7 Appendix

In this section we provide a detailed proof for the main theorem. First we state some facts about the
learning rate and the algorithm.

Lemma 7 (Lemma 4.1 from Jin et al. (2018)). Let at =y H

;aizl—&-;.

Lemma 8 (Lemma 5.4 from Sinclair et al. (2019)). For any h € [H| and ball B € PX the number
of time B is selected is bounded by

|{k:Bz—B}si(ig§§)2

i=it1(1 — ). Then for every i > 1:

2
Moreover, the number of times that ball B and its ancestors have been played is at least i (‘i’(g”)” ) .

To bound the regret, our starting point is an upper bound on the difference between the optimistic
@—function and the optimal Q* function.

Lemma 9 (Lemma E.7 from Sinclair et al. (2019)). Forany § € (0,1) if B; = 23'_, aib(i) then

H3log(4HK L

/ Vi
With probability at least 1 — /2 the following holds simultaneously for all (x,a,h,k) € S x A X
[H] x [K] and ball B such that (x,a) € dom} (B). t = n¥(B) and ky < --- < k; are the episodes
where B or its ancestors were encountered previously by the algorithm.

Br <8

t
0 < Qh(B) = Qh(w,a) < Lp—opH + B + Y af(Vit, — Vi) (@)

=1

This bound contains three parts. The first is an upper bound for the first step when there is no data.
The second term, (3, is the surplus that we add to be optimistic. The third part is an “average” of
the estimated future regret. The key observation is that when f; is small, it can be absorbed into
the future surplus. So we can clip ; proportional to the future regret, or gap. This enables a gap
dependent regret bound.

Lemma 10 (Clipped upper bound). For any é € (0,1) if 5, = 2 Zl | aib(i). With probability at
least1 —6/2,Vh € [H], k € [K],

1 N v
Q) - Gitehab < (14 ) (nt_o]H £, - vh:l)(xf;;l))

i=1
+ clip [B; | gapy, (), ax)/(H + 1)]

Proof. We use aj, : X — A to denote a mapping from the state to the optimal action at stage h. By
the definition of the gap

gaph(xﬁ,aﬁ) Qh(mhaah<xh)) Q*( ) < Qi(Bk*) - QZ(mﬁaaﬁ)

< QZ(Bh) Qh(xhvah) <1p= 0]H+5t+zat h+1 Vh*+1)(xi3r1)v
i=1

where Bf* is the smallest ball that contains (2%, a} (z%)). The first inequality is by the lower bound

of Lemma 9. Note that Bf* € domh(xh) The second uses the selection rule of choosing the ball
with the largest Q% (B) for B € dom? (z *). The third inequality is by the upper bound of Lemma 9.
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Now we consider two cases, if 3; > gap,,(zF,a¥)/(H + 1), the bound is trivially implied by
Lemma 9. If 8; < gapy, (z§,af)/(H + 1),

gapy, (), af;) < =g H + Bt + Z@i(vhkh - Vif+1)(17’;§5r1)
i=1
t .
Ve H + 3 b (Vi = Vi) (@b ) + gapy (af, af) /(H + 1)
i=1
Taking the gap to one side we have

H+1 )
gapy, (z), af;) < i (1[t 0]H+Zat ) V}f+1)($ﬁl1)>

i=1

By Lemma 9 and our assumption

QZ(Bh) Qh(whaam 1= 0H+5t Zat h+1 Vh+1)(xh+1)

=1
<1[t:0]H+gaph($Zvah Zat hil Vif+1)($23r1)
1 7 i * i
S(L+H>(hhmH+§:aAWﬁl—Wﬁﬂ@ﬁﬁ>. O
=1

The next step is to replace the future regret to V* with the future regret of V™%, so that we can solve
for the h = 1 case recursively.

