A Simulation Details

A.1 W-Decorrelated Estimator

For the W -decorrelated estimator [[6]], for a batch size of n and for T batches, we set A to be the
% quantile of )\min(XTX) /log(nT), where )\min(XTX) denotes the minimum eigenvalue of X'X.
This procedure of choosing A is motivated by the conditions of Theorem 4 of [6] and follows the
methods used by [6] in their simulation experiments. We had to adjust the original procedure for
choosing A used by [[6] (who set A to the 0.15 quantile of )\min(XTX)), because they only evaluated
the W-decorrelated method for when the total number of samples was nT" = 1000 and valid values
of A changes with the sample size.

A.2 AW-AIPW Estimator

Since the AW-AIPW test statistic for the treatment effect is not explicitly written in the original paper
[11]], we now write the formulas for the AW-AIPW estimator of the treatment effect: AAW-APW .—
FAW-AIPW _ AW-AIPW e use the variance stabilizing weights, equal to the square root of the sampling

probabilities, 1/ w§”> and y/1 — Ft(n). Below, Ny = >0 Apiand Nyp = >0 (1 — Ayy).
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t
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A.3 Self-Normalized Martingale Bound

Co,1 =

By the self-normalized martingale bound of [[1]], specifically Theorem 1 and Lemma 6, we have that
in the two arm bandit setting,

}P’(VT,nZ 1,

A?LS - 51’ < ¢y, and ’B(())LS - BO‘ < Co,T> >1-94

20/14+ 37 Nia

4]

where

1+ N
Cat = UQL% 1+ 2log

(3 Vo)

We estimate o2 using the procedure stated below for the OLS estimator. We reject the null hypothesis
that A = 0 whenever either the confidence bounds for the two arms are non-overlapping. Specifically
when

AOLS AOLS joLs OLS
B> +ear <py - —cor or +cor < 55 —c,r
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A.4 Estimating Noise Variance

OLS BOLS we estimate the

OLS Estimator Given the OLS estimators for the means of each arm, ﬂl
noise variance o2 as follows:
T n

2
TLT 9 Z Z (Rt i At ’BOLS (1 — A, Z) OLS) .

t=1 i=1

We use a degrees of freedom bias correction by normalizing by nI" — 2 rather than n7". Since the
W-decorrelated estimator is a modified version of the OLS estimator, we also use this same noise
variance estimator for the W-decorrelated estimator; we found that this worked well in practice, in
terms of Type-1 error control.

Batched OLS Given the Batched OLS estimators for the means of each arm for each batch,

BOLS ' 3BOLS we estimate the noise variance for each batch o7 as follows:

n

P jpos)”
0t2 = Z (th Ay, wBBOLS (1_At,i) 28L5> :

n—2
i=1

Again, we use a degrees of freedom bias correction by normalizing by n — 2 rather than n. We

prove the consistency of 67 (meaning 67 it o2) in Corollary 4| Using BOLS to test Hy : A = a vs.
Hy : A # a, we use the following test statistic:

Ny ONt 1 ABOLS

a).

Above, Ny 1 = >0 | Ay and Ny g = — A, ;). For this test statistic, we use cutoffs based

on the Student-t distribution, i.e., for Yt A t —2 we use a cutoff ¢, /o such that

(\fZ

We found c,, /o by simulating draws from the Student-t distribution.

> ca/g) = Q.

A.5 Non-Stationary Treatment Effect

When we believe that the margin itself varies from batch to batch, we are able to construct a confidence
region that contains the true margin A, for each batch simultaneously with probability 1 — «.

Corollary 2 (Confidence band for margin for non-stationary bandits). Assume the same conditions
as Theorem |3| Let z,, be ™ quantile of the standard Normal distribution, i.e., for Z ~ N(0,1),
P(Z < z4) = o Foreacht € [1: T), we define the interval

o2n

L=AS 42 o
! NioNit

limy, oo P(VE € [L: T], Ay € L) > 1 — v Above, Nyy = Y1 | Ayiand Ny = >0 (1— Ay ).

Proof: Note that by Corollary

T T
P(exists some ¢ € [1:T] s.t. Ay ¢ Ly) < Z (Ar ¢ Ly) — Z
t=1

t=1

’ﬂ\Q

where the limit is as n — co. Since
P(Vte[l:T],AyeL;) =1—P(existssomet € [1:T] s.t. A, ¢ Ly)
Thus,
lim P(Vt€ [1:T],Avely) >1—a O

n—oo
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We can also test the null hypothesis of no margin against the alternative that at least one batch has
non-zero margin, i.e., Ho: ¥Vt € [1: T|,Ay = 0 vs. Hy: 3t € [1: T] s.t. Ay # 0. Note that the
global null stated above is of great interest in the mobile health literature [?, ?]. Specifically we use

the following test statistic:
T

NioNea 4
2 o, (B0
t=1
which by Theorem [3|converges in distribution to a chi-squared distribution with 7" degrees of freedom
under the null A; = 0 for all ¢.

To account for estimating noise variance o2, in our simulations for this test statistic, we use cutoffs

based on the Student-t distribution, i.e., for Y; i t,_o we use a cutoff c,, /2 such that

1T
IP(T Z}/;Q > Ca) = Q.
t=1
We found c,, by simulating draws from the Student-t distribution.

In the plots below we call the test statistic in (A-3)) “BOLS Non-Stationary Treatment Effect” (BOLS
NSTE). BOLS NSTE performs poorly in terms of power compared to other test statistics in the
stationary setting; however, in the non-stationary setting, BOLS NSTE significantly outperforms all
other test statistics, which tend to have low power when the average treatment effect is close to zero.
Note that the W-decorrelated estimator performs well in the left plot of Figure[8} this is because as
we show in Appendix [F] the W-decorrelated estimator upweights samples from the earlier batches
in the study. So when the treatment effect is large in the beginning of the study, the W-decorrelated
estimator has high power and when the treatment effect is small or zero in the beginning of the study,
the W-decorrelated estimator has low power.
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Figure 6: Stationary Setting: Type-1 error for a two-sided test of Ho: A = 0vs. H1: A # 0 (a = 0.05).

We set 51 = Bo = 0, n = 25, and a clipping constraint of 0.1 < 7'(',(5”) < 0.9. We use 100k Monte Carlo
simulations and standard errors are < 0.001.
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Figure 7: Stationary Setting: Power for a two-sided test of Ho: A = 0vs. Hi: A # 0 (a = 0.05). We

set 1 = 0, Bo = 0.25, n = 25, and a clipping constraint of 0.1 < ﬂin) < 0.9. We use 100k Monte Carlo
simulations and standard errors are < 0.002. We account for Type-1 error inflation as described in Section@
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Figure 8: Nonstationary setting: The two upper plots display the power of estimators for a two-sided test of
Ho: vVt € [1: T, Beg — Beo = 0vs. Hi: 3t € [1: T],Be,1 — B0 # 0 (o = 0.05). The two lower plots
display two treatment effect trends; the left plot considers a decreasing trend (quadratic function) and the right
plot considers a oscillating trend (sin function). We set n = 25, and a clipping constraint of 0.1 < ﬂt(”) <0.9.
‘We use 100k Monte Carlo simulations and standard errors are < 0.002.
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B Asymptotic Normality of the OLS Estimator

Condition 6 (Weak moments). V¢, n,1, ]E[et22|gt(ﬁ)1] = o2 and for all Vt,n,i, E[cp(eflﬂgt(ﬁ)l] <
M < oo a.s. for some function @ where lim,_, @ — 0.

Condition 7 (Stability). There exists a sequence of nonrandom positive-definite symmetric matrices,
V,,, such that

Y B . . i B 1 p
(a) V, ! ( Zt:l Zi:l thX:z) =Y, ! (XTX) F = lp
_ P
(b) maxie(1: n)te1: 1) 1V 'Xiilla =0

Theorem 5 (Triangular array version of Lai & Wei (1982), Theorem 3). Let X;,; € RP be non-

anticipating with respect to filtration {Qt(") M, 50Xy, is Qt(f)l measurable. We assume the following
conditional mean model for rewards:

E[Rt,i|gt(ﬁ)1] = XZ;’:B-
We define €, ; == Ry ; — X;ﬂ. Note that {e“}ijtt;T is a martingale difference array with respect
to filtration {g,ﬁ")}tT:l.

Assuming Conditions[6land[7} as n — oo,

x"X)'72(87° — 8) B N(0,0°L,)

Note, in the body of the paper we state that this theorem holds in the two-arm bandit case assuming
Conditions 2land[l] Note that Condition[l]is sufficient for Condition[6land Condition[2]is sufficient
for Condition[/|in the two-arm bandit case.

Proof: oLs
B = (X"X)IXTR™ = (XTX)"IXT(XB + ¢)

T n -1 T n
~OLS
8 = (XTX) X = (z 3 xx) SN X e
t=1 i=1 -
It is sufficient to show that as n — oo:
T n
XXV Xy e B N(0,0°L)
t=1 i=1
By Slutsky’s Theorem and Condition[7](a)] it is also sufficient to show that as n — oo,
T n
_ D
VYOS Xiei = N(0,0°1)
=1 i=1

By Cramer-Wold device, it is sufficient to show multivariate normality if for any fixed ¢ € R? s.t.
lefle = 1, as n — oo,

T n
CTX;1 Z th,iﬁt,i Tt N(0,0?)

t=1 i=1

We will prove this central limit theorem by using a triangular array martingale central limit theorem,
specifically Theorem 2.2 of [8]]. We will do this by letting Y; ; = CTX; leem-. The theorem states

that as n — 00, 31, S Vi B N(0, 02) if the following conditions hold as n — oo:

@ Y, S, BG5S 0
n n P
(b) Z?:l D1 E[Y?Jgt(—)ﬂ = o?
() V6> 0,51, S B[Y2L Gy, 155|G"] 50
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Useful Properties Note that by Cauchy-Schwartz and Condition as n — 0o,

P
‘ max Tanxm < max ||cH v, 1Xm”g =0
1€[1: n],te[l: T i€[1: n]te(l

By continuous mapping theorem and since the square function on non-negative inputs is order
preserving, as n — oo,

2
( max cTanXm|> = max (CTXTZIXM)Q £o (5)
i€[1: n],tell: T i€[1: n]te(l: T

By Condition and continuous mapping theorem, ¢ V, ! (XtT X i)'/? BT, so

TV X )2 (X X ) 2V e BoeTe =1
Thus,

T n
SN VX ) B ©6)

t=1 1=1
Condition (a): Martingale
T n T n
SN BTV Xl =303 TV X Bl iG] =
t=1 i=1 t=1 i=1

