A Missing Proofs

A.1 Proof of Lemma 1
Proof. For any querying strategy that is (¢, §*4¥)-private, it must satisfy P(err(X?®d¥, f) <

€2V) < 524V We choose function error to prove this lemma. Suppose the adversary’s estimator
X2dv is obtained through the proportional-sampling, then we have

P (err(Xadv f) < adv) ZP (Xadv _ )IP (err(Xt,f) < eadv|gadv — Xt)

S P(IX — o) < /L)
- T K

where L is the Lipschitz constant of function f. To ensure (¢*4V, §24V)-privacy, it deduces that

1 T
T> gadv (ZP(”Xt — 2| < EadV/L)> . ©
t=1

Furthermore, note that f is uniformly-distributed among ', we have following

®)

T

YOP(IXe —at < /L) =Y > P(IX: -2t < /L] &) - P(é)

t=1 t=1 ke[K]

T
= P(X: € B0k, /L) | &)
t=1

This proves the lemma.

For adversary’s strategy defined in (4), the proof is slightly different and we include it below for
completeness.

Foreach k € [K],let 'y, = {X; : X; € B(0))}:>1 denote the set of queries that lie within the ball
B(0y, €21 /L). For the adversary’s estimator defined in (4), we also have following reduction to the
adversary’s probability of correct estimation:

P (err(f(adV, f) < EVah € B(6y, /L) ) 23] < eV /Liz% € BBy, /L))

P (1%
_ ( v = Oy |z; € B(6y, adV/L))

|Fk‘ adv

E (|rk.| | x; € meead"/m)
- .

E

Note that [I'y| = >°,_; 1{x,eB(6,)}- Thus, we have that

Y1 P(X; € B(Oy, /L) |§k)
T

P (err()?adV, ) < ¥t € BBy, e /L)) >
This is the desired result in the lemma.

For point error, the above analysis can be easily carried over by adjusting the term €24V /L to €24V, [

A.2 Proof of Lemma 2

Proof. We note that conditional on event &, such estimator M7 can be defined as

M\T(XT,YT): argmin  err(Xr, fm), (10)
m:fm €F' (0k)
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which simply predicts the function in F’ for which the error of )/(:T is the smallest. Since )A(T is

o(XT,YT)-measurable, the estimator ]/W\T is indeed a function only of the information available to
A after time T'. We define, for each f; € F'(0)), the event

& £ {err()?T, fi) > e}.

Indeed, if &; does not occur, then from the fact that 7(f;, f;) > 2¢ for all j # 4 and from (3) we
deduce that

err()/fT,fj) >€e> err()/fT,fZ-), Vj # i.
So it must be the case that ]/\4\T = 1. Therefore,

5> (&M =1,
Z 8, FEIM =58

> max P(My #i|M =i &) > P(My # M|&).
FEF(0r)

In addition, we note that

P (err()/(\'T, f) > e) = ZP (err(XTaf) > e fk) -P(&x)
)

=P (err()?T,f) >e| fk) .
Thus, we have IP’(Z\/ZT # M | &) < 4. Then by Fano’s inequality,

1 (M; My | &) +log2
log |77 (01|

Rearranging the above inequality will yield us desired result. [

52P(A7T¢M|§k)z1—

A.3 Proof of Lemma 3

Proof. Our proof is similar to the information radius bound established in [11] where the crux
difference is that we mainly operate with the information that is additionally conditional on the event
;.. First, note that by chain rule of conditional mutual information, we have

I(M;ngk) <I(M;XT Y7 | g&) (11)
T
=3 T(M; X0, Yy | XY ) (12)
t=1
T T
=Y (M X [ XULYTLG) + Y T(MY | XYL E) (13)
t=1 t=1
T
=3 T (M;Y, | XL Y4, (14)

~
Il
-

where (11) is due to the data processing inequality, (12) and (13) are the chain rule of conditional
mutual information, and the last equality (14) is the reason that the choice of X, is independent of M
given the information (X*~1 yt=1),

Note that for a random triple (X7, X5, X3) € A1 x Xy x AXjs, if X5 and X3 are conditionally
independent given X; given P, then the conditional mutual information between X5, and X5 given
X 18 defined as:

I(X2; X5 | X1) = Dk, (P(Xo, X3 | X1)||P(X2 | X1) x P(X3 | X1) | P(X1)) (15)
= D1 (P(X3 | X1, X2)|P(X3 | X1) | P(X1, X2)) (16)
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where (16) is due to the Bayes’ rule. Observe that Y; and M are conditionally independent given the
information (X*,Y*~1 &), in other words, M — (Xt Y=L &) — Y} is a Markov chain. Thus,
fix some ¢ and consider the conditional mutual information we obtain in (14),

I(M;Y, | XN Y"1 &)
=Dk, (P(Y; | M, X", Y"1 &)|[POYT | XY &) [ P(M, X5 Y &), A7)

For any estimator M:XTxyT - {1,..., N}, and any sequence of conditional probability
measures {Q(Y;| Xt Y'=1)}T_ | on {Q, B} that satisfying following conditions:

P(Y, | XL, Y"1 <Q(Y; | X', YY), vt e [T, (18)

where P < QQ implies that IP is absolute continuous w.r.t. Q. Note that by definition of conditional
mutual information, we can write the (17) as follows:

t t—1
(17):E[10gdP(n|M,X,Y ,sk)}

dP(Y, | Xt,Yt-1,&,)
_ E[l dP(Y; | M,Xt,w—l,m} _E[b dP(Y; | X', Y1 &)
dQ(Y; | X1, Yt-1, &) dQ(Y; | X1, Vi1, &)
= Dxr (P(Y: | M, X", Y"1 6)[| QYT | XY &) [ P(M, X, Y1 &) —
Dxr (P(Y; | XYL g)||QY" | X5 YN &) | P(XL, YN &) (20)
< Dk (P(Y: | M, X', Y71 6)]| QYT | X5 Y &) [ P(M, XN, Y1 &) @D

19)

where (19) and (20) are from the condition (18), and (21) is due to the fact that the mutual information
are non-negative. Taking the summation over time ¢, we obtain that:

T
I(MM [ &) <Y D (P(Ye | M X5 Y 6) [Q(Y: | XL YN &) | P(M, XY g)
t=1

T
=> Dxu (P(Ye | M, X3, &) | Q(Ye | M, X0, &) | P (M, X', Y71 &) (22)
t=1

where (22) is by hypothesis on oracle’s behavior: (X*~1 Y*=1) — (M, X;) — Y; is a Markov
chain. Thus, we can write P(Y; | M, Xt Y71 &) as P(Y; | M, Xy, &).

At each round ¢, take Q (V; | X*, Y71 &) = Q (Y | Xy, &), and if we set Q (Y; | X¢, &) to be
P(Y:| M, Xy, &) with fps uniformly distributed in F”(6),), we will have following:

1 .
Q(V: | Xi,61) = Wi@%qpm | M =i, X, &)

:]EJW]P)()/I‘ | MvXtvgk)'

Then, introducing an independent copy of M (M’), and noting that Q(Y; | X, &) =
Ex P (Y: | M, Xy, &), we can obtain following upper bound of the conditional mutual information
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we are operating on:

T
I(M; M [ &) < EyyDxn (P(Y: | M, X0, &)I[P(Y | M/, Xy, &) | P(M, X,,&))  (23)
t=1

T
= Eunrx,.e. B D (P(Y: | M, Xy, &) [P(Y: | M/, X1, &)

t;l
:Z Z ]P)(M ‘ Xt7€k)P(Xt l gk)P(é-k:)E]\/f’DKL (P(}/} | M> Xtagkt)”P(Y% | M/7Xt>§k))
t=1 M, X &

T
=3 Y P(Xp=a|&) Y P(M|X,=28)P(&)-

t=1zeXx M,&p
En Dir (P(Y; | M, Xy = 2,&)|[P(Y; | M, Xy = 2,&))

T
= (P(X: € B(6r) | &) EnEar Dic (B(Y: | M, Xy € B(6r), &)[[P(Y | M, X, € B(0), &)+

