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Abstract

Metric learning aims to learn a distance measure that can benefit distance-based
methods such as the nearest neighbor (NN) classifier. While considerable efforts
have been made to improve its empirical performance and analyze its generaliza-
tion ability by focusing on the data structure and model complexity, an unresolved
question is how choices of algorithmic parameters, such as the number of training
iterations, affect metric learning as it is typically formulated as an optimization
problem and nowadays more often as a non-convex problem. In this paper, we
theoretically address this question and prove the agnostic Probably Approximately
Correct (PAC) learnability for metric learning algorithms with non-convex objective
functions optimized via gradient descent (GD); in particular, our theoretical guar-
antee takes the iteration number into account. We first show that the generalization
PAC bound is a sufficient condition for agnostic PAC learnability and this bound
can be obtained by ensuring the uniform convergence on a densely concentrated
subset of the parameter space. We then show that, for classifiers optimized via GD,
their generalizability can be guaranteed if the classifier and loss function are both
Lipschitz smooth, and further improved by using fewer iterations. To illustrate and
exploit the theoretical findings, we finally propose a novel metric learning method
called Smooth Metric and representative Instance LEarning (SMILE), designed
to satisfy the Lipschitz smoothness property and learned via GD with an early
stopping mechanism for better discriminability and less computational cost of NN.

1 Introduction

A good measure of distance between instances is important to many machine learning algorithms,
such as the nearest neighbor (NN) classifier and k-means clustering. As it is difficult to handcraft
an optimal distance for each task, metric learning appears as an appealing technique to learn the
distance metric automatically and directly from the data. The most widely studied metric is the
Mahalanobis distance and it is often learned via an optimization problem [51, 17, 49]. To enhance the
discriminability of the learned metric, various loss functions have been designed, considering the local
property of heterogeneous data [15, 47, 23, 5, 38, 54, 44, 12] and the nonlinear geometry of the sample
space [24, 58, 8]. Meanwhile, to achieve good generalization and robustness, different regularizations
have been imposed to control the model complexity [31, 26, 50, and references therein]. In addition to
methodological advances, theoretical guarantees of metric learning algorithms, as well as guarantees
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of metric-based classifiers [3, 19], have been provided. In particular, generalization bounds have
been founded on the complexity measure of the model class [55, 4, 7, 46, 33, 53], algorithmic
stability [27, 19, 16], and algorithmic robustness [2]. The intrinsic complexity of the dataset has also
been considered in recent studies [46, 33].

While the data structure and model complexity play a vital role in metric learning, an equally
important but as yet poorly understood factor is the choice of optimization algorithms and the
associated parameters [42]. For example, when metric learning is formulated as a non-convex
problem and optimized by using the gradient descent algorithm, its solution is inevitably influenced
by factors such as the learning rate and the number of training iterations; the optimal models with
respect to different optimization parameters will then exhibit different generalization behavior.

Therefore, the goal of this paper is to provide a new route to theoretical exploration and exploitation
of the effect of the gradient descent (GD) algorithm on metric learning methods. To this end, we
establish a generalization bound which suggests that early stopping, smooth classifier and smooth loss
function have crucial influence on the generalization error. We highlight that the proposed theoretical
techniques do not take advantage of any property of convex optimization and are not specific to metric
learning methods; they can be used to study the generalization ability of classification algorithms
with non-convex objectives. The contributions of this paper are fourfold.

1. We show that the generalization Probably Approximately Correct (PAC) bound is a sufficient
condition for a parametric hypothesis class to be agnostic PAC learnable (Theorem 1). Compared
with the widely studied uniform convergence condition, the generalization PAC bound is a weaker
notion but has the capability to analyze the influence of algorithmic parameters.

2. To facilitate the derivation of the generalization PAC bound of a hypothesis class, we propose
a new decomposition theorem to decompose the bound into two terms that can be easily guaran-
teed (Theorem 2). The first term constrains the space of the estimated parameters of the hypothesis,
reducing it from the entire parameter space to a high-confidence subset of the parameter space. The
second term considers the uniform convergence condition of the concentrated subset.

