
A Supplementary material

In this supplemental document, we first provide a summary of the notation used in the main paper
and here (Appendix A.1). Then, we describe the implementation details of agent models used for
our experiments (Appendix A.2). In Appendix A.3 we provide statistics for the episodes used in our
experiments. Finally, Appendix A.4 contains additional experiments and analysis.

A.1 Notation

Table 3 provides a summary of definitions for important symbols used in the main paper and in this
supplemental document.

Table 3: Summary of notation used. Subscript t denotes the corresponding notation at time step t
Notation Description Notation Description

m-ON Episode with m ordered object goals vt concat(vi, vm, vg, va)

pt Agent’s position and orientation st Final state representation
ot Egocentric RGBD sensor images θ Parameters of end-to-end trainable model
ct Egocentric RGB sensor image πθ(·|st) Actor policy given state st
dt Egocentric Depth sensor image V (st) Approximate value function
gt Current goal object one-hot vector MGT Oracle Map
at Action taken by the agent rt Reward
mt Egocentric Map rsubgoal Subgoal discovery reward
Mt Global Map rcloser Moving closer to subgoal reward
it Image Features rtime-penalty Time penalty reward

vi
Transformed Image features after passing
image through a CNN and a linear layer α Negative slack reward

vi
Embedding of mt after passing it through a
CNN and a linear layer di−1,i

Geodesic distance of the shortest path
between goal i− 1 and i

vg Embedding of one-hot goal vector gt s Binary success indicator
va Embedding of previous action at−1 s̄ PROGRESS

A.2 Agent model details

We describe the details of the OracleEgoMap, ObjRecogMap, and ProjNeuralMap agent models.
For each map-based model, the agent has access at time t to a global map Mt which is a 300× 300
grid, with each cell corresponding to a 0.8m× 0.8m square in the environment. Depending on the
model, Mt is revealed or built up over time. The details of what goes into each map cell and how the
information is built up over time are described below.

OracleEgoMap: At each time step, the agent has access to a partially revealed map Mt that is derived
from the oracle map. Each cell has two channels: i) an occupancy channel; and ii) an object category
channel. The occupancy channel stores a 16-dimensional embedding learned from whether the cell
is navigable, non-navigable or undiscovered. The object category channel stores a 16-dimensional
embedding of the the category of the object occupying that cell learned from a k+ 1 dimensional one-
hot vector (k dimensions for the goal categories and (k + 1)th dimension for ‘no goal’.) At the start
of the episode, all the cells in the occupancy channel are ‘undiscovered’. A cell is discovered once
the agent sees (the region of the environment corresponding to) it and it remains discovered through
the rest of the episode. At each time step, the agent sees only those locations in the environment that
are: i) within a 79◦ field-of-view in front of it; ii) less than 5m away from the agent; and iii) with no
obstacle between the agent and that location. All cells in the object category channel are initialized
with the (k + 1)th category embedding. When an object is discovered, its category embedding is
stored in the corresponding cell in the object category channel.

ObjRecogMap: The map Mt used in ObjRecogMap is similar to that of OracleEgoMap but instead
of it being ‘revealed’ from the oracle map, it is predicted based on egocentric views. In addition, each
cell has only the object category channel. As in OracleEgoMap, each cell stores one of the k + 1
16-dimensional embeddings (k embeddings for the goal categories and (k + 1)th for ‘no goal’.)

14



At each time step, the current RGB frame is passed through a (k + 1)—classification network to
predict the category of the goal in view (if no goal is in view, (k + 1) is used as the prediction target).
At training time, the network is supervised using the ground truth object category information to
predict which goal object is in view. An object is considered to be in the agent’s view if it falls in a
grid cell that satisfies the three conditions described in above for OracleEgoMap. We use categorical
cross-entropy loss to supervise the network. If more than one object is in the agent’s current view,
the agent is trained to predict the one that is closer to it. Initially, all the cells in the map store the
(k + 1)th category embedding (corresponding to ‘no goal’.) If the agent predicts (k + 1)th category
at a time step, the map is not updated. If the agent predicts a category l < k, it stores the encoding
for the lth category at the cell containing its current position.

