections proof (cf.
Appendix C.1) to capture all hierarchy and intersection rules in S. We also note that, since S is
consistent, no hierarchy and intersection rules force any inconsistency with the already captured
symmetry, anti-symmetry and inversion rules, e.g., if r1(x, y)⇒ r1(y, x), r2(x, y)⇒ ¬r2(y, x) ∈ S,
then r1(x, y) ⇒ r2(x, y) /∈ S. Thus all symmetry, anti-symmetry, and inversion patterns, whose
capture is based on structural concepts (box sharing and dedicated dimensions respectively), are
preserved. In particular, box sharing is unaffected, and no box growth from this step can break the
disjointness of anti-symmetric relation boxes, as S is consistent. The completeness of the procedure
with respect to hierarchy and intersection rules is also shown in Appendix C.1.

Step 4: Mutual exclusion. Given the BoxE configuration from Step 3, capturing rules from Sp∪Sa,
we also capture rules from Sm with additional dimensions. Indeed, we show that this can be done
using a BoxE configuration with d = O(|R|2) dimensions. Starting from the configuration after the
completion of Step 3, we now dedicate a single dimension per mutual exclusion rule, and capture
this pattern as follows: For every mutual exclusion rule, we set a dimension, where r1 and r2 have
disjoint range intervals z1, z2 ⊂ [0, 1], such that, without loss of generality, z1 = [z1,min, z1,max],
z2 = [z2,min, z2,max] and z2,min > z1,max. Then, we set the range of every other box in the configuration
at this new dimension analogously to Step 2 (i.e., arbitrarily, but in a rule-aware fashion) by repeating
the box reconfiguration procedure in Step 3 for capturing hierarchy and intersection rules starting
from the current configuration.

Note that anti-symmetry, symmetry, and inversion rules play no part in this step, as anti-symmetry
rules are captured with dedicated dimensions as shown earlier, whereas symmetry and inversion rules
are already enforced, and thus captured, through box sharing and equality.

Intuitively, this step first makes r1 and r2 mutually exclusive in one dimension, then recursively
traverses the set of hierarchy and intersection rules, as in Step 3, to preserve the capturing of these
rules in this new dimension specifically. Clearly, anti-symmetry remains true, since its dedicated
dimension is not affected by the repetition of Step 3. Furthermore, since S is consistent, all mutual
exclusion rules in S can be captured without causing inconsistency. In other words, rule sets such as
r1(x, y)⇒ r2(x, y), r1(x, y)⇒ r3(x, y), and r2(x, y) ∧ r3(x, y)⇒ ⊥ are not possible.

Hence, since |Sm| ≤ 0.5|R|(|R| − 1), the number of distinct pairs that can be selected from R, a
BoxE model with d = 0.5|R|(|R| − 1) + |R|+ |R|

√
log |R| = O(|R|2) dimensions can capture

any consistent set of rules S from the language of intersection, hierarchy, symmetry, anti-symmetry,
mutual exclusion, and inversion rules.

We finally highlight one subtle, but important detail: Whereas the inference pattern language just
described can be captured by a BoxE model having d = O(|R|2) dimensions, some individual
generalized patterns (inversion, hierarchy, symmetry, anti-symmetry, mutual exclusion) can be
captured with even constant number of dimensions, and generalized intersection can be captured with
O(|R|

√
log (|R|)) dimensions. Hence, an interesting contrast in dimensionality requirements arises

between capturing individual generalized inference patterns, capturing the language of Theorem 5.4,
and capturing rule language of Theorem 5.3, which highlights the significantly larger requirements
that capturing joint generalized requirements, and the potential existence of cycles, can impose on
any embedding model.

E Proof of Theorem 5.4 (Rule Injection)

We now prove that arbitrary sets Sp of hierarchy, intersection, symmetry, and inversion rules can be
injected into BoxE. To this end, we adapt the proof of Theorem 5.3 to this setting.