3. Based on the decomposition theorem, we obtain the generalization PAC bound for classifiers
learned with the gradient descent algorithm (Theorem 3). The bound shows that the generalization gap
increases over iterations, thus providing a theoretical support for the practical use of early stopping.
Moreover, it shows that a Lipschitz smooth (i.e. Lipschitz continuous of the gradient) classifier and a
Lipschitz smooth loss function are sufficient to guarantee good generalization.

4. We propose a novel metric learning method as a concrete example of using the generalization PAC
bound. When classifying a test instance, the NN classifier has to store the entire training set and
calculate its distances to all training instances, thereby incurring high storage and computational costs.
To reduce these costs and improve the generalization performance, we propose to simultaneously
learn the distance metric and few representative instances which serve as the reference points for
testing; the new method is called Smooth Metric and representative Instance LEearning (SMILE).
More specific, to ensure good test performance, SMILE adopts a Lipschitz smooth classifier and
loss function and is optimized via GD with a designed early stopping mechanism. The method is
evaluated on 12 datasets and shows competitive performance against existing methods.

1.1 Related work

Generalization bound of GD with early stopping Early stopping in regularizing the model com-
plexity and its effect on the generalization ability have been extensively studied for a wide range of
methods, such as perceptron algorithm [9], kernel regression [52], and deep neural networks [36]. Our
algorithm-dependent PAC bound is motivated by [21], which proves the generalizability for models
learned with stochastic GD. Founded on uniform stability, [21] can only bound the generalization
gap in expectation. In contrast, by using the generalization PAC bound, we are able to construct a
high probability bound, i.e. the agnostic PAC learnability.

Generalization bounds for metric learning algorithms The majority of generalization guarantees
for metric learning algorithms rely on the uniform convergence property of the hypothesis class,
e.g. [19, 7]. In this paper, by viewing the learned hypothesis as a random variable, we only require
the convergence property to hold with high probability. This condition is easier to be satisfied by
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ruling out the hypotheses that will not be explored by an optimization algorithm, and is useful for
analyzing the effect of early stopping and other operators that limit search in the hypothesis class.

Generalization bounds for Lipschitz classifiers and losses [32, 18] use Lipschitz functions as
large margin classifiers in general metric spaces and provide generalization bounds for Lipschitz
classifiers. Our theoretical guarantee is different from their work in two aspects. First, in [32, 18]
the input space of the Lipschitz constant is the data space, whereas in our paper it is the parameter
space. Second, owing to this difference, the generalization bound obtained in our work has a faster
convergence in most cases. [46] derives the generalization bound for metric learning algorithms
with Lipschitz continuous loss functions. However, when taking the influence of GD into account,
Lipschitz smoothness is also important to be considered for generalization purposes. [53] uses a
smooth loss function to obtain a fast generalization. However, their work requires the objective
function to be strongly convex, which is different from our focus on non-convex problems.

Metric learning with representative instances Reducing the amount of necessary training data
as a way of reducing the storage and computational costs of NN has been extensively studied, e.g.
in [35, 57, 40]. Among these methods, DMPL [28], SNC [29] and ProtoNN [20] are most relevant
to our work, as they also learn the distance metric and representative instances simultaneously. Our
method differs from them in the loss function and regularization terms, both of which are designed in
our work to provide a theoretical guarantee on the classification performance.

2 Preliminaries

2.1 Notation

This paper focuses on binary classification problems. Let zn = {zi = (xi, yi), i = 1, . . . , n} ∈ Zn
denote the set of n independent and identically distributed (i.i.d.) training instance and label pairs,
sampled from an unknown joint distribution p(z) = p(x, y). Let h(x,w) be a function with instance
x and parameterw ∈ W ⊆ RQ. The output of h(x,w) is restricted to be a real value; sign [h(x,w)]
returns the classification decision, where sign[·] denotes the sign function.

During the training process of the classifier, given zn, a classifier or hypothesis ĥ can be obtained
from an optimization algorithm, such as GD. With a parametric classifier, ĥ can be fully represented
by ŵ as ĥ = h(x, ŵ). Rn(zn, ĥ) := Rn(zn, ŵ) := 1

n

∑
i r(zi, ŵ) := 1

n

∑
i l(h(xi, ŵ), yi) is

called the training error, where r(·, ·) denotes the risk function, l(·, ·) denotes the loss function, and
they are assumed to be non-negative. Let s ∈ S denote a fixed setting of the algorithm, including
e.g. the initial values, the number of iterations and the learning rate. The relationship between ŵ
and zn is represented as ŵ = m(zn; s), where m : Zn × S → W; m(zn; s) will sometimes be
abbreviated tom(zn) for notational simplicity. Since ŵ is a function of random samples zn, it is a
random variable.

