
Neural Complexity Measures

Yoonho Lee1, Juho Lee1,2, Sung Ju Hwang1,2, Eunho Yang1,2, Seungjin Choi3
AITRICS1, Seoul, South Korea, KAIST2, Daejeon, South Korea, BARO AI3, Seoul, South Korea

eddy@aitrics.com

Abstract

While various complexity measures for deep neural networks exist, specifying
an appropriate measure capable of predicting and explaining generalization in
deep networks has proven challenging. We propose Neural Complexity (NC), a
meta-learning framework for predicting generalization. Our model learns a scalar
complexity measure through interactions with many heterogeneous tasks in a data-
driven way. The trained NC model can be added to the standard training loss to
regularize any task learner in a standard supervised learning scenario. We contrast
NC’s approach against existing manually-designed complexity measures and other
meta-learning models, and we validate NC’s performance on multiple regression
and classification tasks.

1 Introduction

Deep neural networks have achieved excellent performance on numerous tasks, including image
classification [15] and board games [27]. Although they achieve superior empirical performance, why
and how these models generalize remains a mystery. Thus, understanding which properties of deep
networks allow them to generalize an important problem with far-reaching potential benefits such
as principled model design and safety-aware models. To explain why deep networks generalize in
practice, recent works have proposed novel complexity measures for deep networks [11, 12, 20, 22].
Such measures quantify the complexity of the function that a neural network represents. Ideally,
such complexity measures should be good predictors of the degree of generalization of a network.
However, in practice, such manually-designed complexity measures have failed to capture essential
properties of generalization in deep networks, such as improving with network size and worsening
with label noise.

To overcome such limitations, we propose an alternative data-driven approach for constructing a
complexity measure. Our model, Neural Complexity (NC), meta-learns a neural network that takes a
predictor as input and outputs a scalar. Similarly to previous complexity-based generalization bounds,
we provide a probabilistic bound of the true loss using NC. Our bound has very different characteristics
from previous generalization bounds: it depends on both data distribution and architecture, and more
importantly, becomes tighter as the NC model improves.

Experimentally, we show that a learned NC model consistently accelerates training in addition to
preventing overfitting. We also show the degree to which the measure learned by NC transfers
to different hypothesis classes, such as using a different network architecture, learning rate, or
nonlinearity for the task learner. Compared to other recent meta-learning methods [34], the meta-
learned knowledge in NC is much more stable across long learning trajectories. Finally, while most
meta-learning works focus on improving performance on small tasks such as few-shot classification,
we show that NC is also capable of regularizing learning in single large tasks.
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Figure 1: (left) The true and empirical losses are correlated but different. Neural Complexity (NC)
estimates their difference (colored). (right) The training loss L̂ is regularized (solid lines) by the
output of the trained NC model (dotted lines). NC is meta-learned so that LNC mimics the test loss.

2 Problem Setup

We adopt a meta-learning problem formulation in which a model (the "meta-learner") facilitates
learning in new tasks using previous experience learning in other related tasks. Specifically, we
assume all tasks share sample space Z , hypothesis spaceH, and loss function L : H×Z → R. Each
task T consists of i.i.d. sampled finite training set S = {z1, . . . , zm} from the underlying hidden
distribution DT over the sample space Z associated with task T . The true loss LT and empirical loss
L̂T,S for each task T are respectively defined as

LT (h)
def
= Ez∼DT

[L(h, z)] and L̂T,S(h)
def
=

1

m

∑
z∈S
L(h, z). (1)

Tasks themselves are sampled i.i.d. from a distribution of tasks: T ∼ τ . The objective of our
meta-learner is to predict the difference between the true and empirical losses, otherwise known as
the generalization gap GT,S :

GT,S(h) = LT (h)− L̂T,S(h). (2)

In other words, our model meta-learns a mappingH → R which mimics h 7→ GT,S(h) by observing
LT (h) and L̂T,S(h) in many different tasks that follow T ∼ τ .

Even in the usual single-task supervised learning setup, we can still use this problem formulation
to meta-learn by constructing a set of tasks in the following way. Given one large dataset S =
{z1, . . . , zM}, we randomly split S into disjoint training and validation sets. For each task with this
random split, the task learner uses the train set to train h, and the meta-learner evaluates LT computed
with the validation set as its target. After training a meta-learner on this simulated set of tasks, we
use the same model to estimate the gap GT,S of the full dataset S. This task-splitting scheme is
similar to traditional cross-validation. However, instead of choosing among a few hyperparameters,
we meta-learn a neural network to mimic the complex mapping h 7→ GT,S(h).