Lemma 11 (Clipped recursion). For any § € (0,1) if B = 2>.'_, aib(i). With probability at least
1-46/2,Vh e [H],k € [K],
K

: gapy, (2, af)
’;(Vh )(zF) <Z (1 + > (Hl[nﬁ_o} +£,’f+1 + clip [5% | %
1 2 K k
w14 ) Tk - vk
k=1
where §Z+1 =E [fo-u( ) — Vhﬂf1( ) |xfwaﬁ] - (Vif-;-l Vhﬂ+1)(xh+1)
Proof.
wk ok

ViE(a) = Vi (#) < max  Qp(B) — Qh (z,ab) = Qi (BE) — Q. (7, ak)

Berelk (z)

= Q) (By) — Qh (), ai) + Qp (), ay) — Qh (x,ak)
1 P . . . gapy, (xF, af})
:<L+H><yFwH+;;%ﬂﬁ4—%HQ@ﬁﬂ>+mm{&|égﬁlh

7Tk C
+ (Vi = Vi) (@hgr) + -
Summing over the episodes, let nf = n¥ (BY) and k;(BY) be the episode where BY or its ancestors
are sampled for the ¢-th time.
K

K k ok
gapy (ah. o)
> vt e < ) ( ) (Mo + cinfs, S0 0L))

k=1

K nh
ki B ki B
" )ZZM (VEED _ye ok B

k=11i=1

K
+ Z ((Vh:-l - Vhﬂjl)(xi-&-l) + fi]§+1) :
k=1
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Using the observation in Jin et al. (2018); Song and Sun (2019), for the second term we can rearrange
the sum and use Lemma 7

K nf

K [eS) R
k (BF) * Bh) k * k ny,
E ,E , h+1 Vh+1 Ty E Vh+1 —Vh+1)($h+1) E Oy
k=1

k=11i=1 t=nj,

K
1
(14 ) S0 - Via)ieko)
k=1

IN

Since Vh’fl(z’ﬁﬂ) < Vi (af ), we have

2 K K
1 mt
(1 - H) Y Vil = Vi) (@h) + ) (Vi = Vi) (@)
k=1

k=1
1 2 / K K .
< (1 + H) <Z(Vf+1 Vi) (@hy) + Z Vi — Vhw+1)(x]1§+1)>
k=1 k=1
1\2 K .
=1+ > (Vi = Vi) (k)
k=1
So we have
K K
L 1 . gapy, (, ar)
SV =i k) <Y (1 + H> <H1[nﬁ_0] +&F L +clip [gn,ﬁ | 1}; +h1 h
k=1 k=1
1\? & "
+ <1 + H) Z(th+1 - Vhﬂ+1)(x§+1)' O

k=1

There are two terms that we need to bound. The &}, term can be bounded by a concentration
argument as shown in Sinclair et al. (2019).

Lemma 12 (Azuma-Hoeffding bound, Lemma E.9 from Sinclair et al. (2019)). Forany § € (0, 1),
with probability at least 1 — §/2

H

k
> & <2V2H3K log(AHK/5)
h=1k=1

The clipped B; term requires a more refined treatment to relate it to the zooming number or zooming
dimension. Recall our definition of the near-optimal space

Pi?.,r ={(z,a) : gap,(z,a) < e},
where ¢; = Q(d%jl) + 2L. Define the stage-dependent zooming number as
Zp,e = inf{d > 0: |P}?;\ <erd.

The following is our key lemma that bounds surplus 3; using the zooming number.

Lemma 13.
K ap, (7, a A
SN clip[B % Z H31og(4HK/3) + Ldumay)
h=1 k=1 h=1
. * d : K’I“O
. f Npmk Q max
T()G(lor,ldmax] Z r (Ph,r) r +dmax

r=dimax2~1,r>70
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Proof. Let cg = 16(\/H31og(4HK/$) + Ldmax). By Lemma 9 we have

f f

2 2
Let nmin(B) = i (‘Tl'(“g;) ,and Npax(B) = (f'&?’;) . Considering Lemma 8 and the fact that a ball
inherits samples from its parent, we know that for all & and k,

nmin(B> S nZ(B) S nmax<B)

We rearrange the sum for each ball.

