
Dynamic Submodular Maximization

Morteza Monemizadeh
Department of Mathematics and Computer Science

TU Eindhoven, the Netherlands
m.monemizadeh@tue.nl

Abstract

One of the basic primitives in the class of submodular optimization problems is
the submodular maximization under a cardinality constraint. Here we are given a
ground set V that is endowed with a monotone submodular function f : 2V → R+

and a parameter 0 < k ≤ n and the goal is to return an optimal set S ⊆ V of at most
k elements, i.e., f(S) is maximum among all subsets of V of size at most k. This
basic primitive has many applications in machine learning as well as combinatorial
optimization. Example applications are agglomerative clustering, exemplar-based
clustering, categorical feature compression, document and corpus summarization,
recommender systems, search result diversification, data subset selection, minimum
spanning tree, max flow, global minimum cut, maximum matching, traveling
salesman problem, max clique, max cut, set cover and knapsack, among the others.
In this paper, we propose the first dynamic algorithm for this problem. Given
a stream of inserts and deletes of elements of an underlying ground set V , we
develop a dynamic algorithm that with high probability, maintains a (1

2 − ε)-
approximation of a cardinality-constrained monotone submodular maximization
for any sequence of z updates (inserts and deletes) in time O(k2zε−3 · log5 n),
where n is the maximum size of V at any time. That is, the amortized update time
of our algorithm is O(k2ε−3 · log5 n).

1 Introduction

A general approach to solve machine learning problems as well as combinatorial optimization
problems is to cast the problem at hand as a submodular optimization problem and then solve the
submodular problem (approximately) using a rich toolkit of algorithmic techniques known for this
class of problems. Such problems include agglomerative clustering, exemplar-based clustering
[DF07], categorical feature compression [BCE+19], document summarization [LB11, SSSJ12],
recommender systems [EG11], search result diversification [AGHI09], data subset selection [WIB15],
social networks analysis [KKT15], minimum spanning tree, global minimum cut, maximum matching,
traveling salesman problem, max clique, max cut, set cover and knapsack, among the others.

One of the basic primitives in the class of submodular optimization problems is the submodular
maximization under a cardinality constraint. Here we are given a ground set V that is endowed with
a monotone submodular function f : 2V → R+ and a parameter 0 < k ≤ n and the goal is to return
an optimal set S ⊆ V of at most k elements, i.e., f(S) is maximum among all subsets of V of size at
most k. In this paper, we propose the first dynamic algorithm for this problem. We state our main
result here:

Theorem 1 Suppose we start with an empty set V . Then, there exists a randomized dynamic
algorithm that with probability at least 1− 1

n2 maintains a (1
2 − ε)-approximation of a cardinality-

constrained monotone submodular maximization for any sequence of z updates (inserts and deletes)
in O(k2ε−3 · log5 n) amortized update time, where n is the maximum size of V at any time.

34th Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada.

We should mention that classical methods such as the celebrated greedy algorithm [NWF78] or its
accelerated versions [BV14] and [MBK+15] require random access to the entire data, make multiple
passes, and select elements sequentially in order to produce near optimal solutions. Naturally, such
solutions cannot scale to large instances.

Probably the closest work to our work are two recent papers due to Mirzasoleiman, Karbasi and
Krause [MKK17] and Kazemi, Zadimoghaddam, and Karbasi [KZK18]. In [MKK17] the authors
develop a dynamic streaming algorithm that given a stream of inserts and deletes of elements of an
underlying ground set V , (1/2− ε)-approximates the submodular maximization under cardinality
constraint using O(d2(kε−1 log k)2) space and O(dkε−1 log k) average update time, where d is an
upper-bound for the number of deletes that are allowed. Thus, if the number of deletions is linear in
terms of the maximum size of the ground set V , that is, at least Ω(n) deletions, it is in fact better to
re-run the known greedy algorithms (say, [NWF78]) after every insertion and deletion.

The follow-up paper [KZK18] studies approximating submodular maximization under cardinality
constraint in three models, (1) centralized model, (2) dynamic streaming where we are allowed to
insert and delete (up to d) elements of an underlying ground set V , and (3) distributed (MapReduce)
model. In order to develop a generic framework for all the three models, they develop a coreset for
the submodular maximization under cardinality constraint. Their coreset has a size of O(k log k +
d log2 k). Out of this coreset we can extract a set S of size at most k whose f(S) in expectation is at
least 1

2 -approximation of the optimal solution. The time to extract such a set S from the coreset is
O(dk log2 k + d log3 k). Once again, if the number of deletions is Ω(n), where n is the maximum
size of the ground set V at any time t, it is in fact better to re-run the known greedy algorithms (say
[NWF78]) after every insertion and deletion.

However, our algorithm in Theorem 1 has Õ(k2ε−3 · log5 n) amortized update time which is inde-
pendent of the number of deletions d. Very recently we learned that at NeurIPS 2020 there is another
paper titled "Fully Dynamic Algorithm for Constrained Submodular Optimization" due to Lattanzi,
Mitrovic, Norouzi-Fard, Tarnawski, and Zadimoghaddam that consider the same problem that we
study in this paper. The paper presents a dynamic algorithm whose amortized expected update time
is O(log6(k)·log2(n)

ε6). The amortized expected update time of our algorithm is O(k2ε−2 · log3 n).
Asymptotically the update time of this algorithm is better than our algorithm. However, in reality
these two bounds are incomparable. As an example, for practical values of k, say k ≤ 220 and
for an error bound of ε ≤ 0.05, the term log6(k)

ε6 is approximately 252 while the term k2ε−2 in our
update time is approximately 245 which is smaller than their update time for n even as large as 2100.
Moreover, our algorithm works with high probability and is much simpler than their algorithm. We
think we can use our worst case framework in Section 3 to improve their update time from expected
to a high probability bound.