ProjNeuralMap: As before, the agent has access to a partially built map Mt. The agent builds up
an egocentric map mt of size 7 × 13. Note that this covers an area of 5.6m in front and to both
sides of the agent. Points that are farther than 5.6m from the agent are not projected. Here also,
the agent has a 79◦ field-of-view. We project the image feature it(i, j, ·) on the ground using the
depth frame dt. To do this, we downsample dt so it matches the image feature dimensions and
use the downsampled depth for projection. We observed that the alternative of upsampling and
interpolating image features leads to reduced performance. The agent is at the mid bottom edge of
this egocentric map. R(mt,Mt|pt) registers the egocentric map mt into Mt. The integration into Mt

uses element-wise max-pooling.

A.3 Episode statistics

Figure 5 plots the distribution of episodes from the train/val/test splits across total episode geodesic
distance along the oracle shortest path. Note that overall, the distribution tends to longer episodes as
we go from 1-ON to 2-ON and 3-ON. There are small variations between the train/val/test splits for
each m-ON, but the distributions are generally in correspondence.

15



1-ON 2-ON 3-ON

Tr
ai

n

5 10 15 20
0.00

0.02

0.04

0.06

0.08

0.10

10 20 30 40
0.00

0.01

0.02

0.03

0.04

10 20 30 40 50 60
0.000

0.005

0.010

0.015

0.020

0.025

0.030

V
al

5 10 15 20
0.00

0.02

0.04

0.06

0.08

10 20 30 40
0.00

0.01

0.02

0.03

0.04

0.05

0.06

10 20 30 40 50 60
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

Te
st

5 10 15 20
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

10 20 30 40
0.00

0.01

0.02

0.03

0.04

0.05

10 20 30 40 50 60
0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Figure 5: Plots showing the distribution of train, val and test split episodes over the total geodesic
distance for the oracle shortest path of the episode. The horizontal axis denotes the geodesic distance
and the vertical axis denotes the fraction of total episodes in the corresponding histogram bin. The
first row corresponds to the train split, the second row corresponds to the val split, and the third row
corresponds to the test split. Each scene has 50,000 episodes in the train split and 12,500 episodes in
the val and the test splits.

16



A.4 Additional experiments and analysis

Table 4: Success rate (%) for finding the kth subgoal in the 3-ON task. The ‘seen’ column has the
accuracy with which the kth subgoal is found if it was seen before (k − 1)th subgoal was discovered.
In contrast the ‘not seen’ column represents episodes where the goal was not previously seen.
The ‘improvement’ column reports the difference. As expected the NoMap(RNN) and OracleMap
do not exhibit improvements. In contrast, storing previously observed goal information helps
OracleEgoMap, ProjNeuralMap and ObjRecogMap significantly, with ObjRecogMap showing the
largest gains.

Second goal (k = 2) Third goal (k = 3)

seen not seen improvement seen not seen improvement

NoMap(RNN) 53 51 +2 47 46 +1

OracleMap 82 80 +2 80 79 +1

OracleEgoMap 80 66 +14 76 59 +17

ProjNeuralMap 74 54 +20 68 44 +24

ObjRecogMap 72 53 +19 69 44 +25

Backtracking analysis. We compare the success rate for finding the kth (k = 2, k = 3) goal in two
types of scenarios: i) the kth goal was seen before the (k − 1)th subgoal was FOUND; and ii) the
kth subgoal was not seen before the (k − 1)th subgoal was FOUND. The results for 3-ON episodes
are summarized in Table 4. A goal object is seen if it satisfies the three conditions mentioned in
Appendix A.2. This analysis quantifies the ability of the agent to remember the location of an object
that was previously seen. If an agent sees the second goal while it is looking for the first goal, it
would benefit from this information at the time of searching for the second goal. Understandably, this
has little effect for the NoMap(RNN) agent since it has no way of storing the location of previously
seen goals, beyond implicit encoding in the GRU module of the agent architecture. OracleMap too
does not benefit much since it already has the full oracle map of the environment. On the other
hand, OracleEgoMap and ObjRecogMap exhibit a significant jump in success rate when the goal was
previously observed. Notably, ProjNeuralMap, which stores information about what was observed
but does not explicitly convert it to goal category, also shows a small gain for previously observed
goals but less than that of OracleEgoMap and ObjRecogMap. These results further demonstrate
the value of map memory and the importance of the kind of information stored in the map for the
multiON task.