K
3 clip {6@ Loh o Oh

k<16 H310g 4HK/(S +Ldmax

nmax(B)
e <

. 1 | gap,(B)
1 | &R\ P
BGZPKn nZ(B)Clp[Q‘/ﬁ| H+1
Nmax (B)

<o X3 dip| o B

BePK n=nmin(B)

The last step is due to the fact that c; > 1 and if 2 < gaz’jr(f ) then ﬁ < %AB) Now, ignoring
clipping, the inner sum can be bounded by
”mi(B) 1 dmax
Vo (a2 T(B)
Zo 1)

For clipping, let gap,(B) = min(, q)c g gap; (z, a) be the gap for a ball B. We consider two cases.
Case 1: gap, (B) > M, we have
1 1 _ 2r(B) < gap;, (B)

S - =
\/ﬂZ(B) \/nmin(B) dmax H+1

So in this case the regret on ball B is always clipped.

Case 2: gap,,(B) < 24LH)r(B)

max

Let (z., a.) be the center of B and (x,,, a,,) € B be the point that has the minimum gap, i.e. the
point that achieves gap,, (B). Using the assumption that Q* and V* are Lipschitz:

gapy, (e, ac) — gap, (B) = Qj (xe, aj (xc)) — Qf (we; ac) — (Qf (Tm, ajy (2m)) — Qp(Tm, am))
< 2Lr(B)
So we know that all the points in B have small gaps relative to r.
2(H + 1)r(B)

dmax

gapy, (z¢,a.) < gapy, (B) + 2Lr(B) < +2Lr(B).

Thus, we have (z., a.) € PQ* - Now we are ready bound the sum. Note that for a ball B € Pk,
either B gets clipped, or the center of B isin PQ . Since all the balls of radius r are at least r

apart, we can have at most N}«’aCk(Ph ,-) in the latter case.

K
: gapy, (3, af
Zchp [ﬁng | gapy (T4, ay)

:| Nmax (B)
Pt H+1

. 1 ap, (B
>3 il | B2

BePK n=nuin(B)

x 2d ax 2K7"0

<cy, inf Npeck(pQy Zomax | 220
r0€(0,dmax] red ;l >0 T ( h,r) dmax

2

The second term uses the fact that for any ball B with r(B) < r¢, we have 1y, < % (d“A) . O

To
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Now we are ready to prove Theorem 1.

Proof of Theorem 1. We apply Lemma 11 recursively.

K k

> (Vi =V )(ah)

k=1
< = 1 k : gapl(ac’f,a’f) 1\ & k Nk
(H+1)+kZ:1 1+E & + clip 5n1;|H7+1 + 1+ﬁ 1;(‘/2_‘/2 )(23)
H [\ A [ \2h-1 K gap, (2%, k)
<o) w3 (o) X (dhaan ] SR

2 LA gaph(‘rk ak) k
<9H* + 92 Z(Chp {@L’; | H—s—hlh} + &)

Note that > (1+1/H)?=* <2 (1+1/H)")? < ¢*H < 9H. Finally,
K

H K k k
k Nk 2 . gapy, (, ay) E
>0 b < ot 95 et g | EEER | wef

H
< 9H? +18\/2H3K log(4HK/6) + > _ 288(\/H?10g(4H K /6) + Ldmax)
h=1

K’l‘o

dmax

. k * dmax

X inf E NPk (PR +
r0€(0,dmax]) ) ) r

r=dmax2"%T2>T0

H
- N Kr
= H3/2 inf Npack Q max 0
O 1mn ] § § r (Ph,r) r +

r0€(0,dmax ) d
0 ( ma. h=1 T:dmax2_7’,’f‘2’l‘o max

+0 (H2 + H3Klog(1/6)> . O
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