Here we mention the main difference between the streaming and the dynamic setting. In the streaming
setting the main concern is the space complexity. We often compute a sketch of the input that is
revealed in a streaming fashion. At the end of the stream we compute a solution using the sketch that
we maintained in the course of stream. On the other hand, in the dynamic setting the main complexity
is the time. The idea is that given the input that is revealed in a streaming fashion, we are interested in
seeing the solution and the changes in the solution after every insert or delete. The main motivation is
for learning highly dynamic and sensitive data (such as time series) that we need to take an action as
soon as we see a shift in the function of the underlying data that we observe. Since we need to react
to changes in the solution fast, we need to (re)-compute the solution as fast as we can. Indeed, we
cannot wait till the end of the stream and take the corresponding action afterwards. The underlying
assumption for the dynamic setting is that nowadays with existing machines that can easily have
(SD)RAMs of GBs and soon TBs, the space constraint will not be a problem, but the time complexity
is the main bottleneck. The results from [MKK17, KZK18] are streaming algorithms whose time
complexities depend on the number of deletions (Theorem 1 of the second reference) which will be
high if we want to (re)-compute a solution after each insertion or deletion.

Overview of Proof of Theorem 1. An interesting property of a submodular function f : 2V → R+

is that it satisfies f(A ∪ {e}) − f(A) ≥ f(A ∪ {e}) − f(A) for all A ⊆ B ⊆ V and e /∈ B. Our
main idea is to combine this property with a logarithmic rate of sampling and then greedily collect
the heavy items (whose marginal gain are above a threshold) and remove light items (whose marginal

2

gain are below a threshold) at each rate. Here we let ∆f (e|A)
.
= f(A∪ {e})− f(A) be the marginal

gain of adding an element e ∈ V to A where A ⊆ V and e ∈ V .

Let us first consider the offline scenario. We later show how to handle insertion and deletion of
elements. Suppose we are given a ground set V of size n endowed with a monotone submodular
function f : 2V → R+ under a cardinality constraint parameterized by 0 < k ≤ n. Let OPT =
maxS⊆V :|S|≤k f(S) and let R0 = V and G0 = ∅. Let τ = OPT

2k .

We sample a set Si ⊆ Ri−1 of s = O(ε−2 log n) elements uniformly at random. That is, we sample
each element of Ri−1 with probability p = s

|Ri−1| . We let Gi = Gi−1. We then greedily find those
elements of Si whose marginal gain with respect to the set Gi is at least the threshold τ and add them
to Gi. Next, we filter those elements of Ri−1\Si whose marginal gain with respect to the set Gi is
below τ and let Ri be the rest of elements (i.e, those whose marginal gain with respect to the set Gi
is at least τ). We then recurse if Ri is not empty. Here the main idea is at each step i of this recursive
sampling algorithm, with high probability, we either have |Gi| ≥ |Gi−1|+ 1 or |Ri| ≤ |Ri−1|

2 . Thus,
after i∗ = O(k log n) recursive sampling steps we either have |Gi∗ | ≥ k or we come up with an
empty set Ri∗ . We let G be the final set of elements whose marginal gain are above the threshold τ .

Next consider a dynamic scenario where elements are inserted to V or deleted from V . Once a
new element e is inserted. We loop through steps of the recursive sampling and at each Step i, we
sample e with probability p = s

|Ri−1| . If e is sampled, we re-iterate all steps of the recursive sampling
from Step i going down to Step i∗. Each step i of the recursive sampling consists of one greedy
and filtering subroutines and it can be done in O(|Ri−1|k). Therefore, since i∗ = O(k log n), the
expected computation that is associated to an insertion will be O(ε−2k2 log3 n). The same is true
when an element e ∈ V is deleted. We loop through steps of the recursive sampling and at each Step
i, we check if e ∈ Si which happens with probability p = s

|Ri−1| . If e ∈ Si, we re-iterate all steps
of the recursive sampling from Step i going down to Step i∗. Again, we can show that the expected
computation that is associated to a deletion will be O(ε−2k2 log3 n).

To have the dynamic algorithm that works with high probability we create O(log n) instances of this
recursive sampling and run all of them in parallel. After any sequence of z insertions and deletions,
we drop those instances whose computations are more than czε−2k2 log3 n for some constant c. We
show that with high probability it remains at least one instance whose total computation is at most
czε−2k2 log3 n. That is, the amortized update time of that instance is cε−2k2 log3 n.

Finally we should mention that for the threshold τ we choose OPT
2k assuming we know OPT . In

reality we do not know OPT . We can consider two scenarios. The first scenario is when we are given
a bound on the maximum element of V , that is, say maxe∈V f(e) = Θ(Γ). This is actually a fair
assumption that we often make when we generalize the insertion-only streaming model to dynamic
streaming models. For example, Frahling and Sohler in [FS05] show that we can find coresets of
small size for many clustering problems (a subset of submodular optimization problems) in dynamic
geometric streams if we have an upper-bound on the maximum cost of the optimal clustering,
something which is not possible if we do not have such an upper-bound. Since OPT ≤ ck · Γ for
a reasonably large constant c, we run our recursive sampling algorithm for ` ∈ [0..ε−1 · log(ckΓ)]
guesses (1 + ε)` of OPT and report the best solution of all guesses. This blows up the update time
by a factor ε−1 log(kΓ) and the approximation factor would be (1/2− ε).