3 Neural Complexity

We now describe Neural Complexity (NC), a meta-learning framework for predicting generalization.
At the core of NC is a neural network that directly meta-learns a complexity measure through
interactions with many tasks. We show how this network integrates with any standard task learner
in Figure 1. We show NC’s training loop in Figure 2 and also provide a detailed description in
Algorithms 1 and 2.

3.1 Motivation: From Gap Estimate to Generalization Bound

We motivate our meta-learning objective through a simple method of extending the identity L̂T,S +
GT,S = LT to a probabilistic bound of LT using any estimator of the gap GT,S .
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Algorithm 1 Task Learning

Require: NC, Train and test datasets
Randomly initialize parameters θ of learner h
loop

Sample minibatch Xtr, Xte, Ytr

Lreg ← L̂T,S(h) + λ ·NC(Xtr, Xte, Ytr, h(Xtr), h(Xte)) NC-regularized task loss (4)
θ ← θ −∇θLreg Gradient step

end loop
GT,S(h)← LT (h)− L̂T,S(h) Compute gap (2)
return Snapshot H = (Xtr, Xte, Ytr, h(Xtr), h(Xte), GT,S(h)) Save to memory bank

Algorithm 2 Meta-Learning

Require: Memory bank
Randomly initialize parameters φ of NC
while not converged do

Sample Xtr, Xte, Ytr, h(Xtr), h(Xte), GT,S(h) from memory bank
∆← GT,S(h)−NC(Xtr, Xte, Ytr, h(Xtr), h(Xte))
φ← φ−∇φLNC(∆) NC’s loss function (5)

end while

Proposition 1. Let DH be a distribution of hypotheses, and let f : Zm ×H → R be any function of
the training set and hypothesis. Let D∆ denote the distribution of GT,S(h)− f(S, h) where h ∼ DH,
and let ∆1, . . . ,∆n be i.i.d. copies of D∆. The following holds for all ε > 0:

P
[∣∣∣LT (h)− L̂T,S(h)

∣∣∣ ≤ f(S, h) + ε
]
≥ 1− |{i|∆i > ε}|

n
− 2

√
log 2

δ

2n
. (3)

We defer the proof to the supplementary material. First, note that the role of f in this bound mirrors
that of complexity measures in previous generalization bounds. Since we can compute f given S and
h, we can restate Proposition 1 as stating that the regularized loss L̂T,S(h) + f(S, h) differs from
LT by at most ε (with the given probability). Furthermore, making f more accurately predict GT,S
tightens this bound by decreasing the |{i|∆i>ε}|

n term.

Taking motivation from this result, our NC meta-learns such a function f by regressing towards the
gap GT,S . Rather than designing a measure of complexity that yields a tight generalization bound,
NC directly learns such a measure in a data-driven way by posing the tightening of the bound as an
optimization problem.

3.2 Training

We first illustrate NC’s training loop. Recall from Section 3 that we consider a meta-learning setup
consisting of a set of related but different tasks. Given a task T with dataset S, the task learner
minimizes the following regularized loss using stochastic gradient descent:

Lreg(h) = L̂T,S(h) + λ ·NC(h). (4)

We set λ = 0 at initialization, and use a linear schedule where λ = 1 after a certain number of
episodes. We calculate the two terms in Lreg(h) using minibatches, just as in regular supervised
learning with neural networks. Further note that one can use NC regularization alongside any of the
usual tricks for training, such as data augmentation or batch normalization.

The objective of NC is to estimate the difference between LT and L̂T,S for any of the hypotheses
hT0 , . . . , h

T
N , for any task T ∼ τ . NC is a permutation-invariant neural network that takes features of

the function h and minibatches of the data as input and outputs a scalar. We train NC using the Huber
loss [9] with target GT,S :

LNC(∆) =

{
1
2∆2 for ∆ ≤ 1
|∆| − 1

2 otherwise , (5)
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Figure 2: NC regularizes task learning. We store snapshots of task learning in a memory bank, from
which we uniformly sample batches to train NC.

where ∆ = GT,S(h) − NC(h). We found that the Huber loss was more stable than the standard
MSE loss, likely because the scale of GT,S can vary widely depending on h.