Condition (b): Conditional Variance

~

n

T T n
STN RNV X )26 = S0 (€Y X )2 Ele 1647 = ZZ TV X, ;)
t=1 i=1 t=1 1=1 t=1 i=1

where the last equality holds by Condition [6]and the limit holds by (6 as n — oo

Condition (c¢): Lindeberg Condition Let ¢ > 0. We want to show that as n — oo,

T
where above, we define Zt(z) = cTX;L IXM. By Condition@ we have that forall n > 1,

Elp(e2,)G)] < M

,f”)l} Lo

max
te(l: T),i€[l: n]

p(z)

Since we assume that lim,_, = o0, for all m > 1, there exists a b, s.t. p(z) > mMax for all

x > by,. So, forall n, t,1,

M > E[p(e)I6")] > Elp(e2 )z 50,0|G101] = mME[e} T2 5,|6:"]

Thus,
max E[eg 4]1( > S )|g(n)1] < l
te[l: T),i€[l: n) A (eF i 20m) Ft—11 =
So we have that
T n
ZZZEJ]E[E?JH(Z,? €2 ,>62) ‘Qtn)]
t=1 i=1
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G 1] (z§7i<52/bm)+E[€f,iﬂ(zgie;i>52) gt(n)l}ﬂ(zgpaz/bm))

T n
= Z Zfz,l( |:€f 1}I(Z2 €2 >02)
t=1 i=1
T n
528 (B[

t=1 i=1

1 T n
2 2
< (m to H(maxtlg[l; T],j€[1: n) Zf/,j>52/bm)> Z Z Zt,i

t=1 i=1
By Slutsky’s Theorem and @, it is sufficient to show that as n — oo,

1 P
2
E +o ]I(maxtle[l: T],5€[1: n] thz‘j>52/bm) =0

IN

G|+ oLz o

For any € > 0,

m

1 2
]P(m—‘rO' H(maxt’e[h T],5€[1: n] Zf/d>§2/bm) > 6) < ]I( L>¢ )+P( H(maxtle[l: T],j€[l: n] Zf/,j>52/bm) >

We can choose m such that = < £ so P(L > £) = 0. For the second term (note that m is now
fixed),

2 € 2
]P)<U H(maxt’e[l: 115e0: n) Zis ;>6%/bm) > 2) < P<t,e[1:rjrwlﬁjx€[1: n] t'yj > 6" /b > =0

where the last limit holds by (3) as n — co. [

B.1 Corollary[d](Sufficient conditions for Theorem [5)

Under Conditions [l and 3} when the treatment effect is non-zero data collected in batches using
e-greedy, Thompson Sampling, or UCB with a fixed clipping constraint (see Definition[I)) will satisfy
Theorem[3 conditions.

Proof: The only condition of Theorem 3 that needs to verified is Condition 2} To satisfy Condition
it is sufficient to show that for any given A, for some constant ¢ € (0,7,

n

1 1 P
LIRS SRR
t=1 i=1
e-greedy We assume without loss of generality that A > 0 and 7r§”) = % Recall that for e-greedy,

fora € [2: T7,

v=1Ne 1 t=1 Nero

_e Xt X AviRes o X8 3 (1A Res
(n) — 2 Sa a
otherwise

[SI1eY

Thus to show that {5 1 — § forall a € [2: T7, it is sufficient to show that
a " AR — A )Ry
P(Zt_lg:z_l t,itle Zt 1Za ( t, ) t, ) 1 (7)
Zt’:th’J Zt’ 1Nvo
To show , it is equivalent to show that

(A > Zt 1 ZL 1( At i)€t7i _ Z?:l Z?:l At7i€t,i> - 1 (8)

>v=1 N i1 N
To show (8)), it is sufficient to show that
Z?:l Zz:l(l — At7i)€t7i _ Z?:l az:?:l At,iet,i 5 0. 9)
D=1 Niro 2= Nira

To show (EI), it is equivalent to show that

a
VNto  >n (1= Api)er VN1 S0 Avieri P
VIO i =1 26t B (0
ZZt’:th’,O F ZZt’ 1 Nea \/Nt,l - (o

19

€
2

)



By Lemmall] forall ¢t € [1: T7,
Nip P
W,
' 'n

Thus by Slutsky’s Theorem, to show (]E[) it is sufficient to show that

i n(l— th)) S (1= Agi)e _ i mrﬁn) S A L an

Syl (1—7x) Nt Sy w Nt

Since Wt(”) € [§,1 — §] for all £, n, the left hand side of (TT) equals the following:

~ Z 1( Atletl Z 1At7.6t1 P
0, (1) == 0, (1) =izt 2itti B
N TR Y e

The above limit holds because by Thereom 3 we have that
(Z?:l Ari€ryi P (1= Arg)ers Yo Argery D7 (1 — Arg)er

Nia Nio U /Nea /N0

) B N(0,0%L,;).

(12)
Thus, by Slutsky’s Theorem and Lemma[I] we have that
T T
1 p 1 € 1 p1 €
— Ny —>-+(T-1)1—-= d — Niog—=> -+ (T-1)=
nz 1 5+ )a-73) an nz o= 5+ ( )5
t=1 t=1
Thompson Sampling We assume without loss of generality that A > 0 and 71'5”) = % Recall that for

Thompson Sampling with independent standard normal priors (31, Bo vk N (0,1)) fora € [2: T,
7_{_((1n) = Tmin V [ﬂ-max A P(ﬁl > ﬂO ‘ Ha_l)]

Given the independent standard normal priors on f1, Bo, we have the following posterior distribution:

a—1 n a—1 n
61 50 | H ~ /\/’( t=1 szl_fl“R“ _ 2at=1 Zi:l(al—: At,z‘)Rt,i7
o+ 37— Nia o2+ 371 Nio
o?(0® + 300 Nuw) + 02(0® + 300 Nt,o))
(0% + Z?;11 Nio)(o? + Z?;ll Nieq)

= N ("), (0)?)
(n)

Thus to show that m(ln) LY Tmax for all a € [2: T, it is sufficient to show that (s,
(o, (n) )2 Eoforalla e [2: T]. By Lemma | forall ¢ € [1: T7,

N;

t,1 51
(n)
mn

1gAand

Thus, to show (o, (n) )2 £ 0, it s sufficient to show that
(@ +n T w4 (@ +n ST (- m")

(@2 +n Y (- ™)) (o2 +n i) w™)

The above limit holds because 7rt( n) € [Mmins Tmax] for 0 < Tmin < Tmax < 1 by the clipping

condition.

We now show that u((l"_)l £ A, which is equivalent to showing that the following converges in

probability to A
P 1At iRei D D (! —A“)Rt,i
o? + Z Nt 1 o2 4+ Z Nt 0
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a—1 a—1 n a—1 a—1 n
e Ne1 =1 i1 Avilei t—1 Vt,0 i1 Do (L= Agi) Ry
a—1 a—1 a—1 a—1
o2+ Nia =1 Nea o2+ Nio t=1 NVt,0

a—1 a—1 n
=1 *'t,1 =1 =1 ‘1,150
t ) ﬂl t [ 5

o2+ 30 Nia ) Nia
a—1 a— 1 n
N o . 1-A i i
— % </B + le}f t, )€t7 ) (13)
o2+ 30" Nio t—1 Nio
Note that ) )
i—y Ni i NVi P
. tilafltl L — . tilaflto ﬁO SA (14)
0%+ -1 Nea 0%+ -1 Neo
Equation (T4) above holds by Lemma I] because
(n) a—1l., (")
DD I ST
02+”Zt 17Tt o +n}i- 1(1_771: )
which hold because W,En) € [Tmin, Tmax| due to our clipping condition.
By Slutsky’s Theorem and (14)), to show (T3)), it is sufficient to show that
-1 n a—1 n
=1 Zi:l At,iet,i _ t=1 Z’L:l(]‘ _ At’i)etvi 5 0. (16)

02 + 32071 Ne 02 + 32071 Neo
Equation (T6) is equivalent to the following:

Zl \/7 Loizy Avicus ai Neo Ym0 —Awei 5y g

Y02+ 30\ Ney /Nia <2+ 30 Nuvo Nio

By Lemmal[T] to show (T7) it is sufficient to show that

ail nﬂ-én) Zz 1At i€t,i Z 1_7T(n)) ?:1(1_1415,2')515,2' E)O (18)
Sy iiw) VN o2 rnY i1 - ) Neo

Since 7r§") € [Tmin, Tmax] due to our clipping condition, the left hand side of (I8) equals the

following

a—1 a—1
Z LAt i€ (1-A e p
o,(1)==——— o —— =0
Z b /N ; i Nio

The above limit holds by (12).
Thus, by Slutsky’s Theorem and Lemma[l] we have that

T
1 p 1 1 P

— Nep — =4+ (T — D)mmax d — Nio — T — 1)7Tmin [
n; t1 7 5 +( ) Tma an nZ t,0 + ( )

UCB We assume without loss of generality that A > 0 and 7r1n) = % Recall that for UCB, for
ac2:T],

7T(n) — Tmax if Uafl,l > Ua,1’0
¢ 1 — Tmax  otherwise
where we define the upper confidence bounds U for any confidence level § with 0 < § < 1 as follows:
> if 2?2—11 N1 =0
Us11 = S Y AviRe s 2log1/6 .
SN, + ST N, otherwise
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00 if Nyo=0
Ua—1,0 = P (1A i) Res 21 /
, t=1 2iiz1 ti)ftei og1/9 otherwise
Si2 Neo \/ﬂ
P

Thus to show that 77,(1") Lt Tmax for all a € [2: TY, it is sufficient to show that [y, >, o) — 1,
which is equivalent to showing that the following converges in probability to 1:

H(Z?:lNt,1>0»2?:1Nt,0>0)]1(2?:1 P Atifri [ 2los1/s 3} Z?’Zl(l—At,i)Rt,i+ 2log 1/6 )
¢ 1 Nt ¢ 1Nt ¢ 1Nt >¢ 1 Nto

+ (e Ny 1=0,59 | Nio>0)

TE1 T Avict,i 2log1/6

I +0,(1)
o TE_ P (A=A ey 4 2log1/5 P
((Bl Bo)+ ¢ 1Nt + pol Nt,1> 21?:1 Nt 1 + PO Nt,())

Note that to show that the above converges in probability to 1, it is sufficient to show that the
following:

Y il = AviJen [ 2log /o 3, My Aviews [ 2logl/d b
Z?:l Nt71 Z?:l Nt Z?=1 Nia Z?:l Nia

Neo L. Also note that
n/2

P )
Note that for fixed §, we have that 2%13%7%5 = 0, since
t=14Vt,0

2in %;Zl(ij"i)ﬁ"i - Z?=1Z%:ll=}vf’l’e“ £, by the same argument made in the e-greedy case to
show (9).
Thus, by Slutsky’s Theorem and Lemma[I] we have that
1 1 1
N NS 5+ T =D and =N No B S+ (T = 1)1~ Tax)
n n
t=1 t=1
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C Non-uniform convergence of the OLS Estimator

Definition 3 (Non-concentration of a sequence of random variables). For a sequence of random
variables {Y;}"_, on probability space (Q, F,P), we say Y., does not concentrate if for each a € R
there exists an €, > 0 with

P{weQ: |Ya(w) —al >e}) A 0.