If we are not given such a bound, we can keep a max heap of the elements that are inserted but not
deleted at any time t. The insertion and deletion times of the max heap are logarithmic in terms of
the number n of items that are stored in the max heap. Finding the maximum r elements stored in the
heap can be done in O(r log n) time. We then do as follows. We sample a set S of O(

√
nk) elements

and let Γ = maxe∈V f(e) and run the algorithm as for the first scenario. In parallel, at any time t,
we extract the set T of maximum O(

√
nk) elements from the max heap and run a simple greedy

algorithm for T . At the end, we report the best solution of these two parallel runs. In this way, the
update time increases to Õ(

√
nk) and the approximation factor would be (1/2− ε). We elaborate on

this second method in the supplementary material.

3

1.1 Preliminaries

Suppose we have a ground set V . A function f : 2V → R+ is called submodular if it satisfies
f(A ∪ {e}) − f(A) ≥ f(B ∪ {e}) − f(B) for all A ⊆ B ⊆ V and e /∈ B. When f satisfies
the additional property f(A ∪ {e}) − f(A) ≥ 0 for all A and e /∈ A, we say f is monotone. We
let ∆f (e|A)

.
= f(A ∪ {e}) − f(A) be the marginal gain of adding an element e ∈ V to A where

A ⊆ V and e ∈ V . The term ∆f (e|A) is a discrete derivative that quantifies the increase in utility
obtained when adding e to a set A. Observe that, the submodularity condition can be written as
∆f (e|A) ≥ ∆f (e|B) for all A ⊆ B.

Monotone submodular maximization under a cardinality constraint for a monotone function f is
defined as OPT = maxS⊆V :|S|≤k f(S). We denote by O an optimal subset of size at most k that
achieves the optimal value OPT = f(S∗). Note that we can have more than one optimal set.

The seminal result by Nemhauser, Wolsey and Fisher [NWF78] shows that a simple greedy algorithm
can approximate a cardinality constrained monotone submodular maximization problem to a factor of
(1− 1/e) of optimal. This greedy algorithm is as follows. In the beginning, we let S = ∅. We then
take k passes over the set V and in each pass we find an element e ∈ V that maximizes ∆f (e|S),
add it to S and delete it from V .

1.2 Basic primitives

In this paper we frequently use two basic primitives. The first one is a simple greedy algorithm
parameterized by a threshold τ and a set size k. Given two sets S and G of elements, the greedy
algorithm scrolls through the set S and adds those elements whose marginal gain with respect to the
set G is at least τ provided that the size of G is less than k.

The second one is a simple filtering algorithm parameterized by a threshold τ and a set size k. Given
two sets R and G of elements, we iterate through the elements of the set R and drop those elements
whose marginal gain with respect to the set G is less than k.

Basic Primitives

Greedy:
Input: Sets S and G and parameters τ, k.

1: for each e ∈ S do
2: if ∆f (e|G) ≥ τ and |G| < k then
3: G = G ∪ {e}.

Output: Return G

Filtering:
Input: Sets R and G and parameters τ, k.

1: for each e ∈ R do
2: if ∆f (e|G) < τ then
3: R = R\{e}.

Output: Return R.

Lemma 2 Given sets S and G and parameters τ, k, the query complexity (i.e., the number of times
that we invoke function f to compute the marginal value) of Primitive Greedy is O(|S|). Similarly,
given sets R and G and parameters τ, k, the query complexity of Primitive Filtering is O(|R|).

Proof : For each element e ∈ S and as long as |G| ≤ k, we check if the marginal value of e is
greater than threshold τ . If this is the case, we add e to G. So, overall we invoke the function f for
O(|S|) times. The second part is proven similarly. �

Dynamic model. Let S be a stream of insertions and deletions of elements of an underlying ground
set V . Suppose we want to (approximately) compute a monotone submodular maximization under k
cardinality constraint for a monotone function f which is defined for the set V . We define the time t
to be the tth update (i.e., insertion or deletion) of stream S . Let Gt be a solution of the underlying set
Vt where Vt is the set of elements that are inserted up to time t but not deleted. The update time of a
dynamic algorithm A is the time that A needs to compute a solution Gt of the set Vt given a solution
Gt−1 of the set Vt−1.

Oblivious adversarial model. We work in the oblivious adversarial model as is common for
analysis of randomized data structures such as universal hashing [CW77]. This model has been used

4

in a series of papers on dynamic maximal matching and dynamic connectivity problems: see for
example [OR10, BGS15, NS13, KKM13]. The model allows the adversary to know all the elements
in the set V and their arrival order, as well as the algorithm to be used. However, the adversary is not
aware of the random bits used by the algorithm, and so cannot choose updates adaptively in response
to the randomly guided choices of the algorithm. This effectively means that we can assume that the
adversary prepares the full input (inserts and deletes) before the algorithm runs.

1.3 Related work

Due to rapidly growing datasets, recently research has been focused on submodular optimization in
the streaming and the distributed models. Very recently, Kazemi, Mitrovic, Zadimoghaddam, Lattanzi
and Karbasi [KMZ+19] developed O(k)-space (insertion-only) streaming algorithm that computes
1/2-approximation of the optimal solution. Due to the lack of space, see references therein for more
works on the streaming model.