P (X; ¢ B(0k) | &) ExrEar Dir (P(Y | M, Xy ¢ B(6k), &)|[P(Y: | MY, X, ¢ B(Qk%fk)))’
(24)
where we have used the convexity property of the divergence and inequality (23) is then the result
of Jensen’s inequality. The last equality (24) used the fact that Nature selects function f uniformly

at random. The expectation E,; (or Ejy) is taken over fas (or fjss) which is uniformly distributed
over F'(0y). O

B Proofs for main results

B.1 Proofs for Theorem 2

Proof. Let Ac = {aq,...,an}and Agae = {01, ...,0k} denote maximal 2e-packing set, 2¢2V-
packing set in [0, 1], respectively. We define following function subclass F' = {f,(z)}aeca. C
]:Abs:

falz) =]z —al, a€A.. (25)
It is easy to see that, N > 1/e and K > 1/€*V. Furthermore, we also have 7(fa,, fa,) =

la; —aj| > 2e. Now let f,,, be the function selected by Nature among F”, and recall that £, denotes
the event {aps € [0 — €24V, 0), + €9V]}. Then, by Lemma 2, we have

I(M; Mr|gy) > (1 — 6)log |[F'(6x)] — log2, (26)

where |F'(6;)| = €4 /e by construction. On the other hand, we can also upper bound the above
conditional mutual information. From the fact I(X;Y|Z) = H(X|Z) — H(X|Y, Z) and entropy
H(-) is nonnegative, we have I(X;Y|Z) < H(X|Z), thus
I(M; Mrlé) < H(YT &) 27)
T-1

<HMG) + Y HYinY1,. ., Y &) (By chain rule)

t=1
Note that, by definition, we have
H(Yi1 Y1, Yo &)= > PYVi=y1,.... Ve = gl &) HYin [Yi = y1, .. Ve = 44, &)

Yi,--Yt

(28)
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Observe that, conditional on the event &, if an algorithm A, (y1, . .., y:) outputs the next query X1
which is smaller than ), — 23", then we must have Y; ;; = —1, while if it is larger than 6, + €1V,
then we have Y;,; = +1. Moreover when X, is in the range [0} — €23V, 0, + V], H(Y;11]")
can take only two values, namely +1 and —1. Thus, H(Y; 1| X¢41 € [0k — €23, 0), + 24V]) < 1.
The above observations give us following result

S PO =y Y = wlG) HY Vi =1, Y = 5, &) (29)
Yis--Yt
= > PYi=w1,. . Yo =yl HYia Y1 =y, .. Yo = 51, &) (30)
YooY Ae (Y15y0) EB(Ok)
< P(Xit1 € B(Ok)|Ex)- €Y
With inequality in (26), we conclude our result. O

B.2 Proofs for Theorem 3

Proof. The proof is overall similar to the one in secure binary search, we also construct two packing
sets A and A .av to set up our analysis. The only difference is how we bound the KL divergence of
two probability measures induced by two randomly selected function instances in F'. In particular,
note that conditional on event &, i.e., z* € B(0) = [0 — €24V, 0, + ¢4V], for any function
f in F'(6y), when the query X; is smaller than 6;, — ¢*%', we have P(Y;4; = —1) = p and
P(Y;41 = +1) = 1 — p; while the query X; is larger than 6, + ¢V, we have P(Y; ;1 = +1) = p
and P(Y;41 = —1) = 1 — p. One of important observations is when the query is outside of B(6},), the
gradient information provided by the oracle will have the same probability measure for all functions
in 7'. This implies

DKL(P()/t | M7 Xt ¢ B(ak%gk)”]?(n | M/aXt ¢ B(ek)agk)) = 0) v.f]\/[vf]\l’ S ‘Fl(ek) (32)

On the other hand, when X; € B(6y), for any fas, farr € F'(0), we can upper bound the KL
divergence as follows:

1—
+ (1 —p)log pp.

p
Dyt (P(Y: | M, X, € B(0x), &)IP(Ye | M, X € B(0k), &k)) = plog
Thus, according to Lemma 3, we have:

I(M; Mrl&) < e(p) S P(X, € B(0:)[&), (33)

where ¢(p) = (2p — 1) log(p/(1 — p)). Putting together the pieces yields our result. O