C.1 Thompson Sampling

Proposition 1 (Non-concentration of sampling probabilities under Thompson Sampling). Under the
assumptions of Theorem 2} the posterior distribution that arm 1 is better than arm 0 converges as
follows:
1 itA>0
P(5i > B | H™) B {0 ifA<0
Uniform[0,1] ifA =0

Thus, the sampling probabilities Wt(n) do not concentrate when A = 0.

Proof: Below, Ny = 1" | Ay ;and Ny o = > (1 — As ;). Posterior means:

n
> i (1= A1) R o’
50‘H1(n) NN<Z ; 2 ’ -2
Ua—l—NLo Ua‘|'N0,1

~ TL A 'Rl ; 0’2
H(”) ~ Zz—l 1,044 a
ﬂl' 1 N( 0_5 +N1’1 ’ 0_(21 + ]\/v171

Bl - BO | Hl(n) NN(,Unan)

™A1 i n_ —Aq i o2 (a2 o2 (o2
for pin 1= e fpettis _ Rln el ang g2 = alnpalbos (o)
2 ) n ) ) n B*B — Mn n n
P(By > Bo | H{") = P(B1— Bo > 0| H| >)p(1 ot s B g

For Z ~ N(0, 1) independent of pi,,, .,

an)> = P(Z < Bn

(n) Hn (n)

H =¢| — |H

n ' ) (Un ’ ' )
Hn (Z?_l AviBys 30— Al,i)Rl,i>\/(Ug + Nio)(oZ + Nia)

Tn oa+ Nig o2+ Ny 204 + o2n

n

:P<Z>—“”

_ <51N171 + 30 Arer ~ BoNio + o (1— Al,i)el,i>\/(03 + N1)(02 + N11)

02+N1,1 03+N1,0 20’34—0‘371
_ 2im Avicw Nia(oz+MNo) 3 (1= Avi)ers Nio(og + M)
VNia (205 +o02n)(0g + N1,1) Nio (205 +o03n)(o2 + N1o)
Nia Nio (624 N1g)(02 + N11)
) _ ) a ) a Y . B, +C,
+<610'2+N1’1 6003-’-]\[1’0 203-’-0’271 +
Let’s first examine C,,. Note that 81 = 8y + A, so 51 Ug]il]’\}l,l — Bo aﬁﬁlli;)l,o equals
Nia Nip Nia Nia Nio
= A 2 —_ 2 = A = 2 —_ 2
(Bo + )U§+N1,1 BOU,%—FNLO 024+ Nia * o 024+ Nip o024 Nip
_A Nii/n + 8 Ni1(62+ Nig) — Nio(o2 + Nijq)
(024 N/ (02 + Ni1)(0Z + N1,
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A (e s ) = Ao +o( 1)

where the last equality holds by the Strong Law of Large Numbers because

2z (N1, = Nio) _wls—ste@]  _ go(1) :O<1>
(02 + Nia)(o2+Nia)  [3+o(D][3+o(1)]  §+o(1) n

Thus,

l (O'g'i‘Nlﬁo)(O'g—‘er’l)
n 204 4 o2n

- [Ap +o(1)] + O(D] \/n[é ol +oW] _ =y [1/(204) + 0(1)] + 0<

Let’s now examine B,,.
Ni1(02 + Nip) [5 +o(1)] _
(208 + oZn) (02 + Nia) 02+0 [2 4+ 0(1)]
Nio(02 4 Nyj) [5 +o(1)] _ 1
(208 +02n)(02 + Nio) 02+0 (1 +0(1)]

20
Note that by Theorem {\/ﬁ S €A, \/7 S eni(l— AM)} B N(0,L,). Thus by

Slutky’s Theorem,

)

1
20

5 +o(1)
5 +o(1)

a

i1 A€l Ni1(02+N1,0) 2im1 Avi€ [ Lo 0(1)]
/Ni1 (202+02n)(024+N1,1) . \/ﬁ 202 _D) N 0, 2
i1 (A—Ari)er, Ni,0(02+N1,1) T 2k 0-AL)ean [ + 0(1)] " 20 2 -2
/o (2od+02n)(02+N1,0) V1o 27

Thus, we have that, B,, g N (0, U%) Since we assume that the algorithm’s variance is correctly
specified, so 02 = 1, ‘
00 ifA>0
B,+0C, 2! ifA <0
N(0,1) ifA=0

Thus, by continuous mapping theorem,

1 itA>0
P(fy > Go|H{™) @(Z”) = ®(B, +Cy) 340 ifA<0 O
" Uniform[0,1] ifA =0

Proof of Theorem 2| (Non-uniform convergence of the OLS estimator of the treatment effect

for Thompson Sampling): The normalized errors of the OLS estimator for A, which are asymp-
totically normal under i.i.d. sampling are as follows:

(N1 + Na1)(Nio+ Nap) BOLS _ GOLS _ A
m 1 0

_ \/(Nl,l + Na1)(N1,0 + Nayo) (Zf_l i Avilei S22 S (1 — Ay) Ry B A)

on Nii+ Nojy Nio+ Nag
_ (N11+N21)(N10+N2,0) Zt I Arier Zt IO (1= Ay)er
= (B1—Bo)—A+
Nii1+ Nag Nio+ Nag

N10+N202t L 1 Avi€ri N11+N21Zt L (L= Ay i)

o /M1t M 2n /Moot Moo
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= [17 _la 17

=[1,-1,1,-1]

Nio+Na2o Do, Arjieri
2n \/N1,1+N2,1

Ni1+No1 > (1—=Ay s)ers
2n \/Nl,o-‘er,o

Nio+Nao >oin, Azieai
2n \/N1,1+N2,1

Nyi1+Noq1 >0 (1—As )ea;
2n \/N1,0+N2,0 |

i Ni,0+Na2o Nia 200, Avier
2(N1,1+N2,1) n /N1
Ni,1+N2 Nio > i (1=A1i)ers

2(N1,0+N2,0) n \/N1,0
N1,0+N2 Noi D7, Agjiea
2(N1,1+N2 1)

n
N1,1+Na,1

Vv N21
LV 2(N1,0+N2,0) n \/N2,0 i

_1]

Noo Doi (1=Azi)e2i

By Theorem (Z?/lAl’ielvi 2in(A-Aviers 300, Asieas 2070 (1-Aza)en
b \/m K

Vv N1,1 ’
Lemma|l|{and Slutsky’s Theorem,

Vv N2,1

$(3+[1—m2])

Vv N2,0

2n(N1,1+N2,1)

N1,1(N1,0+N20)

2(5+72)

Nio+Nog [Nigdoig Ariers
2(N11+ Najy) n VAR

(3 +[1—m))

Nio+ Nag

/

( 2n(Ni1 + Naq)
Ni1(N1o+ Nay)

1
2
2(% + 73)

%(% +[1 —ma]) Z?:l Ay e

19)

=1+ 0,(1), thus,

n
Nia g A€

0p(1)> 2(N11 + Naq)

N1+ Naoyg

2(3 + m)

v/ Nia

n

VN1

n
Ny Avi€r

+ 0p(1)

2(N171 +N2’1) n

Note that 4/ % is stochastically bounded because for any K > 2,

( Nio+ Napg
2(N11 4+ Naq)

1,1

n 1
K)<P(- 2 >Kk)=p(-
>>_ (N1,1>> <K>

where the limit holds by the law of large numbers since Nl(ﬁ)

Ny
n

Nt < 1 and 72?:1%“6“ B N(0,1),

Nio+ Napg

n
N1,1 Zizl Aueu

op(1)

2(N11 4+ Naq)

=0,(1
e = o)

~ Binomial(n,

N

)0

3). Thus, since

We can perform the above procedure on the other three terms. Thus, equation (19) is equal to the

following:

[1,-1,1,—1]

[ 1/24ms D (1—Aii)er
4(1/241—m2) /N,

1/2+41—mo D0y Al i€ T
Ve

=}

(1/241—mo)me 3074 Azi€a,i
\ T2/z5 ) Vo
(1/24ma)(A—m2) 33 (1—Az )€z

2A /2 1—m2) \/ﬁo

+ 0p(1)

Recall that we showed earlier in Proposition [T] that

ﬂ-én) = Tmin V |:7Tmax NP (Mn):| = Tmin V |:7Tmax NP (Bn + Cn>:|
On
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i Aviers Do (1= Avi)er [1 } ﬂ
— Tmin V max AP = : — — = ’ ~ + Al = —+ 1 —+ 1
! [W ( V2N1a 2N1,0 v 2 o(1) o(1)

P P .
When A > 0, 772") = Tmax and when A < 0, wén) =5 Tmin. We now consider the A = 0 case.