Table 5: Evaluation of agents trained on m-ON (in rows) test episodes of n-ON (in columns).
We report the PROGRESS metric averaged across all test set episodes. Off the diagonal for each
agent shows generalization capability to multiON episodes with a different number of objects than
in training. The top row triplet reports absolute values, while the bottom one reports change in
PROGRESS relative to the diagonal (evaluation on trained task). As expected, performance drops for
all agents in all generalization tests, with the drop being greater for testing on episodes with more
objects. Agents trained on 1-ON have the lowest generalization capability, while 2-ON and 3-ON
agents exhibit smaller but still significant drops in performance.

NoMap(RNN) OracleMap OracleEgoMap ProjNeuralMap ObjRecogMap

1-ON 2-ON 3-ON 1-ON 2-ON 3-ON 1-ON 2-ON 3-ON 1-ON 2-ON 3-ON 1-ON 2-ON 3-ON

1-ON 62 23 11 94 27 12 83 21 9 65 25 12 79 21 12
2-ON 56 39 22 89 79 46 8 71 43 71 57 44 77 62 38
3-ON 53 38 24 84 76 62 77 7 54 67 56 46 64 55 40

1-ON 0 -16 -13 0 -52 -5 0 -5 -54 0 -32 -32 0 -41 -28
2-ON -6 0 -2 -5 0 -16 -3 0 -11 6 0 -2 -2 0 -2
3-ON -9 -1 0 -1 -3 0 -6 -1 0 2 -1 0 -15 -7 0

17



Testing agent generalization. We report task generalization performance in Table 5 where agent
models trained on an k-ON task are evaluated on l-ON task where k 6= l. Models trained on 1-ON
fail to generalize to more complex multiON tasks for both agents with and without map memory.
This is likely caused by no prior training for ‘continuing’ the task past the first found goal (i.e. the
agents have not been trained to withhold calling FOUND until they navigate to another goal after the
first one). In contrast, the agents trained on 2-ON and 3-ON are able to generalize to some extent,
especially for the case of going from a more complex task to a less complex one. This is exhibited by
smaller performance drops in the ‘lower triangle’ than the ‘upper triangle’ of the generalization table.

Analysis of agent performance vs episode length. We analyze agent performance based on the
episode complexity, as measured by the geodesic distance of the oracle shortest path between the start
position and all the goals in the episode. Figure 6 shows the average PPL for each agent across a range
of total episode geodesic distance along the oracle path. Note that the OracleMap agent is able to
have relatively high PPL regardless of the episode geodesic distance (with the overall PPL dropping
somewhat from 1-ON to 3-ON). NoMap(RNN) has relatively low PPL and often fails to reach any
goals for harder episodes (i.e. episodes with higher geodesic distance). For both OracleEgoMap
and ObjRecogMap, we see that the PPL decreases as we go from easier episodes to harder episodes,
indicating the challenge in achieving agent robustness.

Agent performance during training. In Figure 7 we plot the SPL, SUCCESS, and PROGRESS
metrics for the different agents on the validation set (see main paper Figure 4 for the PPL). All the
metrics follow the same general trends as observed in the main paper.

Additional episode visualizations. Figure 8 shows additional visualizations of test set episodes. We
see that the episodes span a range of environments, with fairly complex paths between goals that
frequently require some degree of backtracking. As we saw in the analysis of agent performance
when goals are previously seen vs not, such episodes requiring backtracking help us to benchmark
the ability of the agents to store and use information on previously seen goals.