The first distributed algorithm for the cardinality constrained submodular maximization was due
to Mirrokni and Zadimoghaddam [MZ15] who gave a 0.27-approximation in 2 rounds without
duplication and a 0.545-approximation with significant duplication of the ground set (each element
being sent to Θ(1

ε log(1
ε)) machines). Later, Barbosa, Ene, Nguyen and Ward [dPBENW16] achieves

a (1
2 − ε)-approximation in 2 rounds and was the first to achieve a (1− 1

e − ε) approximation in O(1
ε)

rounds. Both algorithms require Ω(1
ε) duplication. [dPBENW16] mentions that without duplication,

the two algorithms could be implemented in O(1
ε log(1

ε)) and O(1
ε2) rounds, respectively.

Very recently Liu and Vondrak [LV19] develop a simple thresholding algorithm that with one random
partitioning of the dataset (no duplication) achieves the following: In 2 rounds of MapReduce, they
obtain a (1/2 − ε)-approximation. In 4 rounds they obtain a 5/9 approximation. More generally,
in 2t rounds, they achieve (1 − (1 − 1

t+1)t − ε)-approximation which is optimal for this type of
algorithm. Their algorithm is inspired by the streaming algorithms that are presented in [KMVV15]
and [MV19]. It is also similar to the algorithm of Assadi and Khanna [AK18] who study the
communication complexity of the maximum coverage problem. Our dynamic algorithm is inspired
by the MapReduce algorithms that Liu and Vondrak developed in [LV19].

2 Dynamic algorithm with expected O(ε−2k · log2 n) amortized update time

We first develop the offline algorithm and then in the next sections we show how to handle insertions
and deletions of elements of an underlying ground set V .

2.1 Offline algorithm

Suppose we are given a ground set V of size n endowed with a monotone submodular function
f : 2V → R+ under a cardinality constraint parameterized by 0 < k ≤ n. Recall that OPT =
maxS⊆V :|S|≤k f(S). Recall that we denote by O a subset of size at most k that achieves the optimal
value OPT = f(O).

The algorithm is as follows: Suppose we are given OPT and let R0 = V . We recursively sample a
set Si ⊆ Ri−1 of O(ε−2 log n) elements uniformly at random. We then set a threshold τ = OPT

2k
and invoke the greedy algorithm (described in Section 1.2) with the input set Si to return a set Gi of
elements whose marginal gain is at least the threshold τ . Finally, we filter those elements of Ri−1\Si
whose marginal gain with respect to the set Gi is below τ and let Ri be the rest of elements (i.e, those
whose marginal gain with respect to the set Gi is at least τ). We then recurse if Ri is not empty.

We first prove that the approximation ratio of Algorithm Sampling is 1/2.

Lemma 3 Suppose we are given a ground set V of size n endowed with a monotone submodular
function f : 2V → R+ under a cardinality constraint parameterized by 0 < k ≤ n. Then,
Algorithm Sampling returns a set G ⊆ V of size at most k such that f(G) ≥ 1

2 · OPT , where
OPT = maxS⊆V :|S|≤k f(S).

5

Sampling

Input: A ground set V of size n = |V | and a parameter 0 < k ≤ n.
1: Let s = 9ε−2 log n, τ = OPT

2k and i = 0.
2: Let Ri = V and Gi = ∅.
3: Invoke Loop(i, Sj , Rj , Gj) to return i∗, V, Sj , Rj , Gj for j ∈ {0, 1, · · · , i∗}.

Output: Return i∗, V, Si, Ri, Gi for i ∈ {0, 1, · · · , i∗}.

Loop:
Input: i, Sj , Rj , Gj for j ≤ i.

1: while Ri 6= ∅ do
2: Let i← i+ 1.
3: Let Si ⊆ Ri−1 be a set of elements sampled with probability p = min(s

|Ri−1| , 1).
4: Let Gi be the output of Algorithm Greedy(Si, Gi−1, τ, k).
5: Let Ri be the output of Algorithm Filtering(Ri−1\Si, Gi, τ, k).
6: Let i∗ be last i after leaving the while loop.

Output: Return i∗, V, Si, Ri, Gi for i ∈ {0, 1, · · · , i∗}.

Proof : Recall that the set G contains elements whose marginal value is at least OPT2k . We have
two cases. The first case is when |G| = k and the second case is when |G| < k. As for the first case,
f(G) ≥ OPT

2 .

For the second case, suppose O is the optimal solution. Since f is submodular and monotone, we
then have OPT = f(O) ≤ f(O ∪G) ≤ f(G) +

∑
e∈O\G ∆f (e|G) ≤ f(G) + k · OPT2k . �

Next we prove that at each step i of Algorithm Sampling, we either have |Gi| ≥ |Gi−1| + 1 or
|Ri| ≤ |Ri−1|

2 .

Lemma 4 At each step i of Algorithm Sampling, with probability at least 1− 1
n3 , we either have

|Gi| ≥ |Gi−1|+ 1 or |Ri| ≤ |Ri−1|
2 .

Proof : Recall that we sample each element of the ground set V with probability p = min(s
|Ri−1| , 1)

where s = 9ε−2 log n. Thus, E[|Si|] = p · |Ri−1| = s
|Ri−1| · |Ri−1| = s .