During the test process, a test pair z′ = (x′, y′) is sampled from the same unknown distribution p(z).
The predicted value h(x′, ŵ) will be compared with the true label y′ to evaluate the performance of
the algorithm. R(ĥ) := R(ŵ) := Ez′r(z

′, ŵ) := Ez′ l(h(x′, ŵ), y′) is called the test error.

The gap between the training error and the test error, R(ŵ)−Rn(zn, ŵ), is called the generalization
gap. A good classifier should have small training error and small generalization gap so as to perform
well on test instances.

Let ‖a‖2 denote the L2-norm of a vector a and ‖A‖F denote the Frobenius norm of a matrix A.
The subscript of norm will be dropped when it is clear from the context. a[q] denotes the qth element
of a vector a. [n] denotes the set of integers from 1 to n.

2.2 Definitions

Definition 1. [48] Let (Θ, ρΘ), (V, ρV) be two metric spaces. A function h : Θ → V is called
Lipschitz continuous if ∃L <∞,∀θ1,θ2 ∈ Θ,

ρV(h(θ1), h(θ2)) ≤ LρΘ(θ1,θ2).
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The Lipschitz constant of h with respect to the input space Θ, denoted by lip(h;V ← Θ) or
lip(h← θ) for short, is the smallest L such that the above inequality holds.
Definition 2. A function r : Θ→ R is called Lipschitz smooth, if ∃η <∞,∀θ1,θ2 ∈ Θ,

‖∇r(θ1)−∇r(θ2)‖ ≤ η‖θ1 − θ2‖.

The Lipschitz constant of the derivative of r with respect to Θ, denoted by lip( ∂r∂θ ← θ), is the
smallest η such that the above inequality holds.

Some properties of Lipschitz functions will be frequently used in the paper, such as constructing
sophisticated Lipschitz functions from the basic ones and bounding the Lipschitz constant via the
gradient of differentiable functions; details are listed in Appendix A.
Definition 3. [48] The diameter of a set V is defined as

diam(V) = max
vi,vj∈V

‖vi − vj‖.

Definition 4. [43, 22] A hypothesis class H is agnostic PAC learnable if there exist a function
nALH : (0, 1)2 → N and a learning algorithm with the following property: For every ε, δ ∈ (0, 1)
and for every distribution DZ over Z , when running the learning algorithm on n ≥ nALH (ε, δ) i.i.d.
instances generated by DZ , the algorithm returns a hypothesis ĥ such that the following holds:

Pzn

[
R(ĥ)−min

h∈H
R(h) ≤ ε

]
≥ 1− δ.

3 Learnability via the generalization PAC bound

In this section, we first introduce the generalization PAC bound and establish its link with the agnostic
PAC learnability. We then propose a decomposition theorem. Finally, we apply the theorem to prove
the learnability of the gradient descent algorithm.

3.1 Generalization PAC bound and agnostic PAC learnability

One classical way of determining whether a hypothesis class is agnostic PAC learnable is to verify
the uniform convergence condition, which bounds the generalization gap over all hypotheses of
the class. However, as some hypotheses are not searched under a fixed setting of the optimization
algorithm, [6] proposes to bound the generalization gap for specific algorithms. We adopt this notion
and formally define the generalization PAC bound as follows.
Definition 5. A hypothesis class H has the generalization PAC bound if there exists a function
nGH : (0, 1)2 → N such that for every ε, δ ∈ (0, 1) and for every probability distribution DZ over Z ,
if zn is a sample of n ≥ nGH(ε, δ) i.i.d. examples drawn from DZ , the algorithm returns a hypothesis
ĥ such that the following inequality is satisfied:

Pzn [R(ĥ)−Rn(zn, ĥ) ≤ ε] ≥ 1− δ. (1)