B.3 Proofs for Theorem 4

Proof. We first prove the result for point error, the result of function error can be achieved by a
Jensen’s inequality (please see the end of the proof). The general technique of our proof is rather
similar to that of statistical minimax analysis for oracle complexity in stochastic convex optimization,
but the construction here is a bit more intricate. Specifically, we will pick two similar functions
F' ={f1, f2} in the class F and show that they are hard to differentiate with only 7" queries to the
oracle ¢(1). A significant difference to the standard minimax function construction, as will be shown
shortly, is that the way how we construct such f and fs: our goal is to make the information gain on
differentiating f; and fo will be zero as long as the learner queries the points a bit far from optimal
points. In particular, consider the domain X' = [0, 1}‘{, we first define following base functions, which
will be used for us to construct f; and fa: fo(x) = collz — 2| hi(x) = e1]|x — (v} — ¢/Vd -
To)||F + ¢z, and ho(z) = c1||x — (xf + €/Vd - Ta)||* + ca, where x5 = (1/2,...,1/2). We now
define functions f; and fs as follows:

fi(x) = max{fo(x),h1(x)}; fo(x) = max{fo(x), ha(z)}, (34)

where ¢, c; are constants ensuring f1 and fo are L-Lipschitz. Convexity is maintained by the
maximum operator over two convex functions. Let ' be one of the solutions for fy(x) = ha(x),
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31 Jo(x) 3

(a) (b)

Figure 2: A illustration for construction of Convex functions when x = 2 and d = 1. (a) We use
functions fy(z) = 0.5z — 3|%, hi(z) = 02|z — (3 — 0.5)]*> — 1.6 and hy(z) = 0.2]z — (3 +
0.5)]? — 1.6 as base functions. (b) We then construct fi(z) = max{ fo(z), h1(z)} and fo(x) =
max{ fo(z), ha(x)}. In this plot, we choose these numerical constants to ensure that the functions f;
and f5 are indistinguishable based only the function and gradient information when the query points
are outside adversary’s estimation region.

which 2’ should depend on the constant c;. We now chose ¢y to satisfy following condition:
|z — 2’| > €24V, By and large, f; are f, are constructed such that the learner has to strenuously
nail down her search within a region which is near to the minimizer. Note that, even though we
only construct two functions in F’, we can still ensure that each estimation ball B(6},) (e.g., when
d = 1, the subinterval [2(k — 1)e2¥, 2ke24V]), for adversary, contain the same number of hypothesis
functions we construct. To see this, we can just add one more randomization before the Nature draws
function f € F. In particular, we can just replicate a same function subclass for each estimation ball
by translating the above F” along the domain X". Thus, the Nature can just first uniformly sample a
function subclass, then sample a function f from that subclass. By construction, we can ensure the
quantity F'(6)) = 2 for each estimation ball B(6},).

Also, note that by triangle inequality, upon defining 7(f1, f2) = ||z}, — 7, will guarantee us
the property in (3). Moreover, let .JJ denote the region J = {z : © € B(z{, ||z — «’||)} which may
contain the ball B(6,) (this is by our condition for cz). Noticeably, the function f;(z) and fo(x) are
different only within the region J, while they are indistinguishable based only on function value and
gradient information calculated outside J.

We now proceed to utilize the information bounds we derive in earlier sections to prove our main
result. Note that, by construction, at most two functions whose x*s will locate in the region J, same
for B()). Thus, given the realized selected function index M € {1, 2}, by Fano’s inequality, we
have

I(M; Mrlé) > log2 — ha(8), (35)
where ho(d) = —dlogd — (1 — §)log(l — ¢) is the binary entropy function. Let Q =
3 Z?Zl P(Y;|M = i, X;), we then have

T
I(M; Mrlen) < 37N P(Xy = 2) - Eagar D (P M, Xy = 2,6) [PV M, X, = 2,&)) -
t=1zeX

Note that by Lemma 3, the RHS of the above inequality can be divided into two parts: one is for
summation over = ¢ B(6},), while another is for 2 € B(6y,).