Now we use the chernoff bound to prove that the size of Si cannot be much less than its expectation
with a reasonably good probability. In particular, we have

Pr[|Si| ≤ (1− ε) ·E[|Si|]] ≤ exp(−ε2 ·E[|Si|]/3) = exp(−ε2 · s
3

) ≤ 1/n3 .

Let us condition on the event that |Si| ≥ s/2 for ε ≤ 1/2 that happens with probability 1− 1/n3. If
before step i, there are at least |Ri−1|

2 elements in Ri whose marginal gain with respect to the current
set Gi−1 are greater than OPT

2k , then for ε ≤ 1/2 and with probability at least 1 − (1 − 1
2)s/2 >

1− 1/n9, we sample at least one of them and add it to Si.

Thus, at Step i, we have two cases, either there are at least |Ri−1|
2 elements in Ri whose marginal

gain with respect to the current set Gi−1 are greater than OPT
2k or not. If the first case happens, then

with probability 1− 1/n9 at least one of them is in Si which means the greedy algorithm at Step 4
of Algorithm Sampling will pick one of them and therefore, |Gi| ≥ |Gi−1|+ 1. If the second case
occurs, the filtering algorithm at Step 5 of Algorithm Sampling shaves off those elements of Ri−1
whose marginal gain with respect to the current set Gi−1 are less than OPT

2k and move the remaining
elements to Ri. Thus, |Ri| ≤ |Ri−1|/2.

�

Corollary 5 With probability 1− 1/n3, the number of iterations of Subroutine Loop in Algorithm
Sampling is at most i∗ ≤ O(k log n).

6

Lemma 6 The number of times that we query the function f (i.e., query complexity) to compute the
marginal value in Algorithm Sampling is O(nk log n).

Proof : Recall that in Algorithm Sampling at each Step i we invoke once Subroutine Greedy and
once Subroutine Filtering. Using Lemma 2, the query complexity of either of these subroutines is
linear in terms of the input size. Using Corollary 5 the loop of Algorithm Sampling iterates for
O(k log n). Thus, the query complexity of Algorithm Sampling is O(nk log n). �

2.2 Insertion

Suppose at a time t a new element e is inserted. We assume that we are given the maximum iteration
i∗ which using Corollary 5 is i∗ = O(k log n) and the sets V, Si, Ri, Gi for i ∈ {0, 1, · · · , i∗} in
the beginning of time t. We first add e to the ground set V . Recall that at any time t the ground set
contains those elements that have been inserted up to the time t, but not deleted.

At Step i, with probability p = s
|Ri−1| for s = 9ε−2 log n, we do a heavy computation and with

probability 1− p, we do a light computation. During the heavy computation, we restart the sampling
process (Algorithm Loop) with the input set Ri−1. As for the light computation we check if the
marginal gain of adding the element e to Gi is above the threshold τ , we then add e to the set Ri.
Otherwise, we break the for-loop and terminate Subroutine Insertion.

Insertion

Input: A new element e and i∗, V, Si, Ri, Gi for i ∈ {0, 1, · · · , i∗}.
1: Let s = 9ε−2 log n and τ = OPT

2k .
2: Let V = V ∪ {e} and R0 = V .
3: for i = 1 to i∗ do
4: With probability p = min(s

|Ri−1| , 1), let o = True.
5: With probability 1− p, let o = False.
6: if o = True then
7: Invoke Loop(i, Sj , Rj , Gj) to return i∗, V, Sj , Rj , Gj for j ∈ {0, 1, · · · , i∗}.
8: Break the FOR loop.
9: else

10: if ∆f (e|Gi) ≥ τ then
11: Let Ri = Ri ∪ {e}.
12: else
13: Break the FOR loop.
Output: Return the set G.

Lemma 7 Suppose at a time t an element e is inserted. Then, the expected computation time
of Subroutine Insertion is E[UpdateTime(Insertion)] = cε−2k2 log3 n, where c is a large enough
constant and n is the maximum size of the ground set V at any time t.

Proof : At Step i, we do a heavy computation with probability p = s
|Ri−1| for s = 9ε−2 log n,

and a light computation with probability 1 − p. During the heavy computation we restart the
sampling process (Algorithm Loop) with the input set Ri−1. Using Lemma Lemma 6 this takes
O(|Ri−1| · k log n) and it returns a set G of size at most k for which f(G) ≥ OPT

2 .

On the other hand, a light computation takes O(1) time. Here we assume that ∆f (e|G) ≥ τ takes
constant time. Thus, E[UpdateTime(Insertion)] =

∑i∗

i=1(s
|Ri−1| ·O(|Ri−1|k log n) + (1− s

|Ri−1|) ·
O(1)) = O(ε−2k2 log3 n) . �

2.3 Deletion

Suppose at a time t a new element e is deleted. We assume that we are given the maximum iteration
i∗ which using Corollary 5 is i∗ = O(k log n) and the sets V, Si, Ri, Gi for i ∈ {0, 1, · · · , i∗} in the

7

beginning of time t. We first remove e from the ground set V . Recall that at any time t the ground set
contains those elements that have been inserted up to the time t, but not deleted.

At Step i of Algorithm Deletion, if e ∈ Gi, we do a heavy computation. Otherwise we do a light
computation. During the heavy computation, we restart the sampling process (Algorithm Loop) with
the input set Ri−1. As for the light computation we check if e ∈ Ri and if this is the case, we then
remove e from Ri. The pseudocode of the insertion subroutine is given in below.