1 w1 Aver v (1= Ay ey
9 {2 [Ephss_ i ie] )
V2 Nia Nio
1 g Avier Pl —= Ay e
= T'min \Y |:7Tmax A (I)< |:ZZ=1 1, 617 _ Zz—l( 1, )61’ :|>:| + 0(1)
V2 N1 Nio

By Slutsky’s Theorem, for Z1, Zs, Zs, Zs " N(0,1),
1/241—7mo 2jq Ari€r ] :
\/ /21—,
i(1/2+72) /Ni1 Yztiore 7,
e ot
T2 1(1/2+1—n»
[1,-1,1,-1] e +o,(1) B 1,-1,1,-1] (4/2+1-m)
(1/2+1—my)my 3ojy Azic2.i [G/2+1—n)ms
2(1/2+m2) /N2 1 2(1/2+7x) 3
1/2470)(1—mo) gy (1—Ag j)ea s (1/247)(1—74)
i <2/(1/2j»)1<77'r2)2> 1\/@1 = | \/2(1/T =) 44

B 1/2+177r* 1/2+7T*
= m<m21 + \/7?*Zg) - \/E(\/WZQ + MZ4)

Tmax ifA>0

where 7, = < Tmin if A <0
Tmin V (Tmax A @[\/1/2(Z1 — Z3)]) ifA=0 O
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C.2 ¢e-Greedy

Proposition 2 (Non-concentration of the sampling probabilities under zero treatment effect for
e-greedy). Let T = 2 and W%n) = 1 for all n. We assume that {€; ;}, Sk N(0,1), and

(n) _ {1 _ % if ZL 1]\21111%1 i > Zi:l(l_Alwi)Rl‘i

5 . Nio

5 otherwise

Thus, the sampling probability 7T2 ) does not concentrate when 51 = Bo.

Proof: We define Mn = H(ZEL=1 Ay iRy z" 1 (1—Ay )Ry, L) =
N1 Ni,0
zy:luf,ql’i)eu). Note that when M, = 1, (”) = 1 — 5 and when
Ni,0

I Br A
((B1—po)+ Eimtgbati
M, =0,75" = §.

. . i i.d.
When the margin is zero, M,, does not concentrate because for all N7 1, N7 o, since €; “R N(0,1),

S Avers o > (1= A e, _ 1 1
P > —P 7, —
Nia Nip VN1 VN1

for Z1, Zy o N(0,1). Thus, we have shown that wén) does not concentrate when 81 — Sy = 0. O

Z2>0>:

Theorem 6 (Non-uniform convergence of the OLS estimator of the treatment effect for e-greedy).
Assuming the setup and conditions of Proposition |2} and that 31 = b, we show that the normalized
errors of the OLS estimator converges in distribution as follows:

VN1 + Nz,l(A?LS —b) By
v Zy if 81 — Bo #0
Wi (G - V2 =€)z, 5z + ) 152 (D — VeZs) Nz <z, B —Bo=0

for Z1, 7y, Zs L N(0,1). Note the 81 — By = 0 case, Y is non-normal.

Proof: The normalized errors of the OLS estimator for 3 are
Avies Avicei
\/m<2t L Dy AviRy, —b) ZHZ” L€t
Niq+ Nog \/m

n
21 Avi€r Nigi  2h i Aviens

. [1 1] ;N1,1+N2,1 . [1 1] Ni,1+N2 1 /N1
e teg Azjiea | T LT Na 1 Doieg A
A/ N1i,1+Na2 1 Ni1+N2 /N 1

(™)
By Slutsky’s Theorem and Lemma < 1/2__ [NatNe NEARS ALY 1) 5 1,1),

1/2+m{™ Nia 1/2+7r<"> Nai
$O

1/2 Ni,1+N21 +o N1 Doieg Avi€l
1/2+mf™ Ni1 p Ni,1+N2 1 \/Ni1

w;“ Ni,1+Na1 +o (1) Nz iy Asieai
1/2+7r2") Na 1 P Ni,1+Na2 1 /N2

1/2 X i Avien
1/2_,’_”2") /Nl.l +OP(]‘)

T L Asjieni

1/2+n5M \/7

The last equality holds because by Theorem ( 17%6“ , E%}%e”) BN (0,L,).
1,1 2,1

+ 0p(1)
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> Pp— p—
Let’s define Mn = H(ELl]\}“l,iRl i e 1(1 Aq )Ry, 1) - H((51—50)+2?:1 A q€1i >Z?:1(1—A17i)‘1,i )
1,1 N1,0

N1 Nio
Note that when M,, = 1, 7r2”) =1— £ and when M, =0, ﬂén) =3

M, =1 snoa no(1—Aq ey = 1 , ,
Xio L AL it (—Ari)er Nio X0 4 Ape1s P (1—Ay ey g
(( —Bo)+ Ni1 > N1 ) (\/N1,0(51*ﬁ0)+ Ni:? L_lﬁ\]ll:?l( L 2=t lelo“ 1”)
=1 S A e L SR (1—Ap )eq g
(V/N10(B1=Bo)+[1+0, (1)) eyt i Ol Li)

where the last equality holds because 4 / o B by Lemmal Slutsky’s Theorem, and continuous
mapping theorem. Thus, by Proposition |ZL

1 if 1 —Bo >0
M E Lo if B — By < 0
does not concentrate  if 8 — By =0
Note that
3 ieq A€ +o (1)
P SR o
71';") A€o

i=1 )i
%4‘7"&”) 1\/ N21 + Op(l)
1 1 n
3 i Avian 1 3 i Avicni 1
_ F1-%5 /Na + op(1) Mo+ (VT N + op(1)
1—e/2 Y0, Az i€z (1) Doiq Asiea

AN, ST A S

S Aviers Yo (1-Ar e iy Agi€a 1 (1=Agi)eas
Also note that by Theorem ( Vel N SV o Jar )
N(07I4)

D
=

When 31 > 8y, M, g 1 and when 3, < By, M, g 0; in both these cases the normalized errors are
asymptotically normal. We now focus on the case that 3; = y. By continuous mapping theorem

and Slutsky’s theorem for 7, Zo, Z3, Z4 bt N(0,1),

% Ezl:lAl'LelL
=) VeV o)
+

I n_Aq jer n —Aq )e1
73 S, Agiea ) ([1+o(1)] i1 A1 >Z1,:1(1 1,i) 1‘7,)
op(1)

S VNax Vi VLo
1 n
3 i Avier
“1‘[171] %tf “\/ﬁ P (1 _]I(l Iy i Avieni SR, 0 Al,l)sl,i)>
3 Xim Azieai (1) [1o(1)] ==ttt > —
2ts /N2y p v

D \/ 1/2-51-{2 571 1/;/2 2
= [1,1] T e/;/ Lz, >z, + [1,1] +6/ H(21<Z2~)
\ 1/241— 6/2Z3 \/ /2+e/2 Z3

(\/ . Z1 + \/ Zg>]1(zl>22) + <\/ Zl 1o ZB>H(Zl<Zz)

Thus,
Z?:l Z?:l At,iq,i 2) y
VN1 + Nax
7 (%1 = V2 = eZs) if B1 — o > 0
Y = (21 — VeZs) if B — By < 0

(2 = V2= €Zs) Wz, 5 ) + ) T (D1 — VeZa)lizy<z,) 11— Bo=0 O

C.Q
m
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C3 UCB

Theorem 7 (Asymptotic non-Normality under zero treatment effect for clipped UCB). Let T = 2
and wgn) = 1 for all n. We assume that {e; ;}, S N(0,1), and

7r(n) _ T'max if Ul > UO
2 1 — Tmax  otherwise

where we define the upper confidence bounds U for any confidence level § with 0 < § < 1 as follows:
00 it N1 =0
U= { ;LZINTI”'R” + \/W otherwise
o0 if Nl,O =0
o= { ?:1(1];:‘1”)}%1”; + \/W otherwise

Assuming above conditions, and that 31 = b, we show that the normalized errors of the OLS estimator
converges in distribution as follows:

VN1 + Not (B2 —b) By

ifA=0

Z
= 1 1 .
( % jm \/ 71{;:})‘ 23 (Z1>22) + %77‘2'max Z1 + V %i:nrjn?; Z3)I[<Z1<Z2) ifA = 0
for Z1, 7y, Zs b N(0,1). Note the A := B1 — Sy = 0 case, Y is non-normal.

Proof: The proof is very similar to that of asymptotic non-normality result for e-Greedy. By the
same arguments made as in the e-Greedy case, we have that

1/2 Y% Aji€er +Op(1)

2 n
1 ARy o) N
\/m<2tl dim Al B b) —[1,1] 1/24 \/T

Nl,l +N2,1 Wgn) 1 Az i€ +o (1)
1/24m5™ ./ P

Assuming n > 1, we then define
Mn = H(U1>Uo)

= ]I(N1,1>07N1,0>0)H( ", AR 2log1/s Z?:1(1741,1'>R1,i+ 210g1/5) + H(N1,1:07N1,0>0)
N1 1 N1 N1 Ni0
= H(N1,1>0>N1,0>0)H(( e )Jr pou A1 i€l 2log1/0 1(1*A1,i)61,7t+ 2log 1/5) +H(N1,1:0,N1,o>0)
0 N1 N1 Ni0

=D I :
11>0,N1,0>0) N Ay seq s N (1—Aq j)eq s
! (,/Nl,o(ﬁrﬁo)ﬂ/ Ni:‘f [72“\1/% Lii\/2log 1/5} >7Elil(\/ﬁ1{l> Lig\/2log 1/6)

+ LNy, =0,N, 0>0)

Note that Nl 0 —> 1 by Lemmal|l|l Thus by Slutsky’s Theorem and continuous mapping theorem,
y y y pping
7*11 » 1,i€1,i T (A—Ag er 1 20
(1/N1,0(1317,BO)+[1+OP(1)]72L:1/7;:1:1 = +OP(1)>2171(1/7N1;1") ) Op( ) (20)
Note that

% 1 €1,
n) 017(1)

<n>
o 1A21621 +0p(1)

’VL
§+7"2

% Son Ariers +o ( ) l A€ + o (1)
_ Par— \/ﬁ P M, + T 1 Tmax ‘/Nl 1 P (1-M,)
: (1)

A
\ 1117”::“ ‘/N;eh Op(l)
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(n) (n) H(n) L)y . [ i, Avsers 2o (1-Avi)ers Yoiy Aseas Yo (1—Az)eas
Let (Zl Ly hy 2y ) = N Nro , Nox Moy ) .
Note that by Theorem3] (2™, (", Z", z{) B N (0,1,).

