A Derivation of 2/ NS,, and z”1J,,

Here, we derive the expressions for xZNS\n and xT1J \n given in Egs. (3) and (4). We recall from
previous work (e.g., see Stephenson and Broderick [2020, Appendix C] for a summary) that the
LOOCYV parameter estimates given by the Newton step and infinitesimal jackknife approximations
are given by

-1

N
~ ~ 1 ~ .
O\n NS\, =0+ Y DPamal, +Mp| Dz, (14)
m:m#n
1 (& B
é\n ~ 1\, = 0+ N (Z ﬁff)mnzg)\ID) ]A)?(ll)xn. (15)
n=1
Taking the inner product of 1J,,, with x,, immediately gives Eq. (4). To derive Eq. (3), define
H = Z” DS? )TnTZ: + M p and note that we can rewrite NS\,,L using the Sherman-Morrison
formula:
—1 Trr—1
NS\, =0+~ | DOH e, + DY D@L I
N 1-D;Qn

Taking the inner product with x,, and reorganizing gives:

LLnNS\,,Lfth9+ — — =x 0+ —_—
N | 1-DP9, 1-DQ, N 1-DPQ,

B Comparison to existing Hessian inverse approximation

We note that two previous works have used inverse Hessian approximations for applications similar
to ACV. Koh and Liang [2017] use influence functions to estimate behavior of black box models,
and Lorraine et al. [2020] use the implicit function theorem to optimize model hyperparameters. In
both papers, the authors need to multiply an inverse Hessian by a gradient. To deal with the high
dimensional expense associated with this matrix inverse, both sets of authors use the method of
Agarwal et al. [2017], who propose a stochastic approximation to the Neumann series. The Neumann
series writes the inverse of a matrix H with operator norm ||H||,, < 1 as:

o0

H™' =) (1-H)"

k=0

The observation of Agarwal et al. [2017] is that this series can be written recursively, as well as
estimated stochastically if one has random variables A, with E[A;] = H. In the general case of
empirical risk minimization with an objective of (1/N) Zgil fn(0), Agarwal et al. [2017] propose
using A = V2 f,() for some s € [N] chosen uniformly at random. In the GLM setting we are
interested in here, we choose an index s € [N] uniformly at random and set A, = DE? )xsxz
(A/N)Ip. Then, for s = 1,...,S, we follow Agarwal et al. [2017] to recursively define:

H'~H ':=Ip+I—-A)HY.

The final recommendation of Agarwal et al. [2017] is to repeat this process M times and average the
results. We thus have two hyperparameters to choose: .S and M.

To test out the Agarwal et al. [2017] approximation against our approximation in Algorithm 1,
we generate Poisson regression datasets of increasing sizes N and D. We generate approximately
low-rank covariates x,, by drawing z,4 ~ N(0,1) ford =1,...,1,000 and z,,4 ~ N(0,0.01) for
d = 1,001,..., D; for our dataset with D = 40, we follow the same procedure but with R = 20
instead. For each dataset, we compute 1J\,,, as well as our approximation LJ\,, from Algorithm 1. We
run Algorithm 1 for K = 1,100, 200, ..., D and run the stochastic Neumann series approximation
with all combinations of M € {2,5} and S € {1,5,10,15,...,200}. We measure the accuracy of
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Figure 5: Experiment from Appendix B. Across four different dataset sizes, using the Neumann series
approximation (orange) does not show any noticeable improvement on the time scale of running our
approximation (green) for all possible values of K.

all approximations as percent error to exact CV (3529\”). We show in Fig. 5 that our approximation
has far improved error in far less time. Notably, this phenomenon becomes more pronounced as the
dimension gets higher; while spending more computation on the Neumann series approximation
does noticeably decrease the error for the N = 80, D = 40 case, we see that as soon as we step
into even moderate dimensions (D in the thousands), spending more computation on the Neumann
approximation does not noticeably decrease the error. In fact, in the three lowest-dimensional
experiments here, the dimension is so low that exactly computing H ~! via a Cholesky decomposition
is the fastest method.