18



1-ON 2-ON 3-ON

No
Ma

p(
RN

N)

2 20
0.0

0.2

0.4

0.6

0.8

1.0

PP
L

2 40
0.0

0.2

0.4

0.6

0.8

1.0

PP
L

2 60
0.0

0.2

0.4

0.6

0.8

1.0

PP
L

Or
ac

le
Ma

p

2 20
0.0

0.2

0.4

0.6

0.8

1.0

PP
L

2 40
0.0

0.2

0.4

0.6

0.8

1.0

PP
L

2 60
0.0

0.2

0.4

0.6

0.8

1.0

PP
L

Or
ac

le
Eg

oM
ap

2 20
0.0

0.2

0.4

0.6

0.8

1.0

PP
L

2 40
0.0

0.2

0.4

0.6

0.8

1.0

PP
L

2 60
0.0

0.2

0.4

0.6

0.8

1.0

PP
L

Pr
oj

Ne
ur

al
Ma

p

2 20
0.0

0.2

0.4

0.6

0.8

1.0

PP
L

2 40
0.0

0.2

0.4

0.6

0.8

1.0

PP
L

2 60
0.0

0.2

0.4

0.6

0.8

1.0

PP
L

Ob
jR

ec
og

Ma
p

2 20
0.0

0.2

0.4

0.6

0.8

1.0

PP
L

2 40
0.0

0.2

0.4

0.6

0.8

1.0

PP
L

2 60
0.0

0.2

0.4

0.6

0.8

1.0

PP
L

Figure 6: Plots of average PPL against geodesic distance along oracle path (i.e. horizontal axis
bins episodes into ranges of total episode geodesic distance along the oracle path, and the vertical
axis shows average PPL for all episodes in the corresponding bin). There is a general trend of
decreasing average PPL with increasing episode distance for all the models (though OracleMap
shows a relatively small drop in performance). This indicates the escalating difficulty of the multiON
task as the length of the episodes is increased.

19



1-ON 2-ON 3-ON

P
R

O
G

R
E

S
S

0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

S
U

C
C

E
S

S

0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

S
P

L

0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40
0.0

0.2

0.4

0.6

0.8

1.0

0 5 10 15 20 25 30 35 40
Training Steps (millions)

0.0

0.2

0.4

0.6

0.8

1.0

PP
L

NoMap OracleMap OracleEgoMap ProjNeuralMap ObjRecogMap

Figure 7: Evaluation metrics of agents during training, evaluated on validation set with 95% CI
indicated by shading. Overall performance decreases across all models as task complexity increases.
The OracleMap agent trains the fastest and reaches the best overall performance. OracleEgoMap
and ObjRecogMap follow closely, while the ProjNeuralMap and NoMap(RNN) agents perform the
worst.

20



NoMap(RNN) OracleMap OracleEgoMap ProjNeuralMap ObjRecogMap

Goal order: 1•◦, 2•◦, 3•◦

P=0, PPL=0 P=1, PPL=0.95 P=1, PPL=0.54 P=0, PPL=0 P=1, PPL=0.66

Goal order: 1•◦, 2•◦, 3•◦

P=0.33, PPL=0.06 P=1, PPL=0.53 P=1, PPL=0.87 P=0.33, PPL=0.07 P=0, PPL=0

Goal order: 1•◦, 2•◦, 3•◦

P=0, PPL=0 P=1, PPL=0.71 P=1, PPL=0.49 P=0, PPL=0 P=0.33, PPL=0.28

Goal order: 1•◦, 2•◦, 3•◦

P=0.33, PPL=0.13 P=0.33, PPL=0.30 P=1, PPL=0.44 P=0, PPL=0 P=0.66, PPL=0.51

Goal order: 1•◦, 2•◦, 3•◦

P=0, PPL=0 P=1, PPL=0.91 P=1, PPL=0.53 P=0, PPL=0 P=0.66, PPL=0.53

Goal order: 1•◦, 2•◦, 3•◦

P=0.66, PPL=0.48 P=1, PPL=0.97 P=0.66, PPL=0.17 P=0, PPL=0 P=1, PPL=0.84

Figure 8: Additional example episodes for different agents. Agent path and shortest path in orange
and green, with the start shown by o (orange square).

21



Table 6: Test set performance for ablations of the OracleMap model. DynamicOracleMap is
dynamically updated to only indicate the current goal object instead of all goals. OnlyOracleMap
shows results with only map information and no RGBD sensors. The OracleMapHiddenObjects is
the same as OracleMap except the goal objects are not inserted into the environment so the agent
must navigate to the target locations based on the map information alone.