We start with a randomly initialized box configuration. First, we inject inversion and symmetry
rules using box sharing: For symmetry rules, we set r(1) = r(2), and for inversion rules, we set
r
(1)
1 = r

(2)
2 and r

(1)
2 = r

(2)
1 , and this can be done in linear time with respect to the number of

inversion and symmetry rules. This achieves the same result as the node sharing in Step 1 of the proof
of Theorem 5.3, except that the box configuration is a concrete random initialization, as opposed to an
abstract configuration known to exist due to boxicity. We then proceed with the box reconfiguration
procedure in Step 3 of this same proof to enforce hierarchy and intersection rules on top of inversion
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Table 5: Properties of benchmark datasets FB15k-237, WN18RR, YAGO3-10, JF17K, and FB-AUTO.

Dataset |E| |R| Training Facts Validation Facts Testing Facts

FB15k-237 14,541 237 272,115 17,535 20,466
WN18RR 40,943 11 86,835 3,034 3,034
YAGO3-10 123,182 37 1,079,040 5,000 5,000
JF17K 29,257 327 61,911 15,822 24,915
FB-AUTO 3,388 8 6,778 2,255 2,180

and symmetry rules. This step is guaranteed to enforce these rules, and their deductive closure, as
shown in Appendix D, and maintains box sharing, so preserves symmetry and inversion.

We now analyze the worst-case runtime complexity of the box reconfiguration procedure. We assume
the worst-case, that any pairwise intersections should be expressible, and thus use a dimensionality
d = O(|R|

√
log (|R|). The worst-case running time of the box reconfiguration procedure for

enforcing a single hierarchy/intersection rule is O(|R|d) = O(|R|2
√

log (|R|), corresponding
to the maximum number of boundary changes needed per call. However, this upper bound is
independent of the number of rules in S, as no more than O(|R|d) steps can be made across all rules.
Thus, the worst-case running time for rule injection across all hierarchy and intersection rules is
O(|R|d) = O(|R|2

√
log (|R|)).

Hence, rule injection for hierarchy and intersection rules runs at worst in near-quadratic time with
respect to |R|, a typically small number, irrespective of the number of these rules. This result,
combined with the efficiency of enforcing symmetry and hierarchy, imply that BoxE can be efficiently
injected with arbitrary sets of symmetry, inversion, hierarchy and intersection rules.

F Experimental Details

In this section, we give further details on the experiments that we have conducted. In particular, we
report details of every dataset, the hyperparameter tuning setup used when training BoxE, as well
as the final set of hyperparameters used in the configurations whose results we report in the paper.
Finally, we report the complete set of results for KGC, higher-arity, and rule injection experiments, i.e.,
MR, MRR, Hits@1, Hits@3, and Hits@10. All reported results for the KGC and KBC experiments
are average results from 3 training runs, and empirically have very small variance. In particular, all
MRR values fluctuate by no more than 0.002 between runs across all datasets.

F.1 Benchmark dataset details

In this subsection, we provide the details of of all benchmark datasets used in this paper (FB15k-237,
WN18RR, YAGO3-10, JF17K, and FB-AUTO), namely the number of entities, relations, and facts in
every split (training, validation, and test) in Table 5.

F.2 Hyperparameter settings for BoxE experiments

BoxE is trained using the Adam optimizer [19], to optimize negative sampling loss [37]. Training
for every run was conducted on a Haswell CPU node with 12 cores, 64 GB RAM, and a V100 GPU.
Hyperparameter tuning was conducted over its learning rate λ, dimensionality d, loss margin γ,
distance order x, and number of negative examples m. For all BoxE experiments, points and boxes
were projected into the hypercube [−1, 1]d, a bounded space, by simply applying the hyperbolic
tangent function tanh element-wise on all final embedding representations.

Learning rate was varied between 10−6 and 10−2, with root values of 1,2,5 and exponents from
-6 to -2, i.e., 10−6, 2 × 10−6, 5 × 10−6, etc. . Margin was varied between 3 and 24 inclusive, in
increments of 1.5, and in increments of 1 between 3 and 6. Adversarial temperature was varied
between the integer values of 1 and 4 inclusive, and the number of negative samples was varied
between 50, 100, and 150. Across all knowledge graph datasets, we additionally ran experiments with
data augmentation, such that, for every relation r, a distinct inverse relation r′ is defined, and every
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Table 6: Hyperparameter settings of BoxE over different datasets.

