
Many thanks to all reviewers for their useful comments, which will improve the final version of the paper. We are very1

happy that the novelty, simplicity, effectiveness, significance, and generality of our method has been appreciated. We2

will address all the comments about the related work, the tables, and the details of the datasets in the final paper.3

@R1: Motivation of loss function? @R2: Slightly different toy problems? @R3: Using max has already been4

proposed by other methods (e.g., DeepGO). @R3: Why MCLoss is better than BCELoss (L)? While the max5

function has already been used, nobody so far has shown how to deploy it effectively, which is what the com-6

bination of MCM and MCLoss does. Experimentally, the ablation studies in Table 4 show that MCLoss allows7

for consistent higher performance than L. In general, consider a class A with ancestors A1 . . . An in the hierar-8

chy. The higher n the more likely it is that a neural network (NN) with MCM trained with L will remain stuck9

in bad local optima. Indeed, consider a datapoint such that hA > hA1
. . . hAn

, yA = 0, yA1
. . . yAn

= 1: then10

L = − ln(1− hA)−
∑n

i=1 ln(hA) = − ln(1− hA)−n ln(hA), while MCLoss = − ln(1− hA) +
∑n

i=1 MCLossAi
.11

Notice that, in the GO datasets, it is common to have n > 10, given that the hierarchies12

7

1

9

3

54

8

2

6

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 1: From left to right: (i) rectangles disposition, (ii)
decision boundaries for A5 of h + MCM trained with L,
and (iii) decision boundaries for A5 of C-HMCNN(h).

have 13 levels, and each class can have more than one par-13

ent. To visualize the negative impact of using L instead14

of MCLoss, consider the leftmost figure with 9 rectan-15

gles named 1 . . . 9. Further, assume (i) we have classes16

A1 . . . A9, (ii) that a datapoint belongs to Ai if it belongs17

to the ith rectangle, and (iii) that A5 (resp., A3) is an an-18

cestor (resp., descendant) of every class. Thus, all points19

in rectangle 3 belong to all classes, and if a datapoint20

belongs to a rectangle, then it also belongs to class A5.21

Let h be a NN with a single hidden layer with 7 neurons. Then, the average AU(PRC) (and std) over 10 runs for22

h+ MCM trained with L is 0.938 (0.038), while h+ MCM trained with MCLoss (C-HMCNN(h)) is 0.974 (0.007).23

Notice that not only h+ MCM performs worse, but also, due to the convergence to bad local optima, the std obtained24

with h+ MCM is 5 times higher than the one of C-HMCNN(h): the (min, median, max) AU(PRC) for h+ MCM are25

(0.871, 0.945, 0.990) while for C-HMCNN(h) are (0.964, 0.975, 0.990). The figure shows the decision boundaries of26

the 6th best perfoming networks for class A5 (given the even number of runs, we could not take the exact median). We27

will include this example and a general discussion in the paper. Thanks also to R2 for the suggestion on how to create28

alternative synthetic examples: we will explore such direction in the future.29

@R2: The need for this method is not fully demonstrated. @R2 It is hard to believe that NNs can outperform30

more classical methods on such datasets. As pointed out by R1, the paper deals with a problem with a lot of31

significance and relevance to real-world applications, while we achieved SOTA results on most benchmark datasets used32

in the literature of HMC. As shown by [2], who established the current SOTA on these datasets, NNs can beat more33

classical methods. In the paper, we compared ourselves with the current SOTA models (one is Clus-Ens: an ensemble34

of predictive clustering trees), which have already proved to beat famous tree-based and kernel-based methods.35

@R2: What is the added value of using a NN here? NNs have shown the ability of performing very well in different36

scenarios. We wanted to create a model that was broadly applicable and easy to use, and hence NNs were our first choice.37

Notice though that h can be any model that outputs a probability for each class and can be trained with backpropagation.38

@R2: Is there a danger to get stuck in bad local optima? Our results show our model is very stable. As stated at39

line 205 in the paper, the std over 10 runs is very small (in the range [0.5× 10−3, 2.6× 10−3]). This is not surprising:40

while, in theory, gradient descent can be performed only on differentiable functions, in practice, it performs well also on41

non-differentiable functions (e.g., on ReLU() and max()) leading to very good performances [1]. Considering the max()42

function, it is differentiable almost everywhere, and software implementations of NN training (e.g., Adam in Pytorch)43

usually return one of the one-sided derivatives. This may be heuristically justified by observing that gradient-based44

optimization on a digital computer is subject to numerical error anyway [1]. Hence, in practice, the non-differentiability45

of a small set of points does not affect the learning algorithm.46

@R3: Comparative analysis of computation time? In addition to the inference time per batch in Table 4 (appendix),47

we will include a table with the training times of each model. Due to lack of space, here, we report the ones for48

CELLCYCLE FUN (in minutes, averaged over 10 runs): (i) C-HMCNN(h): ∼6m, (ii) Clus-Ens: ∼20m, and (iii)49

HMC-LMLP:∼51m. Since we do not have the code, we could not measure the times for HMCN-R and HMCN-F.50

@R4, R2 Plug in our method on top of [2] and/or CNNs? We still have to try this; we will do so in future work.51

@R4: Did you optimize them over the validation sets? Yes, we optimized the hyperparameters on the validation52

sets. We used the test sets only to report the results. We will make it clearer in the appendix.53

@R5: The results are different between tables, I would expect them to be the same. We conducted the ablation54

studies on the validation set (see caption of Table 3), while we report the results (after re-training on training+validation55

set) on the test set. We will specify this in the caption of Table 2.56 ————————————————————-57
[1] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning, pages 188–189. MIT Press, 2016. http://www.deeplearningbook.org.58
[2] J. Wehrmann, R. Cerri, and R. C. Barros. Hierarchical multi-label classification networks. In Proc. of ICML, 2018.59

http://www.deeplearningbook.org