First, we note that ĥ is regarded as a random variable in this paper. Second, while the generalization
PAC bound is a weaker condition than the uniform convergence [6, or Appendix B.2], it is still a
sufficient condition for the agnostic PAC learnability, as shown in Theorem 1. Proof of the theorem is
given in Appendix B.3.
Theorem 1. Suppose ERMH exists for a class H, where ERMH denotes the empirical risk
minimization learner over the class H. If H has the generalization PAC bound with a func-
tion nGH : (0, 1)2 → N, then H is agnostic PAC learnable with the sample complexity function

nALH (ε, δ) ≤ max[nGH(ε/2, δ/2),
2C2

r

ε2 ln 4
δ ], where the range of the risk function r(z, h) is [0, Cr].

Furthermore, in this case, ERMH is a successful agnostic PAC learner forH.

3.2 Decomposition theorem for the generalization PAC bound

Directly bounding Eq. 1 is difficult due to the random nature of zn and ĥ in Rn. To disentangle these
two quantities, we propose the following decomposition theorem. Its core idea is to use the uniform
convergence bound in a much smaller set.
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Theorem 2 (Decomposition Theorem). LetW denote the set of all possible values ofw and Ŵ ⊆ W ;
let δ1, δ2 ≥ 0. If

Pzn [ŵ ∈ Ŵ] ≥ 1− δ1 (2)

and
Pzn

[
max
w∈Ŵ

(
R(w)−Rn(zn,w)

)
≤ ε
]
≥ 1− δ2, (3)

then the following inequality holds:

Pzn [R(ŵ)−Rn(zn, ŵ) ≤ ε] ≥ 1− δ1 − δ2. (4)

Recall that h is fully parameterized by w and thus R(ĥ) and Rn(zn, ĥ) are equivalent to R(ŵ) and
Rn(zn, ŵ), respectively. Theorem 2 decomposes the generalization PAC bound into two terms which
are easier to be bounded, namely a smaller parameter space Ŵ that includes estimated parameter
vectors with high probability (Eq. 2) and uniform convergence of Ŵ (Eq. 3). In the following section,
the theorem is applied to analyze the generalization ability of the gradient descent algorithm. We
show that Eq. 2 can be guaranteed by applying the concentration inequality to the random variables
ŵ and Eq. 3 can be guaranteed based on the covering number.

3.3 Learnability of the gradient descent algorithm

3.3.1 Settings

The updating equation of the most conventional GD algorithm is as follows:

ŵ(1) = w(0) − α(1)

n

n∑
i=1

∂r(zi,w)

∂w
|ŵ(0) ;

...

ŵ(T ) = ŵ(T−1) − α(T )

n

n∑
i=1

∂r(zi,w)

∂w
|ŵ(T−1)

= w(0) −
T∑
t=1

α(t)

n

n∑
i=1

∂r(zi,w)

∂w
|ŵ(t−1) ,

where α(t) ≥ 0 denotes the learning rate at iteration t; ŵ(t) denotes the estimated parameters of
the classifier obtained after t iterations; w(0) denotes the initial parameter of the algorithm. Here
the number of iterations T and the learning rate α(t) are treated as the setting parameters of the GD
algorithm and determined in advance, i.e. s = {T, α(t), t = 1, . . . , T}. The initial weight w(0) is
assumed to be fixed.

3.3.2 Concentration of ŵ(T )

Recall that m(T )(zn; s) = ŵ(T ) ∈ RQ and m(T )
[q] (zn; s) denotes the qth element of m(T )(zn; s).

To prove that the first term of Theorem 2 holds, we set Ŵ as the Euclidean ball centered at
Eznm(zn; s) with radius ε, denoted by ball

(
Eznm(zn; s), ε

)
. The condition that ŵ ∈ Ŵ with

high probability is equivalent to the condition that m(zn; s) ∈ ball
(
Eznm(zn; s), ε

)
with high

probability. With a fixed setting s and any fixed initial parameter vector w(0), given the training
samples zn, the value ofm(T )

[q] (zn; s) is determined. In other words,m(T )
[q] (zn; s) is a function from

Zn to R. By applying the McDiarmid’s inequality (Lemma B.1), we obtain the following lemma on
the concentration property ofm(T )(zn; s).