3.3 Architecture

We now describe the architecture of NC used in our experiments. We have mentioned in Proposition 1
and Equation 4 that NC takes a representation of the function h as input. We accomplish this by
passing both data x and predictions h(x) to NC. In terms of the function h, the tuple (x, h(x)) can
be written as δx[(id, h)] where δx is the evaluation functional at x and id is the identity function.
This representation of h captures the behavior of h at the datapoints considered during training and
evaluation. In our experiments, this structure sufficed for extracting relevant features of h.

Regression We first describe NC when each task T is a regression task with vector data (x ∈ RD).
Let Xtr ∈ Rm×D, Xte ∈ Rm′×D, Ytr ∈ Rm×1 denote train data, test data, and train labels,
respectively. The learner’s hypothesis h produces outputs h(Xtr) ∈ Rm×1 and h(Xte) ∈ Rm′×1 for
train and test data. NC first embeds all data with a shared encoding network fenc, which is an MLP
that operates row-wise on these matrices:

fenc(Xtr) = etr ∈ Rm×d, fenc(Xte) = ete ∈ Rm
′×d. (6)

These embeddings are fed into a multi-head attention layer [33] where queries, keys, and values are
Q = ete, K = etr, V = [etr, ytr](∈ Rm×(d+1)), respectively. The output of this attention layer is a
set of m′ items, each corresponding to a test datapoint:

fatt(Q,K, V ) = eatt ∈ Rm
′×d. (7)

Finally, these embeddings are passed through a decoding MLP network and averaged:

NC(Xtr, Xte, Ytr, h(Xtr), h(Xte)) =
1

m′

m′∑
i=1

fdec(eatt)i ∈ R. (8)

Note that NC is permutation invariant because it is consists of permutation invariant components.
This property is essential since NC’s objective is also invariant with respect to permutation of the
input dataset.

Classification The architecture of NC for classification tasks is identical to that of regression,
except for the following additional interaction layer used to compute V . Representing labels as
one-hot vectors in a classification task with c classes gives Ytr ∈ Rm′×c. Instead of concatenating etr

and Ytr as in (7), we use a bilinear layer to produce V :

V = W(etr, [Ytr,1,L(Xtr)])) ∈ Rm
′×d (W ∈ Rd×d×(c+2)). (9)

Note that we concatenate a vector of ones and the train loss to Ytr before passing into the bilinear
layer: this vector acts like a residual connection for the embedding etr, allowing its information
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to freely flow to the next layer. See Section 5 for an ablation study on each of our architectural
choices. The bilinear layer (Equation 9) generalizes the interaction layer proposed in [36]: while they
explicitly choose a subnetwork to use according to class, (9) implicitly multiplies 0 to all but one of
the c weights in each slice of the last dimension. Additionally, to scale NC up to high-dimensional
image data such as the CIFAR dataset, we use a convolutional neural network for the encoder fenc.

Because training runs (4) are time-consuming for large networks h, we use a memory bank to store
and re-use the information necessary for the meta-learning loss (5). Specifically, we store tuples
(Xtr, Xte, Ytr, h(Xtr), h(Xte)) along with the observed gap L̂T,S(h)− LT (h). This memory bank
has manageable memory cost because we can store only the indices for Xtr, Xte, and the other
tensors have low dimensions. We randomly sample minibatches of such tuples to train NC with the
meta-learning loss (5). Figure 2 shows how the memory bank interacts with NC.

3.4 Interpretations

We provide several different interpretations the NC framework.
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Figure 3: Graphical models corre-
sponding to (left) Neural Processes
and (right) NC. Observed nodes are
shaded and red arrows denote amor-
tized inference.

Causality in Generalization As noted in [11], the correla-
tion between a complexity measure and generalization does
not directly imply a causal relationship. Since regularizing
the complexity measure implicitly assumes that reducing the
measure will cause the model to generalize, this lack of a causal
connection can be problematic. NC’s framework provides an
alternative way around this issue: because we keep using NC
as a regularizer, it continually gets feedback on whether its
predictions have caused the task learner to generalize.