Dataset Embedding
Dimension Margin Learning

Rate
Adversarial
Temperature

Negative
Samples

Distance
Order

Batch
Size

Data
Augmentation

FB15k-237(u) 500 12 1× 10−4 0.0 100 1 1024 No
FB15k-237(a) 1000 3 5× 10−5 4.0 100 2 1024 No
WN18RR(u) 500 5 1× 10−3 0.0 150 2 512 No
WN18RR(a) 500 3 1× 10−3 2.0 100 2 512 No
YAGO3-10(u) 200 10.5 1× 10−3 0.0 150 2 4096 Yes
YAGO3-10(a) 200 6 1× 10−3 2.0 150 2 4096 Yes
JF17K(u) 200 15 2× 10−3 0.0 100 2 1024 N/A
JF17K(a) 200 5 1× 10−4 2.0 100 2 1024 N/A
FB-AUTO(u) 200 18 2× 10−3 0.0 100 2 1024 N/A
FB-AUTO(a) 200 9 5× 10−4 2.0 100 2 1024 N/A
SportsNELL 200 6 1× 10−3 0.0 100 2 1024 No
SportsNELL+RI 200 6 1× 10−3 0.0 100 2 1024 No

Table 7: Complete KGC results for BoxE and competing models on FB15K-237 and WN18RR.

Model FB15K-237 WN18RR

MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10
TransE(u) [33] - .313 - - .497 - .228 - - .520
RotatE(u) [37] 185 .297 .205 .328 .480 3254 .470 .422 .488 .564
BoxE(u) 172 .318 .223 .351 .514 3117 .442 .398 .461 .523

TransE(a) [37] 170 .332 .233 .372 .531 3390 .223 .013 .401 .529
RotatE(a) [37] 177 .338 .241 .375 .533 3340 .476 .428 .492 .571
BoxE(a) 163 .337 .238 .374 .538 3207 .451 .400 .472 .541

DistMult [33, 49] - .343 - - .531 - .452 - - .531
ComplEx [33, 49] - .348 - - .536 - .475 - - .547
TuckER [1] - .358 .266 .394 .544 - .470 .443 .482 .526

fact r(e1, e2) is augmented with another fact r′(e2, e1). This setting, however, was only marginally
beneficial on YAGO3-10, yielding a slightly improved MR.

Finally, the distance order was set to either 1 (Manhattan distance) or 2 (Euclidian distance), and
batch sizes (for number of positive examples) were varied between all powers of two between 26 and
212 inclusive. Hyperparameters were initially selected randomly and tuned using grid search. The set
of used hyperparameters in experiments is shown in Table 6.

Aside from the reported hyperparameter settings, we have also attempted to fix box sizes, either
in a hard fashion or softly by setting maximum total size. Hard sizes were based on statistical
popularity of relations, whereas soft totals were tuned. However, neither of these settings yielded
any improvements, and in fact both have been mostly detrimental to performance. This, in fact,
further highlights the importance of box size variability to obtaining good predictive performance.
Interestingly, it also confirms that statistical popularity alone is not sufficient to establish optimal box
sizing. We also remain very confident that BoxE performance can further improve in the future, as
more dedicated empirical studies and more comprehensive and bespoke tuning methods are applied.

F.3 Complete experimental results

The complete results for KGC experiments on FB15k-237, WN18RR, and YAGO3-10 are reported
across Tables 7 and 8. Complete results for higher-arity KBC experiments on JF17K and FB-AUTO
are reported in Table 9, and complete rule injection results for BoxE and BoxE+RI on the two
SportsNELL evaluation sets are reported in Table 10.
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Table 8: Complete KGC results for BoxE and competing models on YAGO3-10.

Model YAGO3-10
MR MRR H@1 H@3 H@10

TransE(u) [33] - - - - -
RotatE(u) [37] 1116 .459 .360 .509 .651
BoxE(u) 1164 .567 .494 .611 .699
TransE(a) [37] - - - - -
RotatE(a) [37] 1767 .495 .402 .550 .670
BoxE(a) 1022 .560 .484 .608 .691
DistMult [33, 49] 5926 .34 .24 .38 .54
ComplEx [33, 49] 6351 .36 .26 .40 .55
TuckER [1] 4423 .529 .451 .576 .670

Table 9: Complete KBC results on higher-arity datasets JF17K and FB-AUTO.