When 31 > By, M, g 1 and when 3, < By, M, g 0; in both these cases the normalized errors are

asymptotically normal. We now focus on the case that 3; = y. By continuous mapping theorem
and Slutsky’s theorem,

L m
_py |VERA Tel)

- 1
\/lﬂTz(n) +0p(1) |: ([1+op(1)]Z£")+op(1)>Z;")) + OP( ):|
+Tmax

7Z(”) +0,(1)

3H1 man -1 1
/711_1%“ 2 4 o,(1) { (1 0p (]2 10, (1)> 25™) + 0p(1)
2 —Tmax

(1,1]
J2—z S S
D ﬂmx 1 T e 21
B |V Tz >z + [1,1] |V 222 12, <22)
\/ 2+7rme3 11 ——

1
ﬂ'max 2
Z3 H(21>Zz) + R

2

1
2
l + Tm + 7
2 max

Note that (Z0) implies that if 81 = o, that 75" will not concentrate.
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D Asymptotic Normality of the Batched OLS Estimator: Multi-Arm
Bandits

Conditions|6|(weak moments) and ( conditionally i.i.d. actions), and a clipping rate of f(n) = w(%)

Theorem |3[ (Asymptotic normality of Batched OLS estimator for multi-arm bandits) Assuming
(Definition

_ 112 _
N 0 ~BOLS
RS G
Nag 0 ] 12 BoLs
0 N271_ (ﬁ? 7132) B)N(O’O'QIQT)
. 1}2
N- 0 ~BOLS
[ 0" Np,| Br —Br)]

where B, = (B0, Bt1), Nea = >y Ay and Neo = > (1 — Ay ;). Note in the body of this
paper, we state Theorem 3| with conditions that are are su]ﬁczent for the weaker conditions we use
here.

Lemma 1. Assuming the conditions of Theorem Sorany batch t € [1: T},

Nt,l o Z?:l At,z’ 51 and Nt,O _ Zz 1( Atz) 5)1

nwt(n) a mrt(n) n(l— wt(n)) n(l— W,g"))

Proof of Lemma To prove that Tfj:t(’j) — 1, it is equivalent to show that - (ﬂ) Yo (Agi —

A

(m) Z (Avi = ’ { Metsma-sop L wﬁ"’emn),l—f(nm] ” 6)

nm i=1

") £ 0. Lete > 0.

=

<n)21A“’

(n)ZAtl_ﬂ-zEn) ' )

nmy =1

€
Lntm etrmya-semn > 5)

€
( () Z Avi = ‘ M gl ()1 f())) 5)

nmy =1
Since by our clipping assumption, I (™ e[f(n) 1= F(n)]) Eit 1, the second probability in the summation
above converges to 0 as n — oco. We will now show that the first probability in the summation above
also goes to zero. Note that E[—— > | (A, i—wt("))] [ e S (E[Ay |Ht(f)1] —wgn))] =
0. So by Chebycheyv inequality, for any € > 0,

Ly ()
P( () 2 (Ari—m )‘Hwi”')e[f(vm—f(nn) ~ 6)
t =1
1 1 = w0\
= e2n2E[(ﬁt<n>>2 (Z(A“ o >> H<w£">e[f<n>,1f(n>1>]

i=1

<(

I v 1 (n) (n)
< 33 ZZE[@”))Q (Ars = m ) (A =m0 a1 )

i=1 j=1

1 1 (n) ()2 7(n)
T 2 ZZE{(H’”)?Hwi")e[f(n),l—f(n)J)E[AtviAfvj = (Ava + Ag) + (m)° [ H,
i=1 j=1 t
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eZn

1 n n . .
2 ZZ { o Tamers <n>,1—f<n>1>(E[At’iAt,j’Ht()1] — (m} ))2)] @1

Note that if ¢ # j, since A, i Bernoulli(7 (")), E[AtviAt7j|Ht(f)1} =
IE[A“|H,5(2)1]E[AM\H§:L)1] (7™)2, so @) above equals the following

— (n) (n)y2
- €2n2 Z |: 2 (Tr(")é[f(n),l—f(n)]) (E[Atvi|Ht1} - (Wt ) >:|

(") 1 1— 7™ 1 1
t
- €2n2 § : { (n) ol )e[f(n),1—f(n)])} e2n { rr,gn) H(W§ )€[f<n),1ff(n)])] — e2n f(n)

=w(L) so f(n)n — oo. We can make a very similar

—0

where the limit holds because we assume f(n)

P
argument for Lﬂ(n) 1. 0O
n(l—m"")

Proof for Theorem [3| (Asymptotic normality of Batched OLS estimator for multi-arm bandits):
For readability, for this proof we drop the (n) superscript on 7r§ ™) Note that

1/2 —-1/2 n
Nig 0 ~BOLS Nig 0 1— Al
[ 0 Nt,l] (B, —B) = [ 0 Nt,l] Z [ Ay :| Csi-

i=1

‘We want to show that

r - rar—1/2 n T
[Nox 0 -1/ n [1—A; NO,l/ 12221‘:1(1 —A1)er;
0 Nia 2zt Au L N;1/ Yoy Aver
r — —1/2 —n
Noo O 1z S — Ay 4 N0,2/ Do (I = Ag)ea;
| 0 Nig =1 Az PR i Nigl/z Yoy Aggen et N(0,0%Lyy).

- —1/2 _ n :
No 017V s 1—Apg| Nio /2S00 (1= Arg)er,
0 Nea = Ari o Nt_11/2 Zz 1 Arger

By Lemma [I] and Slutsky’s Theorem it is sufficient to show that as n — oo,

WZZ (1= Ari)en] [ 1 [1=mia 0 —1/2 s 1—A; ) 1
N Zz 1 Aver vn 0 11 = A o
T ’ ’ —1/2
%Z (1= Az )ea s =2 o n |1— Az
" ZZ Az e v 0 ’ s 2z Az e D 2
1/'n,7'r2 =1 2,i€2,4 = 2 —>N(0,0' IQT)
—1/2
m Zz 1( — Ari)er a1 1= Trgn) 0 s 1-Ag; )
| Arer vn 0 ) =1 | Ap,; |
L \/W E T,i€T,i i L t .

By Cramer-Wold device, it is sufficient to show that for any fixed vector ¢ € R?T s.t. ||c/|2 = 1 that
asn — oo,

- —1/2
1— 0 n 1= A,
n—1/2 { 071'1,1 S L ] €1,i

1,1 i=1 A
ORI 1-A
ONVEH R ] i { y Q’i] €2,
o7 [ 0 ﬂén) ! Az ’ 2>N(0,02)

—1/2
,1/2 1*7'('75") 0 n 1*AT,Z'
" 0 7 i1 Ap; |
L t



Let us break up ¢ so that ¢ = [¢, ¢z, ...,er| T € R*T with ¢, € R? for t € [1: T]. The above is
equivalent to

n

_1/
n)
- 1— 7" 0 1— A, D
3 A o ol PR

i=1

0 T At
The sequence {Y71,Y12,...,Y1 n, ..., Y1, Y72, ..., Y7, } is a martingale with respect to sequence

(n) —-1/2
1_7Ttn 0 E|:|:1_At’i:| €
0 ™ A :

~1/2 . .
E{ (1= ™) Elera H™), Ari = 0]
i Eleri H{" Avi = 1]
foralli € [1: n]and all ¢ € [1: T]. We then apply [8] martingale central limit theorem to Y; ; to

show the desired result (see the proof of Theorem[5]in Appendix [B]for the statement of the martingale
CLT conditions).

2
Let us define Y; ; := n~1/2¢] F —mi 0 ] [1 o At”} €ti-

of histories { H{™}Z_,  since

EY, |H™] = n~Y2%]

Hifi]

0 (n) Ht(")} 0

Condition(a): Martingale Condition The first condition holds because E[Y; ;| H. t(f)l] = 0 for all
t€[l:nlandallt € [1: T7.

Condition(b): Conditional Variance

9IRS p o[

(n) —1/2 9
1—m 0 1—-A, . H(n)
0 7T]gn) At,i t,e t—1

t=1 i=1 t=1 i=1
T n n —-1/2 n —1/2
e i ) I e R B3 i)
t=1i=1 L" ' 0 Wﬁn) 0 Avi 0 7Tt(n) tyi |11

T n n —1/2 . ) .
- Z Z L |t w0 E[(1 — Avi)él ;| H™) 0 1—x™ 0 c:
Laipt 0 (n) 0 ]E[A&W?AHEE] 0 (n)

T

Il
—~
[
I

Since E[A; 2, |H™] = mVEleZ, | H), Ay = 1] = 0?1, and E[(1 — A, ;)e2;|H)]
[ 2

FOE[H), A = 0] = 02(1 — m0),
T n
:Z n- CtCtO' —ZCtCtU —0'
t=1 1=1

Condition(c): Lindeberg Condition Letd > 0.

(n) —1/2 2
— T 1—m 0 171471 n
) LTI 9 900 Cat N I Eiet P EO 22)
t=1 i=1 t=1 i=1 T " '
L& ) -1/2 A ) —1/2
1—m" 0 1-A,; 0] [1—=" 0 2 mq
=Y =N "Ele/ ¢ , t crer ;1 H"
tz:;nizl [t [ 0 Wt(n)} { 0 Aw] 0 W§n>:| et il(Y 2 >6%) | -1
n _%
1 o B
:Zg G 0 ()
t=1 = i=1 T
E[(1 = Ari)et vz, »52) ] 0
0 E[Amﬁiiﬂ(yt%pa?)\Ht@ﬂ

_1
L-m™ 0 | 7
0 ﬂ't(n) !
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Note that for ¢ = [Ct,07 Ct71]T, E[(l — At,i)ef,iH(Yt2.>62) ’Ht(f)l] =

E {ef)iﬂ

( C‘%,(O )52 _>n52) Ht(f)laAtﬂ = O:| (1 — 71'15) and E[Atvief,iH(Yfpé?)‘Ht(ﬂ] =
lfwtn t,1

Ht(T_I)l, A = 1] 7. Thus, we have that

1 2 2 (n) 2 2
=> . ct,oﬂ*:[et,iﬂ(e%_>n52<21,m) H{™\, Avi = 0] + B €1

2 B
, %0

o2 (™) ’Ht(ﬁ)bAt,i = 1}
)

“t,1

2
(Et,i>

Hff)l, Ay = 0:| —4—0311[5 |:E?,iH

: : n

( 5 _ne2x(™ )
i <%0 et1i>‘276t N

Note that for any ¢ € [1: T) and ¢ € [1: n],

E {eii]l

(n)
2 |[Hy 1, Ari =1
2 né<my
(> 7, )

—Fle2 (n) _
= E[Et,iﬂ(eg o) ’Ht—l’Am = 1] (H(Wi")e[f(n)ylf(n)]) + H(Wf,")%[f(n),lf(n)]))

2
“t1

<E [6571-]1(

M 4 1] 402
>t gton) | Hims e = 1} T g1 s

The second term converges in probability to zero as n — oo by our clipping assumption. We now
show how the first term goes to zero in probability. Since we assume f(n) = w(1), nf(n) — cc.
So, it is sufficient to show that for all ¢, n,