Lemma 1. The following bound holds for any fixed s and w(0):

Pzn

[
m(T )(zn; s) ∈ ball

(
Eznm(T )(zn; s), ε

)]
≥ 1− 2Q exp

(
−2ε2n

QC2

)
, (5)
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where m(T )(zn; s) ∈ RQ; C = 2
(∑T

t=1 η
T−tα(t)

)
lip (r ← w); η = maxi∈[n] lip(Gi ← w) and

Gi(m
(t−1)(zn)) = m(t−1)(zn) − α(t)

n

∑
j∈[n]/i

∂r(zj ,w)
∂w |m(t−1)(zn); [n]/i denotes the set which

contains the integers from 1 to n without i.

The key idea behind the proof is as follows. Randomness of sampling leads to randomness of the
learned parameter vector ŵ. After one iteration of gradient update, the difference between ŵ learned
on the random samples and that learned on the population is controlled by the Lipschitz constant of r
and G. Such differences will accumulate over iterations, thereby affecting the concentration property.

3.3.3 Uniform convergence inside Ŵ

The following uniform convergence condition is obtained based on the covering number and Dudley’s
chaining integral [14]. By using the Lipschitz constant, we can bound the covering number of the
hypothesis class by the covering number of the parameter space.

Lemma 2. Suppose lip(r ← w) ≤ L and diam(W) ≤ B, then the following inequality holds:

Pzn

[
max
w∈W

(
R(w)−Rn(zn,w)

)
≤ CLB

√
Q

n
+

√
ln(1/δ)

2n

]
≥ 1− δ, (6)

where C is a universal constant.

3.3.4 Application of the decomposition theorem

Theorem 3. Suppose lip(h ← w) ≤ L1 and lip(l ← h) ≤ Ll. Then with probability at least
1− δ1 − δ2, the following bound holds:

R(m(zn; s))−Rn(zn,m(zn; s)) ≤
C1C2L

2
1L

2
lQ
√

ln(2Q/δ1)

n
+

√
ln(1/δ2)

2n
, (7)

where w ∈ RQ; C1 is a universal constant; C2 =
∑T
t=1 η

T−tα(t), in which T denotes the num-
ber of iterations, α(t) denotes the learning rate at iteration t, η = maxi∈[n] lip(Gi ← w), and

Gi(m
(t−1)(zn)) = m(t−1)(zn) − α(t)

n

∑
j∈[n]/i

∂r(zj ,w)
∂w |m(t−1)(zn); [n]/i denotes the set which

contains the integers from 1 to n without i.

Theorem 3 suggests that the following factors will affect the generalizability of the learned model.
1) T : A smaller number of training iterations leads to better concentration property and thus better
generalization performance. Thus, when optimizing via GD, we shall select the model from the
earliest iteration t that yields the minimum training error; the test stage is implemented using the
parameters learned at t;
2) Q: A smaller value of Q, i.e. fewer parameters, gives a tighter generalization bound;
3) L1, Ll: Using a classifier and loss function with smaller Lipschitz constants will improve the
generalizability;
4) η: Based on the definition of G and the addition property of Lipschitz functions (Appendix A),
if lip(

∂r(zj ,w)
∂w ← w) is bounded by Ls, then η is bounded by 1 + αLs, where α = maxt∈[T ] α

(t).
Based on the composition property of Lipschitz functions, we have

lip(
∂r

∂w
← w) = lip(

∂l

∂w
← w) = lip(

∂l

∂h

∂h

∂w
← w) ≤ lip(

∂l

∂h
← h) lip(

∂h

∂w
← w).

Thus η is bounded if both lip( ∂h∂w ← w) and lip( ∂l∂h ← h) are bounded. In other words, the classifier
and loss function should be Lipschitz smooth.