Deletion

Input: An element e and i∗, V, Si, Ri, Gi for i ∈ {0, 1, · · · , i∗}.
1: Let s = 9ε−2 log n and τ = OPT

2k .
2: Let V = V \{e} and R0 = V .
3: for i = 1 to i∗ do
4: if e ∈ Gi then
5: Invoke Loop(i, Sj , Rj , Gj) to return i∗, V, Sj , Rj , Gj for j ∈ {0, 1, · · · , i∗}.
6: Break the FOR loop.
7: else if e ∈ Ri then
8: Ri = Ri\{e}.

Output: Return the set G.

Lemma 8 Suppose at a time t an element e is deleted. Then, the expected computation time of
Subroutine Insertion is E[UpdateTime(Deletion)] = cε−2k2 log3 n, where c is a large enough
constant and n is the maximum size of the ground set V at any time t.

Proof : At Step i, we do a heavy computation if e ∈ Gi which happens with probability p = s
|Ri−1|

for s = 9ε−2 log n. Otherwise we do a light computation in which we check if e ∈ Ri and if this is
the case, we then remove e from Ri. Observe that this happens with probability less than 1− p.

During the heavy computation we restart the sampling process (Algorithm Loop) with the input set
Ri−1. Using Lemma Lemma 6 this takes O(|Ri−1| · k log n) and it returns a set G of size at most k
for which f(G) ≥ OPT

2 .

On the other hand, a light computation takesO(1) computation time. Here we assume that ∆f (e|G) ≥
τ takes constant time. Thus, E[UpdateTime(Deletion)] =

∑i∗

i=1(s
|Ri−1| · O(|Ri−1|k log n) + (1−

s
|Ri−1|) ·O(1)) = O(ε−2k2 log3 n) . �

3 Dynamic algorithm with high probability guarantee

Here we show how to convert a dynamic algorithm with expected amortized update time into a
dynamic algorithm that with high probability has amortized update time. Suppose we have a ground
set V that is initialized as an empty set. Let S = {Update(e1), · · · ,Update(ez)} be a sequence of
element updates of the underlying ground set V where Update(e`) is either Insert(e`) or Delete(e`).
Suppose that there exists a randomized dynamic algorithm A with two subroutines InsertionA(e`)
and DeletionA(e`), where the first one inserts an element e` into a ground set V and the second one
deletes an (already inserted) element from the ground set V . We assume that:

1. Efficiency: There exists asymptotic functions g(n) and h(n) dependent on the size of the
ground set V , i.e., n = |V | for which the expected update times are

E[UpdateTime(InsertionA(e`))] = g(n) and E[UpdateTime(DeletionA(e`))] = h(n) .

2. Quality: For any sequence of updates (inserts and deletes), Algorithm A maintains an
α-approximation of a cardinality-constrained monotone submodular maximization.

As for AlgorithmA we can use the algorithm in Section 2 whose approximation factor is α = (1
2 − ε).

The expected insertion and deletion time of this algorithm is O(ε−3k2 log5 n). Using the algorithm

8

A, we present a randomized dynamic algorithm that with probability at least 1− δ
n4 maintains an

α-approximation of a cardinality-constrained monotone submodular maximization for any sequence
of z updates (inserts and deletes) in O((g(n) + h(n)) · log(nδ)) amortized update time.

Dynamic-Submodular-Maximization

Input: A Sequence S = {Update(e1), · · · ,Update(ez)} of element updates of an underlying
ground set V where Update(e`) is either Insert(e`) or Delete(e`).

1: Let V be a ground set that is endowed with a monotone submodular function f : 2V →
R+ under a cardinality constraint parameterized by 0 < k ≤ n. Suppose V is initialized
to an empty set.

2: Initialize y = 8 log(n/δ) runs R1, · · · , Ry in parallel.
3: for Rr where r ∈ [y] in parallel do
4: Invoke Algorithm A.
5: for each Update(e`) do
6: if Update(e`) is Insert(e`) then
7: Invoke InsertionA(e`).
8: else
9: Invoke DeletionA(e`).

10: if the update time ofRr up to now is greater than 3cz ·log3 n 3z ·(g(n)+h(n))·log(nδ)
then

11: Stop the run Rr.
Output: At any time t ∈ [z], report the set S whose f(S) is the median of the sets returned
by those runs Rr that are survived.

Theorem 9 Let 0 < δ < 1 be a parameter. Then, there is a randomized algorithm that with
probability at least 1− δ/n2, maintains an α-approximation of a cardinality-constrained monotone
submodular maximization in time O((g(n) + h(n)) · z · log(nδ)). That is, the amortized update time
of this algorithm is O((g(n) + h(n)) · log(nδ)).

Proof : We define z random variables X1, · · · , Xz corresponding to the z updates where X`

corresponds to the update time of the element e`. We have

E[X`] ≤ E[UpdateTime(InsertionA(e`))] + E[UpdateTime(DeletionA(e`))] ≤ g(n) + h(n) .

Let X =
∑z
`=1X`. We then have E[X] ≤ z · (g(n) + h(n)). Using Markov Inequality, Pr[X ≥

3z · (g(n) + h(n))] ≤ 1/3 . Next we increase the probability of correctness to 1 − δ/n3. For the
sequence S = {Update(e1), · · · ,Update(ez)} element updates of the underlying ground set V , we
run y = 8 log(n/δ) instances of Algorithm A in parallel. Let R1, · · · , Ry be the set of these y runs.
At any time 1 ≤ t ≤ z, if we observe that for a runRr the sum of the update times from the beginning
of the sequence S up to the time t is greater than 3z · (g(n) + h(n)), we stop the run Rr.