By construction we know that f; and f, are indistinguishable when = ¢ .J, the same holds for
2 € B(0y). Thus, the learner will obtain no information on which function she is optimizing if her
queries are outside of the domain J. In other words, the KL divergence will equal to zero when
x ¢ J:

DKL (P(E‘Ma Xt == x7£k)||P(}/t|M,7Xt - 'I;gk)) = 07 V‘T ¢ J (36)
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We now proceed to bound the divergence Dk, (P(Y | M, X, &) |P(Y | M', X, &) when z € J.
Recall that the response from the oracle at the query point x contains the value of f(x) and its
gradient information at z: g(z). In particular, let y; = f(x) + w; and y2 = g(x) + wa denote
the noisy function value and noisy gradient value, respectively. Then y; and y- are conditionally
independent given M = i and X = =z, for the Gaussian oracle, they can be represented as follows:

]P)(Y ‘ MZi,X:xafk) :]P)(yl | M:ZaX:x7£k)]P(y2 | M:iaX:xagk)7

where P(y, | M =4, X = z,&) = N(fi(z),0%) and Py | M =i, X = x,&) = N(g:(2), 0°Za),
and Z,; denotes a d—dimensional identity vector. Therefore, we can bound the divergence

DkL(P(Y|M =i, X =,&)|P(Y|M =j,X =z,&))

=Dki (P11 |M =i, X = 2,&)|P(ya|M = j, X = 2,&))+
DKL(P<y2|M =i, X =2,&)|P(y2| M = j, X = x,&))

=Dxv (N(fi(x),0)[[N(f;(2),0?)) + Dxr (N(gi(x), 0°Za) [[N(g; (), 0°Za))

1 2
= ([ﬁ(az) — [@) + lgi(@) = g;(@))
Take the supreme over X and all possible (4, j) conditional on the event &; will yield us following:
DxL(P(YIM =i, X = 2,&)|P(Y|M = j, X = z,&))

1
< s o (@) - @ + g - gi@]7)
fi,f;€F (61)

Thus, back to Lemma 3, we have

I(M; ]\//-TT|§k)

zEJ o2

< ZP(HXt _ JT*H < 6adv) . max [fl(x) - fQ(x)]Q + ”91(3:) - gQ(x)HQ
t=1

i k—1 —1 2
c] . €Ly €Ly 9 . €Iy s
ooy (- - s+ )+ (\%‘ﬁ -7+ 7
T
ZP(HXt — | <)
t=1
€2r—2 T )
0S5 ) Trix -l <),
t=1
As a consequence, we have following:
o 2
o?(log2 — ha(d
D P(IX: —a*|| < ) 20< : gezw A ))) (37)
t=1

Putting together our bounds with the Equation (9) will give us desired secure oracle complexity for
point error. For the result of function error, note that given x > 1 we have

inf sup B [|f(£r) — /|| = inf sup BN Sr - a3, (38)
A fer A feF
> inf sup E[)\H)?T —x¢|]" (By Jensen’s inequality)
A feF
Invoking Markov inequality will give us the secure oracle complexity for function error. O
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X, X5 Xs X*
| . . . . , . , .

| + + +
0 5adv 26adv . Saadv L (S _ 1)6adv 1

Figure 3: A graph illustration on Algorithm 1. The length of each shade interval is 2e. The black dots
{X1,X>5,...} are the queries for last phase, while the red dot is the location of minimizer.

Algorithm 1 Secure Learning Protocol

1: Input: S := [1/6°V|, K := [T/S], exponent x > 0, convexity parameter A > 0, confidence
6 > 0, subgradient bound W.

2: Initialize x; € [0, 1] arbitrarily and set G; = {g1 }, divide [0, 1] into subintervals with the equal
length of being 524",

3: fork=1,..., K do

4:  Letx = EpochGD(k, A\, §, W, K, Gy.).

5:  fors € [S] do

6: Query the oracle at the point z(x_1)s4s41 = (s — 1)6*V + (z — (J(&,6*V) — 1) §24V).

7 if s = J(7,6°) then

8: Record the gradient g(j_1)g4s+1 obtained from the oracle: Gy, <= Gr U {g(k—1)s+5+1}-

9: end if

10:  end for

11: end for

12: Output: Learner’s estimation: Z.