We make a final remark that, since the decomposition theorem (Theorem 2) and the concentration
lemma (Lemma 1) are established regardless of the number of classes, the proposed generalization
PAC bound can be readily generalized to multi-class classification. The only modification required is
to establish that uniform convergence holds for the hypothesis class with a multi-class loss function l,
which can be proved based on, e.g., VC-dimension [1] and Rademacher complexity [34, 30].
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4 Smooth metric and representative instance learning (SMILE)

Theorem 3 shows that Lipschitz smoothness is important for ensuring generalization. To enjoy and
illustrate the practical exploitation of this appealing theoretical result, we establish a simple yet
theoretically well-founded and new metric learning method called SMILE with a smooth classifier
and a smooth loss function. SMILE learns a Mahalanobis distance to enhance the classification
performance of NN classifier. Meanwhile, to reduce the storage and computational cost of NN,
SMILE learns few representative instances in the training stage and calculate the distances between
the test instance and representative instances only in the test stage. In this section, we present the
classifier, the loss function, the optimization problem, and some experimental results of SMILE.

4.1 The classifier of SMILE

For any two instances xi and xj , the generalized Mahalanobis distance is defined as dM (xi,xj) =√
(xi − xj)TM(xi − xj), where M is a positive semidefinite (PSD) matrix. Owing to the PSD

property,M = LTL and thus dM (xi,xj) = d(Lxi,Lxj) = ‖Lxi −Lxj‖2.

The classifier of SMILE is simply defined as follows:

h(x; rm,L) =
∑
j

exp(−d2(Lx, r+
j ))−

∑
k

exp(−d2(Lx, r−k )), (8)

where rm andL are the parameters of the classifier; r+
j and r−k denote the jth representative instance

of the positive class and the kth representative instance of the negative class, respectively; m denotes
the total number of learned representative instances. The test instance x is classified to the positive
class when h(x) ≥ 0 and to the negative class when h(x) < 0.

As shown in Appendix C, a sufficient condition for h to be Lipschitz smooth is that diam(L),
diam(x) and diam(r) are bounded. With a slight abuse of notation, diam(L) denotes the diameter
of the set which contains all possible values of L; diam(x) and diam(r) are defined similarly. To
bound these quantities, we will constrain the Frobenius norm of L and the L2-norm of x and r.

4.2 The loss function of SMILE

Similarly to the Huber loss for regression [25], we propose the following loss function defined by
combining a quadratic and a linear function:

l(a) =


1− a if a ≤ 0;
1
4 (a− 2)2 if 0 < a ≤ 2;

0 if a > 2.

(9)

The derivative of l(a) is as follows:

l′(a) =


−1 if a ≤ 0;
a−2

2 if 0 < a ≤ 2;

0 if a > 2.

The loss function and its derivative are illustrated in Figure 1. The
Lipschitz constant of l′(a) is 1

2 , meaning that the proposed loss is
a Lipschitz smooth function.

Figure 1: Illustration of the pro-
posed Lipschitz smooth loss func-
tion and its derivative.

4.3 The optimization problem of SMILE

Using the classifier defined in Eq. 8, the loss function defined in Eq. 9, and the convex regularization
terms

∑
j ‖r

+
j ‖22 +

∑
k ‖r

−
k ‖22 + ‖L‖2F , the following optimization problem is proposed for SMILE:

min
Θ

1

n

n∑
i=1

l(yih(xi; r
m,L)) + λ

( m+∑
j=1

‖r+
j ‖

2
2 +

m−∑
k=1

‖r−k ‖
2
2 + ‖L‖2F

)
, (10)

where Θ = {rm,L} denotes the set of parameters to be optimized; rm = {r+
j , r

−
k ; j =

1, . . . ,m+, k = 1, . . . ,m−} denotes the set of representative instances with m+ instances for
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Table 1: Comparison of classification performances. Mean accuracy and standard deviations are
reported with the best ones in bold; ‘# of best’ denotes the number of datasets on which the metric
learning algorithm obtains the highest accuracy.