: 2 (n) - _
s (B[ o [0 =1 =0

By Condition@ we have that for all n > 1,
E[‘P(ef,i”Ht(f)pAt,i =1l<M

2
€t,i

max
te[l: T),i€[1: n]
Since we assume that lim,_, @ = o0, for all m, there exists a b, s.t. ¢(z) > mMux for all
x > by,. So, forall n, t,1,

M > Elp(e )H"), Avi = 1] > Elp(€2 )2 50, H™, Ari = 1]

> mM]E[e?,iH(einme)|Ht(ﬁ)1a Api =1]
Thus,

E[e2.1 H™ A, =1 <
te[lzgr“l]i'}é[lzn] [ﬁt’t (eg‘izbm” = I<

We can make a very similar argument that for all ¢ € [1: T, as n — oo,

1
m

H™ A= 0] Lo O

t,0
Corollary 3 (Asymptotic Normality of the Batched OLS Estimator of Margin; two-arm bandit
setting). Assume the same conditions as Theorem |3| For each t € [1: T], we have the BOLS
estimator of the margin 31 — Bo:
A?OLS _ i (L= Ayi) R _ 2imy AviRei
Nio Nia

/Nl,oan,l (AIISOLS _ Al)
N3 o N: A
Y2,00V2.1 ( ABOLS _ A
O R

/ NT.[?'FLNT,I (A]%OLS _ AT)
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We show that as n — oo,



Proof:

Nt,oNt,l A BOLS Nt ONt 1 E : ( — Ay 1)€t i § ;?:1 At,vﬁt,i
———— (A} —Ay) =
n n Nt,o N1

Neadom (1= Agi)ers Nio Doty Agi€rs

" vNio n N
—-1/2 n
= {\/E _\/T,,o] Nio O / Z 1— A, o
n n 0 Nt,l P At,i N

By Slutsky’s Theorem and Lemmal[I] it is sufficient to show that as n — oo,
—1/2 - b

[ (n)
1 n n 1 — T O n 1 — A1’7;
N |:\/7T§ ) —/1— 7r£ >] [ 0 ! ﬂgn)] D1 [ A €1,
(n) —1/2 1
1—-m 0 1—As;
[ [ (n>] 2 n [ 2|
V- o [ 0 w£">] iz Ans [ B 0,071,

B

1 (v 017 1— Ap,]
1 n n — T n — AT )
va [\/ W —y/1-nxf )} { 0 ﬂ_én):| >ic1 { Ar, | €T

By Cramer-Wold device, it is sufficient to show that for any fixed vector d € R” s.t. ||d||o = 1 that
—1/2 g

. - 1— ™ 0 o [1— Ay
[\/ - V1i- " ] [ 0 1 ™ e Ay |
(n) —1/2 A ;
1—7m5" 0 1— Az,
(n) (n) 2 n )2 ]
i i) [ R I e R Py

=

(=7
4
S

@ ]| [l 0 o Az
n n - T n 1- T,%
[ ( 7r§ ] { ﬂ_én):| 2 { Ari €T,i

7
Let [dy,da, ...,d7] T := d € RT. The above is equivalent to
1 ) 71/2 n A
n n 1—m" 0 1— Ay D 2
Z%dt [\/ﬂi ) _\/1—7T§ )} [ 0 7T§n)‘| Z[ A :|€t7i—>./\/'(0,a )
i=1

—1/2
(n)
1—m 0 1— Ay,
Define Yi i= =di [\ /™ ™ ] i bl e
efine Y; vt \/ \/1 my 0 Wt(n) Aps €t,

{Yl,l, Yio,.Yin, . Y1, Y12, .., YT,n} is a martingale difference array with respect to the se-
quence of histories { 7™ }Z_, because forall i € [1: n] and t € [1: T),

—1/2
n 1 11— 0 1— Ay
E[YM|H¢(—)1] = \/ﬁdt [\/m(n) —m] |: 0 i Wt(n) E At,it’ €t,i
(n) —2 (n) (n)
d _ g _ o o .
_ %t [\/T / 7_rén) |:1 e (n) E|: |:(1 T )]E[etvllHt—lvAtﬂ 0]:| 'H(_>:| =0

meiBlei |H™, Ari = 1]

We now apply [8] martingale central limit theorem to Y; ; to show the desired result. Verifying
the conditions for the martingale CLT is equivalent to what we did to verify the conditions in the
conditions in the proof of Theorem the only difference is that we replace ¢, in the Theorem

Iproof with d, {\/ 1— (" _\/ Wt(") } in this proof. Even though ¢; is a constant vector and

Hf’_‘)l}

[, [1—7™ —y/x™ ] is a random vector, the proof still goes through with this adjusted ¢;

vector, since (i) dy [\/1 — ™ _\/Wt(”) ] e H™, Gi) | {\/1 — ™ _\/ﬂt(") ] 2 =1, and

B s S T s nd?(1—m) _ nd*(1—m)
(iii) T = (n) — oo and oz, B(i=m) 00 O




Corollary 4 (Consistency of BOLS Variance Estimator). Assumzng Conditions[I|(moments) and 3]
(conditionally i.i.d. actions), and a clipping rate of f(n) = ( ) (Deﬁmtlon ,forallt € [1: T), as

n — 00,
n

2
1
6-752 = Z (Rt i At zﬁBOLS (1 - At z) BOLS) 5 02

=1

Proof:

R 1 n 2
% :n_zl;(Rm AnBES = (1= Ar) BOLS)

n
>oim1 Avji€ti

iz (1

— Ay i)e

Z <|:At iBea+(1—As ;) Broter z:| —Ay {@,Hr ] —(1—-As,) {ﬁt,OJF

—2 i=1 Nt71
1 - S Avi€n S (1= Ay i)ers 2
= Z_A i =1 bt A, 1 _ A i =1
n-2 ; <Et’ i Nea ( ) Nio
1 (o Yoy Avi€r S (1= Api)er
= —2A1 iiz_l - _21_Ai i i=1
n—2 1221 <€t,z bt Nia ( ti)ét Nio
Yo Avi€r 2 Yo (L= A)e 2
A i —n=1""""""" 1 7A i 1= ) ’
* b |: Nt,l +( t7 ) Nt,O
- ( 1 zn: &2 ) o imi Avien)? (S (L= Avier)?
n—2 = bt (’ﬂ — Q)le (n — 2)Nno
n Nea [0 Aviers ? n Nio [0, (1= Apy)er 2
n—2 Nt71 n—2 Nt70

-

Note that 15 > | €7, = o2 because for all § > 0,

([ FRISSEN R ] S R TR e

i=1 i=1
-2
n’ > 6/2)

:IP’( >6/2>+IE”(02

Since the second term in the summation above goes to zero for sufficiently large n, we now focus on
the first term in the summation above. By Chebychev inequality,

"

where the equality above holds because for i # j, E[(¢7; — 0?)(e7 ; —0°)] = E [E[(e% Z — o) (e} —
o) [H)]] = E[E[S,— o [H ) E[e}, —o*[H{",]] = 0. By Condition[I[E[e} ,|H("}] < M < oo,

tj

- 2 ) Zz L Avi€ri)? B (1= Ay)e)?
— b —2)N; 1 (n —2)N¢ o

K3

-2
P

o%(n—2)

1 n
n_9 Z(Eii - 02)

i=1

n

1
n—_29 Z(Gf,i_gz)

i=1

=1 j=1

. 4 B (n) n(M+04)
T 2(n—2)? {;E Etz 25“0 +oh)H" ]] = 5% (n—2)? -0

(Ez 1 Avji€, 1) + (Z:L 1(1 Ati)et, z) _> 0. We

Thus by Slutsky’s Theorem it is sufficient to show that 2) Nos =N o

will only show that (Z( ‘;)*A’,f’ll) i 0; S (1751 2)At e 7)2

— 0 holds by a very similar argument.
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Note that by Lemma Ne, i) £ 1. Thus, to show that =i=12uice)” B g by Slutsky’s Theorem it

(n—2)Ny¢ 1
t (El L Avi€ni)®
(n—2)nx ™

0) <o (S | - B D st

i=1 nﬂ-t j=11i=1

is sufficient to show thal £0. Let5 > 0. By Markov inequality,

p(| S s’

(n — 2)nm")

Smceﬂ EHt 1

1 LA .
= [(n) Z Z E[At,j At i€t i€t ”HE_)l]]
o(n — 2)nm; e

Since for i # j, E[A; ;A i€ €, 1\Ht 1] E[A; e, j|'Ht 1] [Ay i€ 2|’H(") |=

1
—— ) E[A;e Z|’H }
[5(71 2)n7rt(”) ; b 2

Since E[A, i¢?,[H{™)] = EleZ |1\, Ay = 1n(™ = o%n™,

37



E Asymptotic Normality of the Batched OLS Estimator: Contextual Bandits

Theorem {4 (Asymptotic Normality of the Batched OLS Statistic) For a K-armed contextual
bandit, we for each t € [1: T, we have the BOLS estimator:

¢, 0 o0 .. o0 7"

Ly —oCy
soLs 0 Qm 0 ... 0 " Hzt,z:(l)cz,i
B, = 0 o G, ... 0 Z . : ’ Ry; € RX4
0 0 0 .. Cr, LA i=r-1Cs

where C, ;. = > 1]IA(H) kCti(Cti)T € R4 Assuming Conditions |6| (weak moments), 3

(conditionally i.i.d. acnons) H| (conditionally i.i.d. contexts) and 3| (bounded contexts), and a
conditional clipping rate f(n) = c for some 0 < ¢ < 3 L (see Definition|2), we show that as n — oo,

) 1/2 , sBOLS
Diagonal [C, ,C; 1,....Cy 1] ' (

. 1/2, ABOLS
Diagonal |C,, ,,C, ¢, ...,C5 1 —
g LQ,O Lo .2,K 1} (B2 B2) —D>N(0,02!TKd)
. 1/2, ABOLS
Diagonal [QT,Oa QT,p e QT,K—l] Br  —Br)

Lemma 2. Assuming the conditions of Theorem |} for any batch t € [1: T| and any arm k €
[0: K —1], as n — oo,

n
-1
[Z]IAm:kaCL} [0z, . P 51, 22)
=1
2
[ZHA”_;CCH ”} (nz, P B (23)
where Py, i= P(Ay; = k|H",) and Z, ;. = E[C,,CL,|H™, Ay = k.