We also notice that in the N = 80, D = 40 experiment, LJ\,, is a better approximation of exact CV
than is 1J\,, for intermediate values of K (i.e. some orange dots sit below the large green dot). We
note that we have observed this behavior in a variety of synthetic and real-data experiments. We do
not currently have further insight into this phenomenon and leave its investigation for future work.

C Previous ACV theory

We briefly review pre-existing theoretical results on the accuracy of ACV. Theoretical results for
the accuracy of 1J \n are given by Giordano et al. [2019], Koh et al. [2019], Wilson et al. [2020].
Giordano et al. [2019] give a O(1/N?) error bound for unregularized problems, which Stephenson
and Broderick [2020, Proposition 2] extends to regularized prolems; however, in our GLM case here,
both results require the covariates and parameter space to be bounded. Koh et al. [2019] give a similar
bound, but require the Hessian to be Lipschitz, and their bounds rely on the inverse of the minimum
singular value of H, making them unsuited for describing the low rank case of interest here. The
bounds of Wilson et al. [2020] are close to our bounds in Lemma 2. The difference to our work is
that Wilson et al. [2020] consider generic (i.e. not just GLM) models, but also require a Lipschitz
assumption on the Hessian. We specialize to GLMs, avoid the Lipschitz assumption by noting that it
only need hold locally, and provide fully computable bounds.
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Various theoretical guarantees also exist for the quality of NS, ,, from Eq. (3). Rad and Maleki [2020]
show that the error ||NS,,, — HA\n |2 is o(1/N) as N — oc and give conditions under which the error

is a much slower O(1/+/N) as both N, D — oo with N/ D converging to a constant. Beirami et al.
[2017] show that the error is O(1/N?), but require fairly strict assumptions (namely, boundedness of
the covariates and parameter space). Koh et al. [2019], Wilson et al. [2020] provide what seem to be
the most interpretable bounds, but, as is the case for IJ \n> both require a Lipschitz assumption on the
Hessian and the results of Koh et al. [2019] depend on the lowest singular value of the Hessian.

D Proofs from Sections 3 and 4

D.1 Proving accuracy of NS,,, and L]\ ,, under exact low-rank data (Lemma 1)

Here, we prove that, when the covariate matrix is exactly rank R < D, the accuracy of NS, ,, and
IJ\, behaves exactly as in a dimension ? < D problem. Let X = UXV be the singular value

decomposition of X, where ¥ is a diagonal matrix with only R non-zero entries; let Vg € RP*1
be the right singular vectors of X corresponding to these R non-zero singular values. We define the
restricted, R-dimensional problem with covariates 7, := VIT?xn as:

N
¢:aﬁ§n%;;ﬂﬁ@+gwwé (16)

Let gzg\n be the solution to the leave-one-out version of this problem and RIJ\,, and RNS,,, the
application of Eqs. (3) and (4) to this problem. We then have the following proposition, which implies
the statement of Lemma 1.

Proposition 5 (Generalization of Lemma 1). The following hold for all datapoints n.:

wgé\n = ‘/Z‘Z(&\n

a1\, = LR\,

an NS\, = Z RNS, .
zINS\, — xZé\n| = |ZLRNS,,, — ~£q§\n| and |zI1)\,, — xZé\n| = |ZIRL]\,, —
, as claimed in Lemma 1.

In particular,

Proof. First, note that if ¢ is an optimum of Eq. (16), then (1/N) don 157(11)‘/:2.77” + A = 0. As
V;R‘/%wn = x,, we have that 0 = V:Ré is optimal for the full, D-dimensional, problem. This
implies that ¢ = V10, and thus 20 = &I ¢. The same reasoning shows that xft‘)\n = ifqﬁ\n.
Now, notice that the Hessian of the restricted problem, Hpg, is given by Hp =
(1/N)Y, Vzﬁxn:pgvﬁﬁg) +Mr = Hp' = VEH V., where the D'? are evaluated at
:?z:gg = x%é Also, the gradients of the restricted problem are given by V4 f (%Zgz% Yn) = DS)V:},Q%.
Thus the restricted 1J is:
RU\, = 6+ Hg'Vhwa DY = VR (6 4+ H 2, DN) = VAL,