Dataset NCA LMNN ITML R2LML RVML GMML DMLMJ DMPL SNC SMILE

Australian 80.0±1.6 78.8±2.6 77.2±1.9 84.7±1.3 83.0±1.6 84.4±1.0 83.9±1.3 84.8±1.5 81.8±8.8 86.0±0.7
Cancer 95.4±1.3 96.0±0.7 96.1±1.1 96.7±0.8 95.2±1.0 96.5±0.8 96.5±0.5 96.8±0.6 95.1±1.7 96.8±0.6
Climate 91.5±2.1 91.8±1.3 86.7±1.0 91.7±1.7 92.2±1.1 91.3±2.5 92.9±1.9 93.6±2.0 92.0±1.7 93.5±1.7
Credit 80.6±2.0 82.2±1.4 77.6±2.0 86.1±1.5 83.5±1.8 85.9±1.7 84.6±1.4 85.5±1.7 83.4±3.7 85.6±1.9
German 70.0±2.9 67.9±1.5 67.0±2.1 72.9±1.8 71.7±1.8 71.6±1.1 69.3±2.7 71.7±2.3 70.1±3.3 75.5±1.1
Haberman 67.4±3.3 67.9±3.3 68.0±4.1 71.1±3.4 66.7±2.3 71.2±3.4 68.5±3.2 69.9±3.3 72.0±5.2 72.4±3.3
Heart 75.6±2.0 76.2±3.8 76.9±3.3 82.0±3.8 77.7±4.1 81.2±2.7 80.6±2.8 77.9±3.4 77.0±5.3 84.0±2.2
ILPD 66.8±1.2 67.0±2.1 68.7±2.8 65.9±2.2 68.0±2.9 67.1±2.2 68.0±1.6 68.1±2.3 68.9±2.7 71.3±1.7
Liver 59.8±3.4 61.0±4.8 57.2±4.0 66.8±3.7 64.6±3.9 63.8±5.4 60.9±3.8 62.2±7.6 63.3±5.2 62.8±5.8
Pima 65.9±3.0 68.5±1.6 68.0±2.0 72.3±1.5 69.5±1.7 73.0±1.8 71.1±2.3 71.0±2.8 74.0±2.6 73.2±2.0
Ringnorm 69.3±0.7 65.2±0.7 65.8±0.9 NA 72.3±0.6 72.5±0.5 73.9±0.7 NA 71.3±0.6 77.1±0.5
Twonorm 96.7±0.4 95.6±0.5 96.4±0.3 NA 97.3±0.3 97.5±0.3 97.7±0.2 NA 97.3±0.2 97.9±0.3

Average 76.6 76.5 75.5 NA 78.1 78.5 79.7 NA 79.0 81.3
# of best 0 0 0 2 0 0 0 2 1 8

the positive class and m− instances for the negative class; and λ is a trade-off parameter balancing
the loss term and the regularization term.

The objective function is not convex due to the non-convexity of h(x; rm,L). We apply the gradient
descent algorithm to learn the parameters; detailed formulae are given in Appendix C.5. The
generalization guarantee for SMILE is provided in Appendix C.4.

4.4 Illustrative results of SMILE

Experimental settings We illustrate the effectiveness of SMILE by comparing it with nine widely
adopted metric learning methods: NCA [17], LMNN [49], ITML [10], R2LML [23], RVML [39],
GMML [56], DMLMJ [37], DMPL [28], and SNC [29]; the last two methods learn both the metric
and representative instances. NCA is implemented by using the drToolbox [45]; LMNN and ITML
are implemented by using the metric-learn toolbox [11]; and R2LML, RVML, GMML, DMLMJ, and
SNC are implemented by using the authors’ code.

The experiment focuses on binary classification of 12 publicly available datasets from the websites of
UCI [13] and Delve [41]. Sample size and feature dimension are listed in Table 1 of Appendix D. All
datasets are pre-processed by firstly subtracting the mean and dividing by the standard deviation, and
then normalizing the L2-norm of each instance to 1.

For each dataset, we randomly select 60% of instances to form a training set and the rest are
used for testing. This process is repeated 10 times and we report the mean accuracy and the
standard deviation. 10-fold cross-validation is used to select the trade-off parameters in the com-
pared algorithms, namely the regularization parameter µ in LMNN (from {0.1, 0.3, . . . , 0.9}),
γ in ITML (from {0.25, 0.5, 1, 2, 4}), λ in RVML (from {10−5, 10−4, . . . , 10}), t in GMML
(from {0.1, 0.3, . . . , 0.9}), µ in DMPL (from {0.1, 0.3, . . . , 0.9}), and ratio in SNC (from
{0.01, 0.02, 0.04, 0.08, 0.16}). All other parameters are set as default. For the proposed SMILE, the
parameters are set as follows: L is initialized as the identity matrix; rm are initialized as the k-means
clustering centers of the positive and negative classes (by using MATLAB kmeans function with
random initial values); the number of representative instances for each class is set as 2; the trade-off
parameter λ is set as 1; and the learning rate α is set as 0.001. The maximum number of iterations is
set as 5000 and the final result is based on the parameters at time t, which is the earliest time when
the smallest training error is obtained, to conform to early stopping as suggested by Theorem 3. Code
for the proposed method is available at http://github.com/xyang6/SMILE.