Meta-learned Complexity Measure As mentioned in Sec-
tion 1, many recent works attempt to understand generalization
in deep networks by proposing novel complexity measures.
Such measures are designed to correlate well with generaliza-
tion while being directly computable for any given set of param-
eters. NC can be seen as a meta-learned complexity measure,
and its target (2) is the generalization gap. Instead of hand-
designing an appropriate complexity measure, NC meta-learns
it by regressing towards observed degrees of generalization.

Optimal Regularizer A standard approach to generalization is to augment the empirical loss L̂T,S
by adding a regularization term λ: Lreg = L̂T,S(h) + λ(h). Since the purpose of λ is to make the
regularized loss Lreg close to the true loss LT , we argue that the optimal regularizer for task T is the
function that makes Lreg(h) = LT (h) for all h. This unique "optimal regularizer" is exactly GT,S ;
therefore, NC can be seen as a learned approximation to this optimal regularizer.

Neural Processes and Sufficient Statistics of True Loss We contrast the graphical models of NC
with the Neural Process (NP) [7] in Figure 3. Both approaches involve a single meta-learner which
observes multiple tasks to achieve low test loss. The two approaches infer different sufficient statistics
for the true loss LT . NP infers the data distribution of T and NC infers the gap G. While both G and
the data distribution are sufficient for reconstructing LT , G has much lower dimension: G(h) ∈ R,
whereas T is a complex distribution over X × Y = RdX+dY .

Actor-Critic Generalizing to unseen test data can be seen as a reinforcement learning environment
with known dynamics: the observations are train data and train loss, and the selection of hypothesis h
is the action. The objective is to maximize the return, which is −LT . Within this interpretation, our
approach is an actor-critic method where NC takes the value network’s role.

5



10 5 0 5 10
NC Prediction

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Ga
p
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Figure 5: Test loss of combina-
tions of NC and MAML.
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- Bilinear layer 23.69

Figure 6: Ablation study; we se-
quentially removed each architec-
tural component.

4 Related Works

Complexity Measures for Deep Networks The question of why deep networks generalize despite
being over-parameterized has been the focus of many recent works. Building on traditional gen-
eralization theory [32, 21], such works have adapted PAC-Bayes bounds [5, 39] and norm-based
bounds [24, 2] to deep networks. Other works have proposed measures that empirically correlate with
generalization [12, 20, 22]. This work proposes an alternative approach to the problem of explaining
generalization. While these previous works rely on human-designed measures of complexity, NC
learns such a measure in a data-driven way, allowing it to learn to reflect the complex interaction
between the function h and the data distribution.

Predicting Generalization A few recent works have proposed to predict generalization using
function approximation. [10] learns linear regression coefficients to predict the generalization gap,
and [37] extends their model by using a small neural network instead of a linear model. [31]
proposes to predict neural network accuracy from various weight features. These approaches are all
correlational analyses of generalization. As discussed in Section 3.4, NC’s framework allows for the
discovery of causal factors of generalization because of the back-and-forth interaction between task
learning and predicting generalization.

Meta-Learning Our method falls within the framework of meta-learning [30, 26], in which a model
learns useful information about the learning process itself through interactions with a set of different
but related tasks. Recent methods formulate the meta-learning problem as learning optimizers [25],
data embeddings [28], initial parameters [6], or parameter priors [13]. A key difference is that NC is
learner-agnostic: we can use an NC model trained on one class of task learners to regularize other
task learners (e.g., different architecture, activation, optimizer). Additionally, using NC’s output as a
regularization loss makes it more stable in long training runs than previous meta-learning algorithms.

MetaReg [1] proposes to meta-learn a weighted L1 regularizer. It is probably the most similar method
because they also learn a regularizer in a meta-learning setup. However, their regularizer does not
transfer to different network architectures because it operates in parameter space. In contrast, NC
learns a complexity measure in function space, allowing it to generalize to different architectures and
randomly initialized networks.

5 Experiments

5.1 Sinusoid Regression

To illustrate the basic properties of NC, we begin with a toy sinusoid regression problem introduced in
[6]. Each task is a sine function x 7→ Asin(x+ b) where x,A, b are uniformly sampled from [−5, 5],
[0.1, 5] and [0, π], respectively. We consider 10-shot learning and use the mean squared error as the
loss function. We measure test losses using a held-out test set of 15 datapoints. During meta-training,
the layer size, activation, number of layers, learning rate, and number of steps were all fixed to (40,
ReLU, 2, 0.01, 16), respectively.