Proof of Lemma We first show that as n — oo, = >0 | (14, ,—Cy, th i — Ly 1 Pii) £o.

n
It is sufficient to show that convergence holds entry-wise so for any 7, s € [0: d — 1] as n — oo,

P
% S (HAt’i:kCtin;(r, 8) — Py xZy 4. (7, s)) = 0. Note that
E []IAt)i:kaCZi(r, s) = PoiZy (1, s)] =E {]E [CeiCli(r, s)|Hior, Ari = k| P — PoiZy (1, 5)} =0

By Chebycheyv inequality, for any € > 0,

1 n 2
> e) < EZRQEKZHAt,i:kCt,iCtT,i—Pt,th,k(7"7 5)) }

=1

1 n
P(IE zﬂAt’i:kCt,iczi(n 8)—Pt,th7k(T’ S)

1 n n
=% Z ZE[[HAt,cht,iCtT,i (r,s) — Pt,th’k(ﬁ s)] []IAt,i:kCt,]-CIj (r,s) — Pt,klt,k('f, s)]} (24)

i=1 j=1
By conditional independence and by law of iterated expectations (conditioning on 1. t(f)l), for i # j,

E[(L4, ,=1Ct,iC/i(r,s) — PyiZy (1, 5)) (La, ,=kCt ;C/; (v, 8) — PryZy 1, (r,s))] = 0. Thus, @4)
above equals the following:

1 n 2
=53 ZE {(HAt‘i_kaCZi(r, s) = Py Ly . (r, s)) ]
i=1

1 « 2 2
= m Z E |:]1At,i—k [CmCL (7’, S)} - 2]IAt,i:kCt,iCIi (7’, S)Pt,kzt,k(r’ S) + Pt2,k [Zt,k(rv S)]
=1
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ZE[MM [CoiCT(r,5)) —Psk[zt,kms)ﬂ

€2n?
i=1
2 2] _ 2dmax(u?,1)
g L N A A
as n — oo. The last inequality above holds by Condition 5]
Proving Equation (22)):
It is sufficient to show that
2 max(du?, 1) -1 2max(du®,1) 4| P
————|nZ, . P, =||l—= -0 25
‘ e2n [n*t’k t’k] op e2n2P;y, bk op (25)
We define random variable Mt(”) = ]I(V C€R, Ay (H™, 0)€lf(n),1— £ (n)]K)* representing whether the

conditional clipping condition is satisfied. Note that by our conditional clipping assumption, Mt(”) K

1 as n — oo. The left hand side of (23)) is equal to the following
H 2 max(du?, 1) B ’ 2 max(du?, 1)

7 (M + (1 - M
€2n2Pt,k —t7k( t + ( t )) €2n2Pt’]€

M| +o,(1)  (26)

op

op
By our conditional clipping condition and Bayes rule we have that for all ¢ € [—u, u]?,
P(Cis = ¢|Ar; = kat(f)th(n) _1)
P(A;; = k|Cyi = ¢, Hff)l’Mt(”) — DP(C,, = C|Ht(ﬁ)17Mt(”) .
) P(A;; = k:|Ht(f)1,Mt(n) —1)
) (€ = e M — 1)
- 1

Thus, we have that
z,,M" =E[C, iCL|Ht(’_I)1,At,,» = k] M™ =E[C.iCL BT, Ay = By M™ = 1] M)
= FME[CCl | H™,, M™ = 1]M{" = f(m)E[C, ., |H™ ] M™ = f(n)S™ M

By apply matrix inverses to both sides of the above inequality, we get that

Amax 71Mt(") )‘max( Egn) )Mt(n) 1
(Zt,k ) < 7n) (7 ) < T

where the last inequality above holds for constant [ by Conditionﬁ Recall that P, ,, = P(A;,; =
k| H™), 50 Pry | (M{™ = 1) > f(n). Thus, equation (Z6) is bounded above by the following

27)

2 max(du?, 1) P
_— 1 0
e2n2lf(n)? Top(l) =

where the limit above holds because we assume that f(n) = ¢ for some 0 < ¢ < 0.

Proving Equation 23): By Condition |5} [|£C, ; [lmax < u and ||Z; ;P k|lmax < u. Thus,
any continuous function of % C, , and Z, ;. P, ;, will have compact support and thus be uniformly

continuous. For any uniformly continuous function f : R4*¢ — R?*4 for any € > 0, there exists a
§ > 0 such that for any matrices A, B € R, whenever ||A —B|lop < &, then [|f(A) — f(B)[lop < €.
Thus, for any € > 0, there exists some ¢ > 0 such that
> 5> —0
op

<H< ZHAM 1 CeiC “> Z, P
(Hf( ZH(A”C k)Ctz tz) _f(Zt,th,k)

1
2

implies

>e>—>0
op
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Thus, by letting f be the matrix square-root function,

‘We now want to show that for some constant r > 0, ]P’(HZt &
that

Pf . Hop > 7"), because this would imply

1 n 1/2 P
[(n Zﬂmt,k-mct,icli) - <zt,th,k>1/2} (ZPrt) " 5 0.
i=1

Recall that for Mt(") = ]I(V C€R, Ay (H™, 0)€lf(n),1—f(n)]¥)* representing whether the conditional

clipping condition is satisfied,

27 =2 (M™ + (1 - MM) =27 M + o, (1).

Thus it is sufficient to show that P(||Z; ; 7 M ||Op > r). Recall that by equation (27) we have
that ’

<I =0
op ) (T7emz>")

for r > W = 737, since we assume that f(n) = ¢ for some 0 < ¢ < O

1
L
Proof of Theorem[d  We define P, 1 := P(Ay; = k|H")) and Z, ;== E[C,.C],|H"), Ay =
k]. We also define

Cio/? Crilla, —0
C, 1% Cyilla, —
n . 1 2 =1 tilA ;=1
p{" = Diagonal [C, (,C, ;,..,Cy k1] / Z . €ri
Q;;lﬁl Ciila, ;=1

We want to show that [D{”, DS, ... DT B A0, 0%0,4,). By Lemmaand Slutsky’s Theorem,

it sufficient to show that as n — oo, | g"), é"), s gﬂn)]T = N(0,0%Ly ) for
an’t Oit U Ct z]IAt i =0
1 1/2
m>__5i npy Lo Cralagi— |
t = ) Etﬂ
i=1 :

+Z_12C I
m Ly K1Vt A =K -1

By Cramer Wold device, it is sufficient to show that for any b € RTX? with ||b||s = 1, where
b = [by,bs,...,b7] forb; € RX9 asn — oo.

T
ST/ QM B N(0,0?) (28)
t=1

We can further define for all ¢t € [1: T, b; = [bo,bt.1, ..., b k1] with by ;. € RY. Thus to show
(28) it is equivalent to show that

1 _
Z Z th,k\/TTt,ft z,,” Z]IAt =xCricts 2 N(0,07)
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We define Yt(?) = e L4, ,=kZ,, k/ Cii€ti- The sequence

k=0 tk\/i

Yl(ﬁ), Y1( 2), A YT(T;),YT(T’Q), e Yq(fzz is a martingale difference array with respect to the

1,n>
sequence of histories { H\™} }7_, because ]E[Yt(f) |H™ ] =E [E[Y(")|Hf")1, At i, Cy Z]’ He" )] =0

forall i € [1: n] and all ¢ € [1: T]. We then apply the martingale central limit theorem of [8] to

Yt(l ") to show the desired result (see the proof of Theorem [5|in Appendix |B|for the statement of
the martingale CLT conditions). Note that the first condition (a) of the marfingale CLT is already

satisfied, as we just showed that Yt(?) form a martingale difference array with respect to H t(f)l

Condition(b): Conditional Variance

T n

T n 2
SOSCEYEEY) = zm[( z bl L i) 1]
t=1 =1 t=1 =1

n K-—1 1
=33y b/ Z, /°E {]IAt,i_kaCtT, ey Ht(f)} by
‘ nPt
t=1 i=1 k=0

By law of iterated expectations (conditioning on H. t(f)l, A, Ce ;) and Condition@

T n K-1
1 n
=->>.> p —b,Z, " °E {HAt,i—kCt,iCtT,i Ht(—):| by o
MDD ko bR
1 n K-1 1
EZ e thkZ_l/QE[Ct,iCL M Ay —k]Pt vZy by ko
t=1i=1 k=0 = 0¥
1T K-l T K-1
S Y bt =t Y S b =
t=1 i=1 k=0 t=1 k=0
Condition(c): Lindeberg Condition Letd > 0.
T n T n K-—1 2
S B[ (B = 32 | (3 W2 M i) oo H
t=1 i=1 t=1 i=1 k=0 , '
T n K-1
= Z Z TLP bt kZ_l/QE {HAt«i:kCtviCZief,iH(Yfi>52) Ht(ﬁ)1:| _1/2bt
t=1i=1 k=0 b

It is sufficient to show that for any ¢ € [1: 7] and any k € [0 : K — 1] the following converges in
probability to zero:

n

T 1/2 T
Z nPt, ——b iy ; / E[HAM—kct,ict,ifz,iH(Yfpé?)

i=1

a" ﬁ}z e Y

K—1,T 1 —1/2
Recall that Yy ; = » ;. bt,k\/ﬁht,i:klt,k/ Ci i€t

be 1/2 |:Ctzc;rz€§lﬂ( bT Z— 1/2Ct7CT 1/2btkE >52) Ht(ﬁ)l,A _k:|Z 1/2btk

Lkt kSt k v,y

Since ¢ € [—u,u, by the Gershgorin circle theorem, we can bound the maximum eigenvalue of cc ™
by some constant a > 0.

a - T _ n
=5 > biZi by kB {Eiil( T oL Mby g2 >5%) H™, Ay = k}
=1
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We define random variable Mt(”) = ]I(v ceRe, A (H™) 0)elf(n)1— F(m)]K)’ representing whether the

conditional clipping condition is satisfied. Note that by our conditional clipping assumption, Mt(n) K
lasn — oo.

a " T
T Z; Peale, bt - |:€t ZH( bl 27 b ke? >62)

H A= ] (M7 + 0= 1)

n
a Z T
= E btﬁkz bf kE |:€t 7]I( t th llcbf k€ >52)
=1

H™ Ay = }M}") +op(1) (29
By equation (27), have that

_ 1
/\max(lt,li) < f(n))\max( ) <
>

Recall that Py, = P(A,; = k | H™)),s0 Py, | (M™ = 1)
([29) is upper bounded by the following:

1ob/ b [,
< - Z l E et:iH bl be K 2
ns f(n) wr Gy Ty € >0%)

f(n). Thus we have that equation

H™ A= k} + 0,(1)

1
- ’ : E 2 H nf(n
n & 1) s, i

KDtk

AL A =] + 0,0
It is sufficient to show that

1
lim max —E|e2I
n—ooie(l: n] f(n) { bt

(@ ) H"), Ay = k:} (30)
b

kPt K

By Condition@ we have that for all n > 1, max,c(1. 1),ic[1: n] E[gp(efz)|Ht(f)1, A =k < M.

