
We thank all reviewers for their constructive and thorough comments. We will incorporate your many detailed comments1

to clean up our presentation in the next version. Most reviewers were happy with the significance and novelty of our2

method, while some concerns about experimental details were raised. We address your main concerns below.3

relu sigmoid tanh
Activation

3

4

T
es

t
L

os
s

5 10 20 40 80 160
Nodes

3

4

CE

CE + L2

DO

vDO

CE + NC

(a) Stronger baselines for OOD experiment

SVHN CIFAR

Baseline 93.23 79.76

size ×2 93.59 79.64
NC (ours) 93.83 81.15
size ×4 93.88 80.47

(b) vs larger nets
0 2500 5000

steps

0.20

0.25

0.30

0.35

lo
ss

92

94

ac
c

(c) Test loss and acc trajectory

[R1] "confusing how the true loss is obtained" We estimate true loss LT by computing the loss of a held-out set4

(Xte, Yte), which is an unbiased estimator. We will update Alg 1 and Section 3.2 to be more clear about this point.5

[R1,3] Is NC a ‘complexity measure’? Our naming is similar to that of the Neural Process (Garnelo et al., 2018),6

which similarly is not a stochastic process in the strict sense. NC aims to bound the generalization gap just like7

traditional complexity measures such as VC-dim or Rademacher complexity. While NC does not come with theoretical8

guarantees, its data-driven prediction is much tighter, enabling the benefits we showed in our experiments.9

[R2,5] More details of experiments Thank you for the suggestion. We will add more details about the task setup10

and training scheme to the supplementary material, and also publicly release the code used in our experiments.11

[R2,3,4] NC takes whole dataset: expensive NC does not take entire training and test datasets as input. Instead, it12

takes subsets (i.e., minibatches) of the dataset at each gradient step (eq 4), just like standard SGD training. Note that the13

generalization gap calculated from random batches is an unbiased estimator of the true generalization gap. In the next14

version, we will make this critical point more apparent in Algorithm 1, eq 5, and Figure 2. We will also introduce a15

notation to distinguish between the entire dataset and a minibatch of it (e.g., XB
tr ⊂ Xtr, X

B
te ⊂ Xte, . . .).16

[R3] "in a single task setting, not sure how much gain NC has over cross-validation" NC has much more17

expressive power compared to cross-validation as it actively alters the learning trajectory. Please note that we are18

already using cross-validation to select the hyperparameters for the baselines in Table 1.19

[R3] "how this technique can be combined with data augmentation" We can use NC together with any sort of20

data augmentation, as long as we use the same augmentation scheme on all tasks.21

[R3] "interpolation regime... how does NC distinguish between models that are trained to the same near perfect22

loss but exhibit different generalization behavior." We believe this is an important question. Our intuition is that23

NC compares the predictions for train and test data to see whether h is a smooth and consistent function over the entire24

data distribution, or if it just sharply predicts the train data. The Transformer learns how to do this comparison.25

[R3] "PGDL competition is a good fit." We agree, and we plan to enter PGDL with an improved version of NC.26

[R3,5] specific form of bilinear layer The form in eq (9) was shaped through experiments. Note that our ablation27

study (figure 6) shows that the bias ("ones"), loss (L), and the bilinear layer itself each positively contribute to28

performance. The motivation for concatenating ones was to let the data embedding etr freely flow into the next layer.29

[R4] "Proposition-1 only presents a one-sided bound...stronger claim?" In our proof in Appendix A, we actually30

proved the stronger two-sided version. We will edit the main text to show the two-sided bound.31

[R4] "Weak experimental comparisons... compare w/ MetaReg on MNIST and CIFAR-10" Firstly, please note32

that we do compare against strong regularizers (label smoothing and mixup) on the datasets you mentioned in Table 1.33

MetaReg is not suitable as a baseline in our classification task because its task learners all share a "feature network",34

whereas we compare among methods that regularize networks trained from scratch.35

[R5] "strong baselines... e.g., MAML. Figure 9 uses L2...not fair." First note that we showed NC’s contribution36

is orthogonal to that of MAML in standard few-shot settings (fig 5). Fig 9 measures performance on out-of-distribution37

task learners: MAML can’t be used here because initial parameters cannot be transferred to different architectures. Our38

additional experiments (1a) compare against stronger baselines: regular and variational Dropout (DO, vDO).39

[R5] "simple learning with a larger model... capacity similar to base model + NC model" In table 1b, we40

evaluated nets with more capacity by jointly training n nets with a linear layer on top. The computation requirements41

for NC is on the scale of n = 2 since most of the compute is used in the data encoder. We also evaluated n = 4 for42

reference. NC’s regularization is much more effective compared to simply using a larger model.43

[R5] "concerned that NC might require a large labeled validation set in order to exhibit good performance"44

This is not a practical issue for NC, because the validation set size is simply a hyperparameter that we use to split the45

"true training set". Note that after training the NC model, we use unlabeled Xte to regularize task learners (Alg 1).46

[R5] "comparison showing that NC is more stable across long learning trajectories" In 1c, we show the learning47

trajectory of an NC-regularized model on the KMNIST dataset. The model keeps improving for thousands of gradient48

steps, in contrast to other meta-learning methods like MAML which only work for a few gradient steps. The fact that49

NC is able to regularize learning in large single tasks (section 5.4) also demonstrates NC’s stability in long trajectories.50