NC-Gap Fit In Figure 4, we compare the predictions of a trained NC model with the generalization
gap GT,S for many batches. These two values are strongly correlated (R2 = 0.9589), indicating that
NC is indeed capable of predicting the gap based on the complexity of the learner’s hypothesis h.
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Figure 10: Evaluation of Out-of-distribution task learners. The x axis shows the altered learner
hyperparameter. (top) NC-gap fit statistics and (bottom) test loss after learning with NC and baselines.

VS Other Regularizers We compared NC against various other regularization methods. We report
these results in the appendix due to space issues. NC performs all other methods by a large margin
because learners tend to overfit very quickly in this few-shot regression problem.

Integration with MAML We investigated whether NC can integrate with MAML [6], an alterna-
tive meta-learning approach. We first note that these two methods solve two very different problems:
NC aims to regularize any randomly initialized network while MAML simply finds one set of initial
parameters from which learning occurs quickly. We first trained a MAML model and then trained
NC using snapshots obtained from MAML trajectories. Figure 5 shows that NC successfully reduces
the final test loss for both settings: with and without MAML initializations. These results indicate
that the regularization effect of NC is orthogonal to that of MAML, and that future improvements in
either direction can benefit the other.

Learning Curve We show the train and test loss curves of a task learner regularized by NC in
Figure 7. The test loss is lower than the train loss throughout training, which is a trend that we
observed in all experimental settings we considered. In other words, the estimate of NC is a precise
enough surrogate for GT,S that minimizing it results in negative GT,S .

5.2 Out-of-distribution Task Learners

Visualization of Simple Learners We observed the behavior of NC when given hypotheses from
closed-form learners with very distinct properties. We consider a nearest neighbor learner. We show
(Xtr, Xte, Ytr, Yte, h(Xtr), h(Xte)) and gap values along with NC predictions in Figure 8. Note that
while we show test targets Yte in the figure, NC does not observe them. Even though the shown
predictive function h perfectly fits the training data, NC penalizes the function because it does not
have a sinusoidal shape.

Changing NN Learner Hyperparameters We evaluated how well NC can generalize to other task
learners on the sinusoid regression task in Section 5.1. We measured performance while alternating
four different learning algorithm hyperparameters: activation, learning rate, nodes per layer, and the
number of layers. We used the same NC model which was trained using only (relu, 10−2, 40, 2) for
these hyperparameters. In Figure 10, we measure how well NC fits theGT,S through theirR2 statistic
and their mean absolute error (MAE). NC’s predictions are accurate even when the learners are
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Figure 12: Single-task regularization on the KMNIST dataset. Left: NC estimates (solid lines) and
gap values (dashed lines) when training with datasets of different size. Center: Learning curve of train
(solid lines) and test (dashed lines) losses with and without NC. Right: Learning curve of test error
with and without NC. The dashed horizontal line represents baseline performance after convergence.

changed, only degrading when the learner is significantly more expressive (160 nodes and 4 layers).
Figure 10 additionally reports the test losses of NC regularization compared to the cross-entropy loss
and L2 regularization. NC regularization shows consistent improvements except for when the network
architecture was too different (4 layers). This experiment demonstrates that NC’s complexity measure
captures the properties of h itself, regardless of its specific parameterization. We emphasize that
such a transfer between different task learners is not possible with other meta-learning approaches.
[6, 28, 7].

5.3 Few-shot Image Classification

Ablation Study To validate our architectural choices for NC, we performed an ablation experiment
using a 10-way 1-shot classification task on the Omniglot [16] dataset. Results in Figure 6 show the
performance of several architectures for NC. First note that removing Huber loss and using MSE loss
degrades performance, likely due to large gradients when the difference between NC’s prediction and
GT,S is large. Furthermore, removing any of the additional components for the classification model
(bias, train loss, bilinear layer) reduces accuracy, with the bilinear layer being the most critical for
performance.

Loss Surface Visualization We use the filter-wise normalization technique introduced in [19] to
visualize the loss surfaces of a learner at convergence. Figure 11 shows that the train loss is at a stable
local minimum, but the generalization gap can decrease further by moving in a specific direction.
Because NC correctly captures the trend of the gap, minimizing the NC-regularized loss would move
the learner to a region with lower test loss.