Let Yr corresponds to the run Rr such that Yr = 1 if for the rth run the total update time of Rr from
the time 1 to t is greater than 3z · (g(n) +h(n)), and Yr = 0 otherwise. Therefore, E[Yr] = p ≤ 1/3.
Let a = 1/2 and Y =

∑y
r=1 Yr. Now we can use additive Chernoff Bound 10.

Lemma 10 (Additive Chernoff Bound) [Che52] Let Y1, · · · , Ym denote m identically distributed
and independent random variables such that E[Yi] = p for 1 ≤ i ≤ n for a fixed 0 ≤ p ≤ 1. Let
0 < t < 1, t ≥ p. For Y =

∑m
i=1 Yi it holds that Pr[Y ≥ t ·m] ≤ (

(
p
t

)t · (1−p
1−t)

(1−t))m.

Thus, we have Pr[Y ≥ y/2] ≤ ((pa)a · (1−p
1−a)1−a)y ≤ (

√
2/3 ·

√
2/3
1/2)y ≤ (

√
8/9)y ≤ δ/n8 , for

y ≥ 8 log√
9/8

(n/δ). By the relation between logarithms we then have y ≥ 8 log(n/δ). We assume

that z ≤ n(n+1)/2 = n2/2+n/2 ≤ n2. After every n2 updates we can re-run Algorithm Dynamic-
Submodular-Maximization from scratch. Therefore, using a union bound, with probability at least
1− δ/n2 after every update there exist at least y/2 runs that survive. At any time t ∈ [z], we report
the set S whose f(S) is the median of the sets returned by those runs Rr that are survived. �

9

Acknowledgements

The work of Morteza Monemizadeh was partially supported by Department of Mathematics and
Computer Science, TU Eindhoven, the Netherlands.

Broader Impact

In this paper we introduced a simple but elegant dynamic algorithm for monotone submodular
functions under a cardinality constraint. Submodular functions have plenty of applications in machine
learning and combinatorial optimization and we believe researchers in both these areas would
benefit from this simple algorithm. Moreover we believe that the simplicity of this algorithm has
an educational impact. In particular, we think it can be used as a textbook example to explain the
growing area of dynamic algorithms for undergraduate and graduate students.

References
[AGHI09] Rakesh Agrawal, Sreenivas Gollapudi, Alan Halverson, and Samuel Ieong. Diversifying search

results. In Ricardo Baeza-Yates, Paolo Boldi, Berthier A. Ribeiro-Neto, and Berkant Barla
Cambazoglu, editors, Proceedings of the Second International Conference on Web Search and
Web Data Mining, WSDM 2009, Barcelona, Spain, February 9-11, 2009, pages 5–14. ACM,
2009.

[AK18] Sepehr Assadi and Sanjeev Khanna. Tight bounds on the round complexity of the distributed
maximum coverage problem. In Artur Czumaj, editor, Proceedings of the Twenty-Ninth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans, LA, USA, January
7-10, 2018, pages 2412–2431. SIAM, 2018.

[BCE+19] MohammadHossein Bateni, Lin Chen, Hossein Esfandiari, Thomas Fu, Vahab S. Mirrokni,
and Afshin Rostamizadeh. Categorical feature compression via submodular optimization. In
Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th International
Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California, USA,
volume 97 of Proceedings of Machine Learning Research, pages 515–523. PMLR, 2019.

[BGS15] Surender Baswana, Manoj Gupta, and Sandeep Sen. Fully dynamic maximal matching in o(log
n) update time. SIAM J. Comput., 44(1):88–113, 2015.

[BV14] Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submodular
functions. In Chandra Chekuri, editor, Proceedings of the Twenty-Fifth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014,
pages 1497–1514. SIAM, 2014.

[Che52] H. Chernoff. A measure of asymptotic efficiency for tests of a hypothesis based on the sum of
observations. Annals of Mathematical Statistics, 23(4):493 – 507, 1952.

[CW77] Larry Carter and Mark N. Wegman. Universal classes of hash functions (extended abstract).
In Proceedings of the 9th Annual ACM Symposium on Theory of Computing, May 4-6, 1977,
Boulder, Colorado, USA, pages 106–112, 1977.

[DF07] Delbert Dueck and Brendan J. Frey. Non-metric affinity propagation for unsupervised image
categorization. In IEEE 11th International Conference on Computer Vision, ICCV 2007, Rio de
Janeiro, Brazil, October 14-20, 2007, pages 1–8. IEEE Computer Society, 2007.

[dPBENW16] Rafael da Ponte Barbosa, Alina Ene, Huy L. Nguyen, and Justin Ward. A new framework
for distributed submodular maximization. In Irit Dinur, editor, IEEE 57th Annual Symposium
on Foundations of Computer Science, FOCS 2016, 9-11 October 2016, Hyatt Regency, New
Brunswick, New Jersey, USA, pages 645–654. IEEE Computer Society, 2016.

[EG11] Khalid El-Arini and Carlos Guestrin. Beyond keyword search: discovering relevant scientific
literature. In Chid Apté, Joydeep Ghosh, and Padhraic Smyth, editors, Proceedings of the 17th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego,
CA, USA, August 21-24, 2011, pages 439–447. ACM, 2011.

[FS05] Gereon Frahling and Christian Sohler. Coresets in dynamic geometric data streams. In Harold N.
Gabow and Ronald Fagin, editors, Proceedings of the 37th Annual ACM Symposium on Theory
of Computing, Baltimore, MD, USA, May 22-24, 2005, pages 209–217. ACM, 2005.