Model JF17K FB-AUTO

MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10
m-TransH - .446 .357 .495 .614 - .728 .727 .728 .728
m-DistMult - .460 .367 .510 .635 - .784 .745 .815 .845
m-CP - .392 .303 .441 .560 - .752 .704 .785 .837
HypE - .492 .409 .533 .650 - .804 .774 .823 .856
HSimplE - .472 .375 .523 .649 - .798 .766 .821 .855
BoxE(u) 363 .553 .467 .596 .711 110 .837 .804 .858 .895
BoxE(a) 372 .560 .472 .604 .722 122 .844 .814 .863 .898

Table 10: Complete rule injection experiment results on the SportsNELL full and filtered sets.

Model Full Set Filtered Set

MR MRR H@1 H@3 H@10 MR MRR H@1 H@3 H@10
BoxE 17.4 .577 .478 .623 .780 19.1 .713 .661 .732 .824
BoxE+RI 1.74 .979 .968 .988 .997 5.11 .954 .938 .964 .984

G Additional Experimental Insights and Discussions

G.1 Robustness experiment
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Figure 4: BoxE validation performance
over YAGO3-10 versus dimensionality.

In this experiment, we evaluate the dependence of BoxE
on dimensionality d, to understand its prospective perfor-
mance in a computationally restricted setting.

Experimental setup. We train BoxE with uni-
form negative sampling on YAGO3-10 using
d = {25, 50, 100, 150, 200}. We only tune the
margin and fix the learning rate, batch size, and number
of negative samples to 10−3, 4096, and 150, respectively.
L2 norm and data augmentation are used across all
experiments. We report peak MRR recorded over the
validation set. The final margins were γ = 6 for d = 25
and γ = 10.5 otherwise.

Results. A plot of validation MRR versus dimensionality is drawn in Figure 4. BoxE maintains very
strong performance, even at d = 50, rivaling that of state-of-the-art translational model RotatE, even
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with just uniform negative sampling. Furthermore, it performs at near-optimal level with d = 100,
and is already state-of-the-art on YAGO3-10 at this small dimensionality. Hence, BoxE proves to be
very robust for performing knowledge base completion with restricted computational power.

G.2 Box volume information for BoxE following training on YAGO3-10

Table 11: Geometric mean volume per di-
mension for all relation boxes in YAGO3-10
following training.

Relation Head Box Tail Box

actedIn 0.456 0.479
created 0.966 0.905
dealsWith 0.373 0.366
diedIn 0.383 0.480
directed 0.474 0.461
edited 0.461 0.441
exports 0.238 0.260
graduatedFrom 0.608 0.526
happenedIn 0.453 0.363
hasAcademicAdvisor 0.655 0.605
hasCapital 0.390 0.347
hasChild 0.299 0.761
hasCurrency 0.228 0.239
hasGender 0.669 0.688
hasMusicalRole 0.328 0.427
hasNeighbor 0.311 0.312
hasOfficialLanguage 0.213 0.255
hasWebsite 0.159 0.143
hasWonPrize 0.264 0.381
imports 0.249 0.241
influences 0.510 0.567
isAffiliatedTo 0.257 0.557
isCitizenOf 0.544 0.614
isConnectedTo 0.403 0.388
isInterestedIn 0.644 0.496
isKnownFor 0.632 0.623
isLeaderOf 0.446 1.005
isLocatedIn 0.496 0.547
isMarriedTo 0.923 0.924
isPoliticianOf 0.361 0.521
livesIn 0.536 0.341
owns 0.907 0.485
participatedIn 0.389 0.471
playsFor 0.284 0.469
wasBornIn 0.465 0.445
worksAt 0.498 0.488
wroteMusicFor 0.450 0.646

In Table 11, we report the geometric mean of box
volume across dimensions for all head and tail boxes
for the 37 relations in YAGO3-10 following training.
These numbers are computed from the same config-
uration whose results are reported in the main paper
for BoxE(u). Note that, as explained in Appendix F,
boxes are mapped to the space [−1, 1]d using the
hyperbolic tangent function, so the geometric mean
volume is upper-bounded by 2. From Table 11, we
can make the following four very interesting obser-
vations:

First, we see that more popular relations, in terms
of entities they connect, tend to be represented with
larger boxes in the embedding space. This confirms
our intuition that the boxes effectively define entity
classes, and thus larger classes, are met with larger
boxes in the embedding space. For example, the less
popular relation hasWebsite has very small boxes of
mean volume about 0.15, as it is only makes up 68
facts in the YAGO training dataset. By contrast, the
relation created has both boxes with mean volume
above 0.9, and appears in over 1,400 facts.