SUCCESS (%) SPL (%)

1-ON 2-ON 3-ON 1-ON 2-ON 3-ON

OracleMap 94 74 48 77 59 38

DynamicOracleMap 94 85 81 74 71 66

OnlyOracleMap 54 9 0 42 7 0

OracleMapHiddenObjects 91 72 40 75 57 33

Oracle map ablations. We perform a series of ablation experiments to investigate how information
provided in the oracle map and its connection with other sensory input during the task can determine
agent performance. The results of these experiments are in Table 6 and are summarized below.

• Dynamically updated oracle map. Instead of storing the embedding of all target objects in
the oracle map at the beginning of the episode, we store the embedding of only the current
target object and dynamically update the map when the agent finds a target object. This
helps simplify training since the agent does not have to distinguish between the embeddings
of various objects stored in the map (only the current object embedding is stored). This
effectively breaks down an m-ON task into m ObjectNav (1-ON) tasks. As expected, the
SUCCESS rate in an m-ON task is approximately sm, where s is the SUCCESS rate of 1-ON.
Note that this is significantly better than the SUCCESS rate in the original setup where all
the object embeddings are stored in the oracle map at the start of the episode.

• Map-only baseline. We experiment with agents that do not have RGBD sensors and must only
use the oracle map to navigate to their target locations in an m-ON task (OnlyOracleMap).
Although the agent has access to the locations of all the target objects in the environment
(in the form of embeddings stored in the map), it fails to perform as well as the agent using
RGBD sensors. The SUCCESS rate drops rapidly from 1-ON to 2-ON to 3-ON. This could
be due to two reasons: 1) the agent is unable to recognize the target object and call FOUND
when it is near the object, or 2) the agent is unable to navigate (avoid obstacles, walk through
hallways etc.) effectively through the environment. Further experiments and qualitative
analysis of rollouts from validation episodes reveal that the decreased performance is
primarily due to the inability of the agent to navigate effectively through the scenes.

• Hidden goal objects. In this variant (OracleMapHiddenObjects), the agent is provided an
oracle map and has access to RGBD sensory information but the objects are not actually
inserted in the environment. The agent must therefore infer the location of the target objects
from the oracle map. The RGBD sensors are expected to help learn basic navigation skills
like obstacle avoidance. As is evident from Table 6, the model performs just as well as
the one where objects are inserted in the environment. This also shows that the fall in
performance in the OnlyOracleMap baseline can largely be attributed to a lack of basic
navigation skills rather than an inability to call FOUND action at the right time.

• Varying map resolution. We experimented with different map resolutions and sizes of oracle
maps during validation. Final results are given with the resolution settings that we found to
perform best. The resolution of the map refers to the physical length of a single grid cell in
the environment. The size of the map refers to the the area of the global map that is cropped
(and rotated) for generating the egocentric map mt. Similarly to Chen et al. [17], Chaplot
et al. [14], we experimented with a variant where we stack both high and low resolution
maps together. Here, the map consists of 4 channels, 2 each for the high and low resolution
maps. The two maps correspond to different area sizes in the environment and therefore
provide the agent with more local or more global views of the scene. We did not find any
improvements in agent performance over the base OracleMap model.

22



Table 7: Test set performance for ablations of the OracleEgoMap model. DynamicOracleEgoMap
is dynamically updated to only indicate the current goal object (if it has been seen yet) instead of all
goals. DynamicObjRecogMap is dynamically updated to only indicate the current goal object (it is
has been seen and identified).