5.4 Single Image Classification Tasks

Finally, we evaluate NC on single tasks, following our protocol outlined in Section 3 of constructing
a large number of sub-tasks using only the train split and then evaluating on the test set. We consider
five different datasets: three MNIST variants (MNIST [17], FMNIST [35], KMNIST [3]), for which
the learner was a 1-layer MLP with 500 units, and SVHN [23] along with CIFAR-10 [14] , for which
we used the ResNet-18 [8] network. To isolate the effect of the regularizers, we do not use image
augmentation or manual learning rate scheduling. Due to space constraints, we describe detailed
hyperparameters and NC architectures in the appendix.
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MNIST FMNIST KMNIST SVHN CIFAR-10

Cross-Entropy 98.31±0.12 88.21±0.05 91.12±0.08 93.23±0.44 79.76±0.34

L2 Regularization 98.36±0.06 88.46±0.17 91.31±0.05 94.06±0.44 79.84±0.75

Label Smoothing [29] 98.57±0.11 89.15±0.40 91.40±0.05 94.70±0.38 80.45±0.44

Mixup [38] 97.80±0.27 89.50±0.16 91.10±0.17 94.88±0.24 80.92±0.47

NC Regularization 99.03±0.07 89.74±0.17 96.30±0.07 93.83±0.18 81.15±0.36

Table 1: Mean test accuracies and 95% confidence intervals of each method on 5 runs.

Network Size To test whether the gains from NC are simply from the additional parameters, we
compared against larger networks in Section 5.2. We constructed networks with 2×, 4× capacity by
jointly training multiple networks with a pooling layer. These results show that NC is much more
effective compared to simply using a larger model, and is in fact outputting a useful approximation to
GT,S .

Effect of Dataset Size We investigated whether NC can capture the effect of dataset size m on
overfitting. Using an unregularized learner on the KMNIST dataset, we measured how the gap and
NC’s estimate of it changes during task learning. The left figure of Figure 12 shows that overfitting
occurs more severely with smaller datasets, and NC successfully captures this trend.

Regularization Performance We measure NC’s effectiveness as a regularizer, comparing it to
other regularization methods for classification tasks. We consider four baselines: standard cross-
entropy loss, L2 loss, label smoothing [29], and Mixup [38]. Results in Table 1 show that NC
consistently improves test accuracy and performs similarly to modern regularization methods, even
outperforming them on some tasks. We further visualize the learning curve of a NC-regularized task
learner on the KMNIST dataset in the middle and right figures of Figure 12, which show that NC
accelerates training in addition to improving the final accuracy.

6 Conclusion

We proposed Neural Complexity (NC), a meta-learning framework for predicting generalization. We
motivated NC through a generalization bound based on estimators of the generalization gap GT,S . It
treats generalization as a regression problem, learning the degree to which a function will generalize
to unseen test data.. Notably, regularizing with NC consistently resulted in models with lower test
loss than train loss. NC is capable of regularizing task learners from previously unseen architectures
and hyperparameters. Additionally, our experiments demonstrate that NC can learn to learn in much
larger tasks compared to previous meta-learning works, such as MNIST or CIFAR.

We see many exciting future directions for improvement within the NC framework. First, the current
requirement of validation data (Xte) limits the applicability of our model, but this requirement is
not intrinsic to the framework of NC. In future work, we will investigate architectures and training
schemes that allow for the accurate prediction of GT,S from data and predictions from training
data. We also think NC can be extended beyond supervised learning, for example, predicting the
generalization gap in density estimation or self-supervised learning. Furthermore, we are interested
in scaling this approach to the ImageNet dataset [4] since our experiments have shown that NC is
much more scalable than other meta-learning methods.
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Broader Impact

Safety and reliability are important desiderata for machine learning models, and these properties are
even more important given the recent success of black-box models such as deep neural networks.
Our proposed approach can be applied to improve training in any regression or classification task,
and our experiments demonstrate its ability to (1) predict the generalization gap and (2) improve test
loss when used as a regularizer. NC’s data-driven prediction of the generalization gap can serve as
an approximate guarantee for safety-critical problems. Furthermore, future extensions of NC may
enable previously impossible tasks since NC was particularly effective in settings where conventional
learners overfitted.
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