B.4 Algorithm and the Proof for Theorem 5

For notational simplicity, let .J (z, §) denote the index of subinterval which contains the point
when [0, 1] is uniformly divided in subintervals with the length of |1/6*" | and let K = [T/S].

Proof. We now establish the privacy guarantee when the adversary’s error measure is point error. The
proof can be similarly carried over to function error. Recall that the learner actually performs parallel
EpochGD on the S subintervals {((s — 1)6*4", s6*4]} ;¢ (). Since the adversary only observes the
queries, and he is not aware of the learner’s confidential computation oracle, he learns that X* is
contained in one of these S subintervals. Moreover, due to the strictly symmetrical querying over
these subintervals, the adversary also cannot tell which of the subintervals contains X *. Specifically,
let {X}c[s) denote the learner’s last phase queries. Then the adversary knows following:

1-46
U SR(X, - X2 <1, Vsels)

Thus, at the end of the last phase, the adversary will know that X * belongs to one of the subintervals
{[Xs — € X, + €|}e[s) With high probability, where ¢ = O((T§*1)~z=2). Without loss of
generality, assume the adversary is endowed with an uniform prior knowledge on where X * is and
assume the maximum uncertainty for X*. Then it can be computed that the adversary’s posterior

density of X * is:

o [(1=0)/(28¢), Yz e U [Xs—e€ Xs+¢
fx~(x|queries) = { 5/(1 - 25¢). ! . (39)

Since 4 is a small value (i.e., < 0.5), thus, for any subinterval £ C [0, 1] with the length of 2¢*, it is
adversary’s best strategy to narrow down his estimation region which could cover one of subintervals
{[Xs — €, X + €] }se[s)- Now, let pu(+) denote the Lebesgue measure of subsets of [0, 1], note that

(LU (X, — e, X, +€]) < 26

Together with the Eqn. (39), we find that, for any adversary’s estimator X2d¥_ we have

- 1-4 4]
P(| XY — X*| < €*¥¥|queries) < -2e+

. adv
2S¢ o5 (2~ 20 (40)
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Algorithm 2 EpochGD (k, A\, §, W, T, G)
1: Initialize :c% =z,e=t=1.
- 1/k
2 Initialize Ty = 2Co,m = Cy 2772 Ry = (S30)

3: while Y, T, < T do
40 if|G| < i, T; then

5 Get the newest element in G, denote it by g;.

6 Set £ :=[0,1] N [x§ — R, z$ + Re].

7: Output: z7, | = argmin, ¢ [(f — 7eg¢) — z|. > Return the value to protocol
8 Update: G.

9 Sett «t+ 1.
10:  else
11: Set z¢t! = T% Zf;l x5,

12: Output: 251 > Return the value to protocol
13: Update: G. ]

14: Set Ty = 2T, Negq = 1 - 27 %2,

c 1/k
15: SetReH:(%) Je<—e+1,t=1.
16:  end if

17: end while
18: Output: z§.

Under the assumption that 2624V < §24v, the RHS of Eqn. (40) will be smaller than 1/S. We thus
establish the privacy guarantee for any adversary’s estimators.

We prove the accuracy guarantee of the above secure learning protocol with appropriate cho-
6%22(»{21)?

sen Cp, C1, Cy. Specifically, set Co = 288log(|log T6°Y + 1] /§),C1 = “i——,Co =
2752 W2, Follow the analysis of [7, 12], we know that given a total oracle budge 7" with dividing
into a series of consecutive epochs {71, 271, ...,2°Ty, ...}, and running standard stochastic gradient
descent in each epoch, will ensure us f()A(T) —fr < (’}(T_Th—?) and |)A(T - X* < @(T‘ﬁ)

hold with probability at least 1 — § for some estimator )?T. Thus, adapted to our setting, our total
oracle budget is | 76?4 |. Plugging this into the above results will help us to get the accuracy
guarantee. As a sanity check, one can also verify that the error rate presented in our Theorem 5 can

be easily translated to match our oracle complexity in Theorem 4. O
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