Since we assume that lim,_, “’Ef) = oo, for all m > 1, there exists a by, s.t. p(x) > mMuz for all
x > by,. So, forall n, t,1,

M > Elp(e2)H™), Avi = K] > Elo(e )2 50, | H Y Ari = K]
> mME[e} Lz >, JH™), Ay = k]

Thus, max;e; n) Elef il(e2 >0, )lHt 1»‘4 = k] < E $0

k] = 0. Since by our conditional clip-

limyy,— 00 maX;e(1: o) Ele7 z]I(Et b) \Ht LA =
) = cforsome 0 < ¢ < % thus nf(n)> — oo. So equation (30) holds.

ping assumption, f(n
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Corollary 5 (Asymptotic Normality of the Batched OLS for Margin with Context Statistic). Assume
the same conditions as Theoremd| For any two arms x,y € [0: K — 1] forall t € [1: T], we have
the BOLS estimator for A¢,z—y := B; , — By, We show that as n — oo,

- 21/2 -
/ ~ BOLS

[Cl,;: + giyl; (Al =y AL-’C—ZI)

11/2
IR < BOLS
|:C2,z +g2,y (A2 L=y AQ@'—y) 2) N(O UQITd)

11/2
~ BOLS
|:CT,1x + g;,ly (AT T—y AT@—:U)

where

n

—1
AP _ {c +c] <tyZA“C“RHC

=1 =1

(]- - At 1)Ct th 1)

Proof: By Cramer-Wold device, it is sufficient to show that for any fixed vector d € R s.t.
ld]|2 = 1, where d = [dy,d, ..., d7] ford, € RE, ST d) [Cr2+ €] (Aron — Avay) B
N(0,0?),as n — oo.

2
~ BOLS

T 1/
>4l [c;; +C;;] (Apaly = Aray)

t=1
—-1/2 n

= Zd;r [Ct_; + Ct_;} (Ct_yl Z AtiCyi€ri — Qt_;
i=1

t=1

n

(1 - At,i)ct,iet,i>
i—1

_ P _ P .
By Lemma asn — oo, ﬁzt;g,x =1, and Wiﬂztﬂjgt,y = 1, 5o by Slutsky’s Theorem it
is sufficient to that as n — oo,

n

T —1/2
[ B D
Zdt |:Qt,i +Qt1;:| (npty tyZAt iCt i€t — T,IZ (1 — A¢,i)Cr i€t z) —>J\/'(07O-2)

t=1 i=1

~1/2 1/2
We know that [ Zt + B th’yl] {Pl Zt:c + 5 th,;} it L

By Lemma and continuous mapping theorem, nf% . Z, ,C; —> I,and nP; ,Z, ,C, —> I,. So
by Slutsky’s Theorem,

1 —1/2 1/2 p
Z, —z C l+nC |l SI
[Pt s o Py ] [n”” i nt’y} N

So, returning to our CLT, by Slutsky’s Theorem, it is sufficient to show that as n — oo,

1 —1/2
T _ _
zd [ Zil+ o zt,;} zAmcnem

_ ]_ _ 71/2 1 n
Zd—r|: Pt 71‘; P Zt,yl] 'I’LPt Zt@ (liAtl)Ct’Let'L*}N(OO')
by r =1

)

The above sum equals the following:

d T 1 1 1 1 —1/2 1 1/2 1/2
B d Z, Z, Z, ‘) A zC i€t
Z t [”Pt,x Zt.x + nth t,y:| \/m—t,z ( ’ﬂPt xit T Z IRASTRISA )

1 1 _ 1 B n
T —1 -1 1/2 1/2
Z d |: Pt B t T + mZt7y:| \/ﬁzmy ( TLPt th’y Z(]. - At?i)ctﬂ;etﬂ;)

i=1



Asymptotic normality holds by the same martingale CLT as we used in the proof of Theorem 4] The
only difference is that we adjust our by ;. vector from Theorem[zl_f] to the following:

0 ik ¢ {a,y}
—1/2 )
T 1 -1 1 -1 1 -1/2 . _
b {0 [l il ks
~1/2
] I L

The proof still goes through with this adjustment because for all k € [0: K — 1], (i) by, € Ht(f)l,

() 1 Sry b b = 31, d] dy = 1. and (iii) ig}f:@i — o0 still holds because b, by, is

bounded above by one. [J
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F W-Decorrelated Estimator [6]

To better understand why the W-decorrelated estimator has relatively low power, but is still able to
guarantee asymptotic normality, we now investigate the form of the W-decorrelated estimator in the
two-arm bandit setting.

F.1 Decorrelation Approach

We now assume we are in the unbatched setting (i.e., batch size of one), as the W-decorrelated
estimator was developed for this setting; however, these results easily translate to the batched setting.
We now let n index the number of samples total (previously this was n’7") and examine asymptotics
as n — 0o. We assume the following model:

where R,,, €, € R" and X,, € R"*? and 8 € RP. The W-decorrelated OLS estimator is defined as
follows:

~d “ ~
B =Bos + W,,(R, — X, Bors)

With this definition we have that,

~d “ “

B —B=0Bos+W,R, —X,Bos) — B

= Bos + W, (X, 8+ €,) - W, X, Bors — B
(I - WnX71)<160LS - ﬁ) + wnen

Note that if E[W, €,] = E[ 7| Wie;] = 0 (where W is the i column of W,), then E[(I, —

W, X, )(BoLs — B)] would be the bias of the estimator. We assume {¢; } is a martingale difference
sequence w.r.t. filtration {G;}"_;. Thus, if we constrain W; to be G;_; measurable,

E[W, €,] = sze, éE{E[Wieﬂ%l]} = iE{WZ—E[EAQiﬂ} =0

i=1

Trading off Bias and Variance While decreasing E[(I, — W, X,)(BoLs — B)] will decrease the
bias, making W, larger in norm will increase the variance. So the trade-off between bias and variance
can be adjusted with different values of A for the following optimization problem:

Optimizing for W,, The authors propose to optimize for W,, in a recursive fashion, so that the
it" column, W;, only depends on {Xj bi<iU{ej}i<io1 (so X0 E[W;e;] = 0). We let Wy = 0,
Xy = 0, and recursively define W, := [W, _,;W,,| where

no1 — WX, |7+ AIW3
where W, | = [Wi; Wy . s W, ] € REXD and X | = [X1;Xy; .. X, 4] T € RO=Dxp
Now, let us find the closed form solution for each step of this minimization:

d

Note that since the Hessian is positive definite, so we can find the minimizing W by setting the first
derivative to O:

W,, = argminy g, Hlp -Ww, X

~W, X, - WX F+ AW =20, - W, X, — WX )(—X,) + 2AW

n—1

d2
WHIP -W, X

n—1

— WX, %+ MW[3 = 2X, X, +2)L, = 0

0=2(I,-W, X, ;, — WX )(-X,) + 2AW

n—1
(L, - W, X, —WX,)X, = \W
(L, = W, X, )Xo = AW + WX X, = (A + [[X,[5)W
X
W'=(L —W._ .X __n
(7;) fn—lfnfl))\_’_ HXn”%
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Proposition 3 (W-decorrelated estimator and time discounting in the two-arm bandit setting). Sup-
pose we have a 2-arm bandit. A; is an indicator that equals 1 if arm 1 is chosen for the i'" sample,
and 0 if arm 0 is chosen. We define X; := [1 — A;, A;] € R2%. We assume the following model of
rewards:
Ri=XB+e=AB1+ (1—A)Bo+e

We further assume that {€;}?_, are a martingale difference sequence with respect to filtration
{Gi} . We also assume that X; are non-anticipating with respect to filtration {G;}_,. Note the
W-decorrelated estimator:

~d ~ ~
B = Bors + W, (Rn — X,,Bors)
We show that for W, = [Wy; Wa; ...; W,,] € RP*™ and choice of constant ),

(]_ — L) i (1-4;) 1
W; = [ 12y A €R’
A+1 A+1

Moreover, we show that the W-decorrelated estimator for the mean of arm 1, 31, is as follows:

Ny n 1 1\ M-l s 1 1\ Ml
(1= 4—(1-— AR, - 1-
A ( ; t>\+1< A+1) )1 T2 AL A+1( A+1>

i=1

where (015 = %J‘or N1 =01 A, Since [6]] require that \ > 1 for their CLT results to
hold, thus, the W-decorrelated estimators is down-weighting samples drawn later on in the study and
up-weighting earlier samples.

Proof: Recall the formula for W;,

X;

Wi =( TR
A+ [1Xill3

P

-W X )

We let W; = [Wy.;, W1 ;] 7. For notational simplicity, we let r = )\%rl We now solve for W7 ,:
W1,1 = (1 - 0) -TA1 = ’I“Al

W172 = (1 — W171 . Al) . TA2 = (1 — T‘Al)TAQ

2
W173 = (I_ZWLZAZ) 'T’Ag = <1—7’A1—(1—TA1)T‘A2> 'TAg = (l—TAl)(l—T’AQ)'T’Ag
=1

3
W174 = (I—ZWLZ"Ai) ~T‘A4 = <1—’I‘A1 - (1—7‘141)7"142 —(1—7“141)(1—7“142) "I“Ag) -T‘A4
i=1

= (I—TAl)(l—’/‘Ag — (1—7‘AQ)TA3)) "I“A4 = (1—TA1)(1—TA2)(1—7‘A3) 'TA4
We have that for arbitrary n,

n—1 n—1

Win = (l—z WlﬂwAi) rd, =rA, H(l—TAi) = 7"141,”(1—7’)2?;11 A = p A, (1—r)Nrn—s
i=1

=1

By symmetry, we have that

n—1
Won = (1 - Z Wi,-(1— Ai)> r(1—Ay) =71 — A,)(1 — r)Nom—1
i=1
Note the W-decorrelated estimator for (3;:

Bl =S+ A (R,» - B?Ls)m — p)Nuio
=1

= (1 — ZAiT(l — T)Nl’il)B?Ls + ZAsz . 7"(1 — T‘)Nl‘i’l O
i=1 =1
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