
Supplementary Material for
Neural Complexity Measures

A Proof of Motivating Bound

We first invoke the following lemma which relates the empirical and true cumulative distribution
functions of i.i.d. random variables.
Lemma 1 (Dvoretzky–Kiefer–Wolfowitz Inequality). Let X1, . . . , Xn be i.i.d. random variables
with cumulative distribution function (CDF) F (·). Denote the associated empirical CDF as Fn(x) ,
1
n

∑n
i=1 1{Xi≤x}. The following inequality holds for all x w.p. ≥ 1− δ:

|Fn(x)− F (x)| ≤

√
log 2

δ

2n
. (A.1)

Proof. We omit the proof. The original theorem appears in [2] and was refined by [5]. This two-sided
version appears in [4].

Proposition 1. Let DH be a distribution of hypotheses, and let f : Zm ×H → R be any function of
the training set and hypothesis. Let D∆ denote the distribution of GT,S(h)− f(S, h) where h ∼ DH,
and let ∆1, . . . ,∆n be i.i.d. copies of D∆. The following holds for all ε > 0:

P
[∣∣∣LT (h)− L̂T,S(h)

∣∣∣ ≤ f(S, h) + ε
]
≥ 1− |{i|∆i > ε}|

n
− 2

√
log 2

δ

2n
. (A.2)

Proof. Let F (x), Fn(x) be the CDF and empirical CDF of ∆, respectively.

P
(
|L̂T,S(h) + NCS(h)− LT (h)| > ε

)
= P∆∼pNC

(|∆| > ε) = F (ε)− F (−ε). (A.3)

By Lemma 1, the following holds with probability ≥ 1− δ:

F (ε)− F (−ε) ≤ Fn(ε)− Fn(−ε) + 2

√
log 2

δ

2n
=
nε
n

+ 2

√
log 2

δ

2n
. (A.4)

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

Steps 1 2 4 8 16

No regularization 4.17 4.04 4.05 4.04 4.05
L1(λ = 10.0) 4.21 4.26 4.26 4.25 4.25
L1(λ = 1.0) 4.08 4.00 3.98 4.03 4.13
L1(λ = 0.1) 4.07 3.98 3.95 4.01 4.12
L1(λ = 0.01) 4.08 3.98 3.95 4.04 4.16
L2(λ = 10.0) 4.10 4.11 4.17 4.22 4.32
L2(λ = 1.0) 4.08 3.98 3.94 3.96 4.00
L2(λ = 0.1) 4.07 3.98 4.03 4.03 4.14
L2(λ = 0.01) 4.08 3.98 3.96 4.04 4.16
L1,∞(λ = 1.0) 4.08 4.04 4.07 4.08 4.08
L1,∞(λ = 0.1) 4.07 3.98 3.95 4.01 4.12
L1,∞(λ = 0.01) 4.08 3.98 3.96 4.04 4.16
L3,1.5(λ = 1.0) 4.07 4.03 4.11 4.09 4.07
L3,1.5(λ = 0.1) 4.08 3.99 3.95 4.00 4.08
L3,1.5(λ = 0.01) 4.07 3.98 3.95 4.04 4.15
Orthogonal (λ = 1.0) 4.16 4.17 4.19 4.22 4.32
Orthogonal (λ = 0.1) 4.08 4.00 3.96 3.99 4.06
Orthogonal (λ = 0.01) 4.07 3.99 3.95 4.00 4.14
Frobenius (λ = 1.0) 4.08 4.01 4.04 4.13 4.13
Frobenius (λ = 0.1) 4.07 3.98 3.95 4.02 4.11
Frobenius (λ = 0.01) 4.08 3.98 3.96 4.04 4.15

Dropout (p = 0.1) 4.08 3.98 3.96 4.04 4.15
Dropout (p = 0.3) 4.08 3.98 3.95 4.02 4.12
Dropout (p = 0.5) 4.08 3.99 3.95 4.00 4.07
Dropout (p = 0.7) 4.10 4.00 3.96 3.98 4.02
Dropout (p = 0.9) 4.17 4.11 4.09 4.37 NaN

MetaReg 4.04 3.93 3.89 3.90 4.00
Neural Complexity 3.87 3.60 3.36 3.13 2.93

Table B.1: Test losses of various regularization methods after a certain number of steps.

