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A Mathematical proofs and derivations

Proposition 1 (Intersection-free). Any deformation map in d spatial dimensions, Φ : Rd 7→ Rd,
induced via a spatio-temporal continuous flow function f : Rd+1 7→ Rd, cannot induce self
intersection of a continuous manifold Ω throughout the entire deformation process.

Proof. Let xa,xb ∈ Ω be two points on the manifold, such that:

xa(t = 0) 6= xb(t = 0) (12)

Assume that the two points intersect at xa = xb = x̃ time t = t̃ ∈ (0, 1]. The location at time t = 0
can be found via:

xa(t = 0) = xb(t = 0) = x̃ +

ˆ 0

t̃

f(x(t), t)dt (13)

which contradicts Eq. 12.

Proposition 2. xi(t) = xj(1− t) is a sufficient condition for bijectivity.

Proof. By respectively setting t = 1 and t = 0, we obtain:

xi(1) = xj(0)⇒ Φijθ (xi) = xj for t = 1 (14)

xi(0) = xj(1)⇒ Φjiθ (xj) = xi for t = 0 (15)

We now replace xj from (14) into (15) (and analogously for xj) showing that:

Φij(Φji(xj)) = xj (16)

Φji(Φij(xi)) = xi (17)

are nothing else than the bijectivity conditions.

Proposition 3 (Bijectivity condition on f ). A sufficient condition on the flow function fθ for defor-
mation bijectivity is f jiθ (x, t) = −f ijθ (x, 1− t), t ∈ (0, 1].

Proof. We start by replacing (3) (and the equivalent for ji) into (16), and employing Proposition 2.(
��xi +

ˆ 1

0

f ijθ (xi(t), t) dt

)
+

ˆ 1

0

f jiθ (xj(t), t) dt =��xi (16)← (3) (18)

ˆ 1

0

f ijθ (xi(t), t) dt =

ˆ 0

1

f jiθ (xj(t), t) dt [t← (1− t)] (19)

ˆ 1

0

f ijθ (xi(t), t) dt = −
ˆ 1

0

f jiθ (xj(1− t), 1− t) dt [xi(t) = xj(1− t)] (20)

ˆ 1

0

f ijθ (xi(t), t) dt =

ˆ 1

0

−f jiθ (xi(t), 1− t) dt (21)
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Which is satisfied ∀t ∈ (0, 1] and via the constraint:

f jiθ (x, t) = −f ijθ (x, 1− t), t ∈ (0, 1] (22)

Proposition 4 (Volume conservation). Suppose V is a compact subset of Rd. For d = 3, V is the
three-dimensional volume, and ∂V is the surface boundary of V . Given a deformation map in d
spatial dimensions, Φ : Rd 7→ Rd, induced via a divergence-free (i.e. solenoidal) spatio-temporal
continuous flow function f : Rd+1 7→ Rd, ∇ · f = 0, the volume within the deformed boundary
Φ(∂V ) remains constant.

Proof. As per divergence theorem, the flux (f · n) across the boundary ∂V integrates to zero:
‹
∂V

(f · n) d∂V =

˚
V

(∇ · f) dV = 0 (23)

Theorem 1 (Existence of vector potential). If f is a C1 vector field on R3 with∇ · f = 0, then there
exists a C2 vector field g with f = ∇× g.

Proof. This extends from the fundamental theorem of vector calculus, and is the result of the vector
identity∇ · (∇× g) = 0.

B Implementation details

B.1 Neural architecture
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Figure 6: Backbone flow architecture

We employ a variant of the IM-NET [11] architecture as
our backbone. The complexity of the flow model is param-
eterized by the number of feature layers nf , as well as the
dimensionality of the latent space c. In the case with no
implicit regularization, we directly use the IM-NET back-
bone as the flow function hη(·) (in Eqn.6). In the case with
implicit volume or symmetry regularization, we use the back-
bone to parameterize gη(·); see Figure 6 for a a schematic
of the backbone. We do not learn an encoder, and instead we
use an encoder-less scheme (Sec. 3.3) for training as well as
embedding new observations into the deformation space.

B.2 Training details

ShapeNet deformation space (Sec. 4.1). For training ShapeFlow to learn the ShapeNet deforma-
tion space, we use a backbone flow model with nf = 128 feature layers, use the ReLU activation
function, learning rate of 1e− 3, a batch size of 256 (across 8 GPUs), and train for 204800 steps. We
train using an Adam Optimizer, and we compute the time integration using the dopri5 solver with
relative and absolute error tolorence of 10−4. We samples 512 points on each mesh to use as proxy
for computing point-to-point distance. We enforce symmetry condition on the deformations. We
do not enforce isometry and volume conservation conditions since they do not apply to the shape
categories in ShapeNet. For the reconstruction experiment (Sec.4.1.1) we use latent dimensions of
c = 128, as a compact latent space allows better clustering of similar geometries, improving retrieval
quality. For the canonicalization experiment (Sec. 4.1.2), we use a c = 512, since a larger latent
dimension mitigates distortions at the canonical pose.

Furthermore, after training the deformation space, for embedding a new latent code, we initialize the
latent code from N (0, 10−4). We optimize using Adam optimizer with learning rate of 1e− 2 for
30 iterations. Then we finetune the neural network for the top-5 retrieved nearest neighbors, for an
additional 30 iterations.
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Figure 7: Random 5× 5 examples of shapes in the deformation space. The diagonal shapes (in green)
are the identity transformations for the shapes. The identity transformations are able to preserve
the original geometric details almost perfectly, highlighting the identity preservation capability of
ShapeFlow.

Human deformation animation (Sec. 4.2). For human model deformation, since we are only
learning the flow function for two, or a couple of shapes, we can afford to use a more lightweight
model. We use a backbone flow model with nf = 16. We use the Elu activation, since it is C2

continuous, allowing us to parameterize a volume-conserving divergence-free flow function. We use
the Adam optimizer with a learning rate of 2e− 3. For improved speed, we use the Runge-Kutta-4
(RK4) ODE solver, with 5 intermediate time steps. For the best performing result, we use the
divergence-free parameterization, as well a edge loss weighting factor of 2.0. We optimize for 1000
steps.

C Additional analysis and visualization

C.1 Deformation examples
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Figure 8: Deformation of shape exam-
ples in the deformation space via an RK4
ODE solver.

We show additional examples of the deformation between
random pairs of shapes in the deformation space. We
present the visualizations in Fig. 7. We draw random
subsets of 5 shapes at a time, and plot the pairwise defor-
mations of the shapes in a 5× 5 grid. One takeaway from
this is that when the source and target are identical, the
transformation amounts to an identity transformation. By
transforming the shape to and back from the “hub", the
geometric details are almost exactly preserved.

C.2 Effects of integration scheme

We further study the impacts of the ODE solver scheme
on the shape deformation. We note that for the ShapeNet
deformation space, it involves much more shapes (N =
4746) than the case of human frame interpolation, there-
fore it involves much drastic deformations. A fixed-step
solver, such as the RK4 solver, is not able to accurate
compute the dynamics for the individual points.

Numerical error accumulated during the integration step leads to violations of non self-intersection,
identity preservation, resulting in dramatically unsatisfactory deformations between shapes.
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