Evaluation on classification performance As shown in Table 1, with only two representative
instances learned for each class, the proposed SMILE achieves the best accuracy on 8 out of the 12
datasets; none of the other methods performs the best on more than 2 datasets. The average accuracy
of SMILE is also the highest. These results suggest that SMILE, although simple, enjoys competitive
performance against existing metric learning algorithms, thanks to its theoretical foundation.
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Figure 2: Effect of training itera-
tions and sample size on parameter
concentration.

Visualization of the concentration behavior Our theoreti-
cal finding suggests that randomness of parameters is caused
by random sampling and will accumulate over iterations. We
now verify this finding with an empirical study on the German
dataset. More specifically, we learn parameters L, rm from a
subset of the data, which serves as m(T )(zn) in Lemma 1,
learn parameters from the entire dataset, which serves as
Eznm(T )(zn), and quantify their differences via the L2-norm.
The total sample size is 1000 and the subset size is selected
as {100, 200, . . . , 500}. After randomly sampling the subset
for 100 times, we calculate the 95th percentile of the norm
differences and denote this value as ε95%. ε95% can be inter-
preted as the minimum radius ε of ball

(
Eznm(T )(zn), ε

)
such that the bound (Eq. 5) holds with

95% probability. From Figure 2, we first see that learning from fewer training instances leads to a
larger value of ε95%, which signifies that sampling randomness contributes to the variance of learned
parameters. Second, we see that learning with more iterations increases ε95%, which is also consistent
with the theoretical result. Moreover, the rate of increase is exponential in the early stage of training
and decreases gradually towards zero, which implies that parameters are optimized to local minima
and will no longer be updated.

Analysis of the effect of parameter λ Figure 3 illustrates the impact of the trade-off parameter λ
in Eq. 10 on the generalization gap, training accuracy and test accuracy; the Heart dataset is used as an
example. The left-hand figure shows that the generalization gap decreases with λ. This is consistent
with our theoretical result that constraining the norms of L,x and r gives smaller Lipschitz constants,
thereby tightening the bound. The right-hand figure shows that, as the training accuracy generally
decreases with λ as well, the test accuracy is highest when λ = 0.5.

Figure 3: Effect of λ on the generalization gap (left) and the training or test accuracy (right).

5 Conclusion

This paper presents a new route to the generalization guarantee on classifiers optimized via GD,
considering the influence of sampling randomness to the concentration property of parameters and
embracing algorithmic parameters. We propose a new decomposition theorem to obtain the general-
ization PAC bound, which consequently guarantees the agnostic PAC learnability. We demonstrate
the importance of Lipschitz smooth classifiers and loss functions for generalization and theoretically
justify the benefit of early stopping. Our results are derived based only on the Lipschitz property over
the parameter space and hence are applicable to non-convex optimization problems. In addition, we
propose a new metric learning method as an illustrative example to demonstrate the practicability of
the derived appealing theoretical results.

The generalization PAC bound is only derived for GD and cannot be used to guarantee the learnability
of classifiers optimized through stochastic GD and its variants, due to additional randomness of
training instances introduced in each mini-batch. It would be valuable to extend our work to these
algorithms given their importance in large-scale optimization problems. Moreover, as Figure 2
suggests that the radius used to cover parameters with high confidence expands at a much slower
rate after training with a large number of iterations, we intend to investigate the link between this
local convergence behavior and the concentration property, and take it into account to derive tighter
bounds.
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Broader Impact

This paper is a theoretical analysis relating to gradient descent and metric learning algorithms, making
no direct impact on ethical and societal issues. The findings can be used to design more effective
training strategies or algorithms, and consequently benefit the downstream applications.
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