10

[KKM13] Bruce M. Kapron, Valerie King, and Ben Mountjoy. Dynamic graph connectivity in polyloga-
rithmic worst case time. In Proceedings of the Twenty-Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2013, New Orleans, Louisiana, USA, January 6-8, 2013, pages
1131–1142, 2013.

[KKT15] David Kempe, Jon M. Kleinberg, and Éva Tardos. Maximizing the spread of influence through a
social network. Theory of Computing, 11:105–147, 2015.

[KMVV15] Ravi Kumar, Benjamin Moseley, Sergei Vassilvitskii, and Andrea Vattani. Fast greedy algorithms
in mapreduce and streaming. ACM Trans. Parallel Comput., 2(3):14:1–14:22, 2015.

[KMZ+19] Ehsan Kazemi, Marko Mitrovic, Morteza Zadimoghaddam, Silvio Lattanzi, and Amin Karbasi.
Submodular streaming in all its glory: Tight approximation, minimum memory and low adaptive
complexity. In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the
36th International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long Beach,
California, USA, volume 97 of Proceedings of Machine Learning Research, pages 3311–3320.
PMLR, 2019.

[KZK18] Ehsan Kazemi, Morteza Zadimoghaddam, and Amin Karbasi. Scalable deletion-robust submod-
ular maximization: Data summarization with privacy and fairness constraints. In Jennifer G.
Dy and Andreas Krause, editors, Proceedings of the 35th International Conference on Machine
Learning, ICML 2018, Stockholmsmässan, Stockholm, Sweden, July 10-15, 2018, volume 80 of
Proceedings of Machine Learning Research, pages 2549–2558. PMLR, 2018.

[LB11] Hui Lin and Jeff A. Bilmes. A class of submodular functions for document summarization. In
Dekang Lin, Yuji Matsumoto, and Rada Mihalcea, editors, The 49th Annual Meeting of the
Association for Computational Linguistics: Human Language Technologies, Proceedings of the
Conference, 19-24 June, 2011, Portland, Oregon, USA, pages 510–520. The Association for
Computer Linguistics, 2011.

[LV19] Paul Liu and Jan Vondrák. Submodular optimization in the mapreduce model. In Jeremy T.
Fineman and Michael Mitzenmacher, editors, 2nd Symposium on Simplicity in Algorithms,
SOSA@SODA 2019, January 8-9, 2019 - San Diego, CA, USA, volume 69 of OASICS, pages
18:1–18:10. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019.

[MBK+15] Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas
Krause. Lazier than lazy greedy. In Blai Bonet and Sven Koenig, editors, Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, January 25-30, 2015, Austin, Texas,
USA, pages 1812–1818. AAAI Press, 2015.

[MKK17] Baharan Mirzasoleiman, Amin Karbasi, and Andreas Krause. Deletion-robust submodular
maximization: Data summarization with "the right to be forgotten". In Doina Precup and
Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine Learning,
ICML 2017, Sydney, NSW, Australia, 6-11 August 2017, volume 70 of Proceedings of Machine
Learning Research, pages 2449–2458. PMLR, 2017.

[MV19] Andrew McGregor and Hoa T. Vu. Better streaming algorithms for the maximum coverage
problem. Theory Comput. Syst., 63(7):1595–1619, 2019.

[MZ15] Vahab S. Mirrokni and Morteza Zadimoghaddam. Randomized composable core-sets for
distributed submodular maximization. In Rocco A. Servedio and Ronitt Rubinfeld, editors,
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing, STOC
2015, Portland, OR, USA, June 14-17, 2015, pages 153–162. ACM, 2015.

[NS13] Ofer Neiman and Shay Solomon. Simple deterministic algorithms for fully dynamic maximal
matching. In Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA,
June 1-4, 2013, pages 745–754, 2013.

[NWF78] George L. Nemhauser, Laurence A. Wolsey, and Marshall L. Fisher. An analysis of approxima-
tions for maximizing submodular set functions - I. Math. Program., 14(1):265–294, 1978.

[OR10] Krzysztof Onak and Ronitt Rubinfeld. Maintaining a large matching and a small vertex cover. In
Proceedings of the 42nd ACM Symposium on Theory of Computing, STOC 2010, Cambridge,
Massachusetts, USA, 5-8 June 2010, pages 457–464, 2010.

11

[SSSJ12] Ruben Sipos, Adith Swaminathan, Pannaga Shivaswamy, and Thorsten Joachims. Temporal cor-
pus summarization using submodular word coverage. In Xue-wen Chen, Guy Lebanon, Haixun
Wang, and Mohammed J. Zaki, editors, 21st ACM International Conference on Information and
Knowledge Management, CIKM’12, Maui, HI, USA, October 29 - November 02, 2012, pages
754–763. ACM, 2012.

[WIB15] Kai Wei, Rishabh K. Iyer, and Jeff A. Bilmes. Submodularity in data subset selection and active
learning. In Francis R. Bach and David M. Blei, editors, Proceedings of the 32nd International
Conference on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of
JMLR Workshop and Conference Proceedings, pages 1954–1963. JMLR.org, 2015.

12

	Introduction
	Preliminaries
	Basic primitives
	Related work

	Dynamic algorithm with expected O(-2klog2 n) amortized update time
	Offline algorithm
	Insertion
	Deletion

	Dynamic algorithm with high probability guarantee