B Additional Experiments

We evaluated the performance of the following regularizers on the sinusoid regression task: L1 norm,
L2 norm, L1,∞ norm, L3,1.5 norm, Orthogonal constraint, Frobenius norm, Dropout [7], MetaReg [1],
and Neural Complexity (NC). We show performance after {1, 2, 4, 8, 16} steps. Results in Table B.1
show that all other baselines fail to provide guidance in this task, while NC outperforms them by a
large margin.

In Figure B.1, we show additional visualizations of regression tasks. This figure shows that NC
successfully captures the trend of the generalization gap even in out-of-distribution hypothesis classes.

Figure B.2 shows additional experiments, where we additionally compare against stronger baselines
(dropout and variational dropout).

Figure B.3 shows additional visualizations of loss surfaces, and reveals that the NC-regularized loss
has similar trends to that of the test loss.

C Experimental Details

All experiments were ran on single GPUs (either Titan V or Titan XP) with the exception of the
single-task image classification experiment, which was run on two.

These embeddings are fed into a multi-head attention layer [8] where queries, keys, and values are
Q = ete, K = etr, V = [etr, ytr](∈ Rm×(d+1)), respectively. The output of this attention layer is a

2

Figure B.1: Visualization of regression tasks. The x and y axes represent inputs and outputs of the
task learners, respectively. Circles represent the targets and plus signs represent predictions. The NC
model is trained with a neural network learner, and we evaluated on three different learners: 0-th
order polynomial (left), nearest-neighbor (center), and neural networks (right).

relu sigmoid tanh
Activation

3

4

T
es

t
L

os
s

5 10 20 40 80 160
Nodes

3

4

CE

CE + L2

DO

vDO

CE + NC

Figure B.2: Additional experiments for out-of-distribution task learners. We additionally compare
against Dropout and Variational Dropout.

5
4
3
2
1
0

TrainLoss

0.5

1.0

5
4
3
2
1
0

Gap

2

3

5
4
3
2
1
0

NC

1.0

1.5

2.0

5
4
3
2
1
0

TestLoss

2

3

4

5
4
3
2
1
0

NC_reg

2

3

Figure B.3: Visualization of loss surfaces. Best viewed zoomed in.

3

set of m′ items, each corresponding to a test datapoint:

fatt(Q,K, V) = eatt ∈ Rm
′×d. (C.5)

Finally, these embeddings are passed through a decoding MLP network and averaged:

NC(Xtr, Xte, Ytr, h(Xtr), h(Xte)) =
1

m′

m′∑
i=1

fdec(eatt)i ∈ R. (C.6)

C.1 Sinusoid Regression

Task Learner The learner was a one-layer MLP network with 40 hidden units and ReLU activations,
and was trained with vanila SGD with a learning rate of 0.01.

NC Architecture Datapoints x are encoded using an MLP encoder with nenc layers, d-dimensional
activations, and ReLU nonlinearities. The outputs of the encoder are fed into a multi-head attention
layer with d-dimensional activations. The outputs of the multi-head attention layer are mean-pooled
and fed into an MLP decoder with ndec layers, d-dimensional activations, and ReLU nonlinearities.
We train NC with batch size bs and the Adam optimizer with learning rate lr.

We considered the following range of hyperparameters: nenc ∈ {1, 2, 3}, d ∈ {128, 256, 512, 1024},
ndec ∈ {1, 2, 3}, bs ∈ {128, 256, 512, 1024}, lr ∈ {0.005, 0.001, 0.0005, 0.0001}. We tuned these
hyperparameters with a random search and ultimately used nenc = 3 d = 1024 ndec = 3 bs = 512
lr = 0.0005.