Second, we observe that the size of relation boxes
also correlates with implicit entity types, in addition
to relation popularity. Indeed, the relation playsFor,
despite appearing over 300,000 times, only has
box volumes 0.284 and 0.469 respectively, whereas
isLeaderOf, with less than 1,000 facts, has a tail box
of mean volume exceeding 1. This is due to the di-
versity in entity types appearing at these relations:
For playsFor, head entities are athletes, which cluster
together in a smaller region of the embedding space,
and tail entities are football/sports clubs, which are
more diverse, but still quite similar semantically. By
contrast, head entities for isLeaderOf are individu-
als, with medium variability, but tail entities can be
anything from very different countries (e.g., Mali,
Kuwait) to cities, districts, and towns (e.g., Toronto,
Oxnard (California)), to political parties and associa-
tions (e.g., Democratic Governors Association, Hun-
garian Communist Party), which are vastly different
types of entities, and this results in an extremely large
tail box for isLeaderOf.

Third, we observe that relative box sizes accurately reflect the type of their underlying relation.
More specifically, larger tail boxes tend to denote one-to-many relations, larger head boxes indicate
a many-to-one relation, and similar sizes indicate many-to-many or one-to-one relations. This is
especially evident for the one-to-many relations hasChild (0.299 vs 0.761), and isAffiliatedTo (0.257
vs 0.557), and for many-to-one relations isInterestedIn (0.644 vs 0.496), and graduatedFrom (0.608
vs 0.526).

Finally, we note that symmetric relations in YAGO3-10, namely hasNeighbor and isMarriedTo, are
represented with near-identically sized boxes. This is a very important finding, as it indicates that
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BoxE succesfully captures the symmetry inference pattern, for which a necessary condition is having
identical head and tail boxes.

All in all, these results further highlight the interpretability of BoxE, in terms of capturing inference
patterns, accurately inferring and portraying entity classes, and inferring and successfully modelling
relation types, which other models are unable to achieve.

G.3 Rule injection experiment

0 500 1,000 1,500 2,000
0

0.2

0.4

0.6

0.8

1

Training Epoch

V
al

id
at

io
n

M
R

R

BoxE
BoxE + RI

Figure 5: BoxE and BoxE+RI learning curves.

In this section, we provide additional informa-
tion about the rule injection experiment pre-
sented in the paper. In particular, we give a
more complete presentation of model conver-
gence with and without rule injection, and pro-
vide further details on SportsNELL.

Learning curves of BoxE, BoxE+RI. The
learning curves of BoxE, and Box+RI, defined
with MRR as the performance metric, across the
2000 training epochs of the rule injection exper-
iment, is shown in Figure 5. The two curves
highlight a remarkable improvement stemming
from injecting the SportsNELL ontology. In-
deed, BoxE+RI converges to peak performance
within 500 epochs, and mostly stablises its peak
MRR following this point, whereas standard
BoxE does not fully converge, even after the
whole 2000 epochs have elapsed. Furthermore, the difference in performance between these two
models is very significant. Hence, rule injection not only yields better-performing KBC systems, but
also enables faster, more reliable training of these systems.

Further details about SportsNELL. SportsNELL initially consists of 181,936 facts, 11 relations
and 4,252 sports-related entities, such that all its entities initially appear 50 or more times in NELL
across these 11 relations. Its logical closure w.r.t the SportsNELL ontology is then computed., i.e.,
ontology rules are repeatedly applied to deduce new facts until no new facts can be deduced: new
facts in the deductive closure are direct results of rule application, and thus their correct prediction
indicates a good capturing of the underlying ontology. The resulting combined dataset, referred to as
SportsNELLC, contains a total of 326,650 facts.
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