SUCCESS (%) SPL (%)

1-ON 2-ON 3-ON 1-ON 2-ON 3-ON

DynamicOracleEgoMap 83 62 41 65 46 25

DynamicObjRecogMap 79 52 20 56 35 16

Table 8: Test set performance of NoMap(RNN) baseline when varying color and shapes.
SUCCESS (%) PROGRESS (%) SPL (%) PPL (%)

1-ON 2-ON 3-ON 1-ON 2-ON 3-ON 1-ON 2-ON 3-ON 1-ON 2-ON 3-ON

NoMap(RNN) (color) 62 24 10 62 39 24 35 13 4 35 21 14

NoMap(RNN) (shape) 73 1 0 73 9 5 55 1 0 55 6 4

Dynamically updating maps. Similar to ablations with dynamically updated oracle maps, we
experiment with variants of other models in which only the embedding of the current target object is
stored in the object channel of the map. This is not possible with ProjNeuralMap since we do not
store object embeddings. In the DynamicOracleEgoMap, if the current goal has been discovered its
embedding is stored in the map. If not, the object channel of the map does not store anything. In
the DynamicObjRecogMap, if the current goal has been discovered (and correctly identified through
object classification), its embedding is stored in the map. Otherwise, the object channel does not store
any information. Table 7 summarizes the performance metrics for these variants. We see that these
variants do not perform better than the base models in which the embeddings of all target objects
discovered so far are stored in the map.

Maximum episode length determination. The maximum allowed episode length for all experiments
is 2,500. This limit is large enough that it does not affect the success rate in an episode. To ensure
that this threshold does not influence our results, we evaluated all agents with the time limit set
proportional to m (2,500 for 3-ON, 2

3 × 2,500 for 2-ON and 1
3 × 2,500 for 1-ON). This proportional

thresholding has negligible impact on the performance metrics. Further, the mean and median episode
lengths are 276.2 and 151 steps respectively for 3-ON experiments, which shows that most episodes
terminate by calling a wrong FOUND action rather than by reaching the maximum time limit.

Varying target object shapes. We vary the shapes of the target objects, by choosing from 8 different
objects: cone, cube, cylinder, frustum, joined inverted frustums, sphere, tetrahedron and torus. All
these objects have a horizontal length/diameter of 0.4m. They have the same red color and are all
placed on the top of a thin cylindrical support. Table 8 compares scenarios with these varying shape
targets to the old scenarios where shape was constant and color was varying instead. 1-ON performs
better in this new setting but 2-ON and 3-ON perform worse. It is perhaps easier for the agent to
identify goals if they are close to camera height as opposed to identifying goals that extend across the
height of the agent. So this new setting favors the agents in identifying goal objects, but it is more
difficult to differentiate between different target objects.

Effect of having a hard FOUND action. An episode of m-ON can terminate either by calling a
wrong FOUND action or by reaching the time limit (2,500 for all experiments in this paper). Calling a
FOUND action when not within the threshold distance of the current target object leads to a ‘wrong’
FOUND action. To understand the effect of having a hard FOUND action, where a single wrong
FOUND terminates the episode immediately, we allow the agent to call a fixed number of wrong
FOUND actions during the episode. We found that allowing even a single wrong FOUND action leads
to a significant increase in performance metrics. This suggests that many episodes terminate due to
calling FOUND action at the wrong time and fixing this inadequacy could improvem-ON performance
significantly. Table 9 summarizes the results of performance metrics against the number of wrong

23



Table 9: Test set performance of OracleMap on the 3-ON task while allowing a fixed number of
wrong FOUND actions during the episode. First column (FOUND budget) lists the number of wrong
FOUND actions allowed while the other columns list the corresponding performance metrics.

FOUND budget PROGRESS (%) SUCCESS (%) PPL (%) SPL (%)

0 62 48 49 38

1 76 66 58 50

2 79 70 58 50

3 82 74 59 54

5 85 78 60 55

10 87 82 60 55

15 88 82 60 56

20 90 85 60 57

50 90 85 60 57

Oracle Found 93 89 65 62

FOUND actions allowed in OracleMap model on the 3-ON task. Note that these evaluations were
performed on agents trained in the usual way, where a single wrong FOUND action terminates the
episode. The last row of the table (Oracle Found) quotes the performance metrics when an ‘oracle’
issues a FOUND action when the agent is within the threshold distance of the current target object.
For this, the action is sampled from the three action probabilities corresponding to {FORWARD,
TURN-LEFT, TURN-RIGHT} and FOUND action is called automatically when the agent is near the
current target goal.

24


	Supplementary material
	Notation
	Agent model details
	Episode statistics
	Additional experiments and analysis