C.2 Classification

Task Learner The task learner was ResNet-18 [3] for the SVHN and CIFAR-10 datasets, and
an MLP with one hidden layer of 500 nodes and ReLU nonlinearities. To isolate the effect of the
regularizers, we considered no data augmentation besides whitening. We train all networks with SGD
with a fixed learning rate and no additional learning rate scheduling. The learning rate was 0.0001
for ResNet-18 and 0.01 for the MLP.

NC Architecture Datapoints x are encoded using a shared CNN encoder. The CNN architecture
was the 4-layer convolutional net in [6] when the task learner was an MLP, and was ResNet-18
otherwise. We freeze all batch normalization layers inside NC. The outputs for only the train data is
fed into a nenc-layer MLP followed by a stack of nself self-attention layers, both with d-dimensional
activations. These outputs are processed by a bilinear layer, and all outputs are fed into a multi-head
attention layer with d-dimensional activations. The outputs of the multi-head attention layer are then
fed into an MLP decoder with ndec layers, d-dimensional activations, and ReLU nonlinearities. We
train NC with batch size bs and the Adam optimizer with learning rate lr.

For the MLP learners, we considered the following range of hyperparameters: nenc ∈ {1, 2, 3},
nself ∈ {1, 2, 3}, d ∈ {60, 120, 240}, ndec ∈ {1, 2, 3}, bs ∈ {4, 8, 16}, lr ∈ {0.0005}. We tuned
these hyperparameters with a random search and ultimately used nenc = 1, nself = 1, d = 120,
ndec = 3, bs = 16, lr = 0.0005.

For the ResNet-18 learners, we considered the following range of hyperparameters: nenc ∈ {1, 2, 3},
nself ∈ {1, 2, 3}, d ∈ {200, 400, 800, 1600}, ndec ∈ {1, 2, 3}, bs ∈ {2, 4, 8}, lr ∈ {0.0005}. We
tuned these hyperparameters with a random search and ultimately used nenc = 1, nself = 3, d = 400,
ndec = 3, bs = 4, lr = 0.0005.

Single-task Experiment Details We provide further details about the single-task experiments. The
datasets we considered had either 50000 or 60000 training datapoints. We constructed learning tasks
from such training sets by sampling 40000 "training" datapoints and 10000 validation datapoints.
Using such splits, we trained NC as usual. To scale to long learning trajectories, we trained NC
using one process, while simultaneously adding trajectories from a separate process on a separate
GPU which only ran task learners regularized by the NC model. During final evaluation, we clipped
NC estimates below −0.1, which has the effect of ignoring NC when it is overconfident about
generalization. We found that such clipping is critical for performance on long training runs.

4

References
[1] Y. Balaji, S. Sankaranarayanan, and R. Chellappa. Metareg: Towards domain generalization using

meta-regularization. In Advances in Neural Information Processing Systems, pages 998–1008,
2018.

[2] A. Dvoretzky, J. Kiefer, and J. Wolfowitz. Asymptotic minimax character of the sample distribu-
tion function and of the classical multinomial estimator. The Annals of Mathematical Statistics,
pages 642–669, 1956.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pages 770–778, 2016.

[4] M. R. Kosorok. Introduction to empirical processes and semiparametric inference. Springer
Science & Business Media, 2007.

[5] P. Massart. The tight constant in the dvoretzky-kiefer-wolfowitz inequality. The annals of
Probability, pages 1269–1283, 1990.

[6] J. Snell, K. Swersky, and R. Zemel. Prototypical networks for few-shot learning. In Advances in
Neural Information Processing Systems, pages 4077–4087, 2017.

[7] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: a simple
way to prevent neural networks from overfitting. The journal of machine learning research,
15(1):1929–1958, 2014.

[8] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Ł. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in neural information processing systems,
pages 5998–6008, 2017.

5

	Proof of Motivating Bound
	Additional Experiments
	Experimental Details
	Sinusoid Regression
	Classification