Thus, we have iZRIJ\n = -LZ;VRVEIJ\n = (VRvgln)TIJ\n USil’lg VRVE‘ETL = Zn, we have
that 2] RLJ\,, = 2 1J\,,. The proof that ZL RNS,,, = ] NS, , is identical. O

D.2  Proving accuracy of NS, ,, and 1J,,, under ALR data (Lemma 2)

We will first need a few lemmas relating to how the exact solutions é\n and 0 vary as we leave

datapoints out and move from exactly low-rank to ALR. We start by bounding Hé — é\n 2; this result

and its proof are from Wilson et al. [2020, Lemma 16] specialized to our GLM context.
Lemma 3. Assume that A > 0. Then:

1 -
< — DO ||znll, - (17)

|0-0u), < 5
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Proof. Let F\" be the leave-one-out objective, F\"(§) = (1/N)>, mn fxlo,yn) +
(A/2)]|6|3. As F\™ is strongly convex with parameter )\, we have:
2

Now, use the fact that VF\" (é\n) = VF(é) = 0 and then that F\" — F' = (1/N) f(z16) to get:
= (0 — 0\, VE\"(0) — VF(0)) = (0 — 0\,,, V(1))
< |0 =dw, 1DD1 2l
O

We will need a bit more notation to discuss the ALR and exactly low-rank versions of the same
problem. Suppose we have a N x D covariate matrix X that is exactly low-rank (ELR) with rows
zn grr € RP. Then, suppose we form some approximately low-rank (ALR) covariate matrix by
adding &, € RP to all x,, such that X¢,, = 0 for all &,,. Let Zn,ALR be the rows of this ALR matrix.
Letd k1 r be the fit with the ELR data and 0 AL the fit with the ALR data. Finally, define the scalar
derivatives:

, df (2, yn)
D,(l) g) .= L2 In/
,L,ELR( ) dz z=(xn,ELR,0)
. df (z,yn)
D(l) g) .= LI/
n,ALR( ) dz z=(Zn,ALR,9)

We can now give an upper bound on the difference between the ELR and ALR fits ||0grr — Oarr]2.

Our bound will imply that the 0 ALR 1s a continuous function of the ,,, which in turn are continuous
functions of the singular values of the ALR covariate matrix.

Lemma 4. Assume \ > 0. We have:

N
R . ‘(1 R
HeELR - 9ALRH2 < iy Z D;,)ELR(OELR)Sn
n=1 2
In particular, éALR is a continuous function of the €, around 1, ...,eny = 0.

Proof. Denote the ALR objective by Farr(0) = (1/N) Y, f(x] arrf) + A6]3. Then, via a
Taylor expansion of its gradient around Oarr:
VoFarr(Oprr) = VoFarr(0arr) + ViFarr(0)(0prr — 0arr),
where 6 € RP satisfies 6, = (1—54)0aLr.d+ Sd0ELR,q for some sq € [0,1] foreachd = 1,...,D.
Via strong convexity and VgFALR(éALR) = 0, we have:
. . 1 .
HQELR - HALRH2 < N ‘VQFALR(GELR)H2~

Now, note that the gradient on the right hand side of this equation is equal to
VoFarr(0prr) = Z D,L ALR(QELR)% ELR+ — Z Dn ALR(%LR)&L + Mergr. (18)

By the optimality of 6 pLr for the exactly low-rank problem, we must have that (g,,, OE LR) =
0 for all n; in particular, this implies that (z,, grLr,05LrR) = (Tn ALR,0rLR), Which in turn
implies Dn LLR(QELR) = ﬁS,EE‘LR(éELR) for all n. Also by the optimality of éELR, we have

(1/N)>, Dn,ELR(éELR)T’n + MgLr = 0. Thus we have that Eq. (18) reads:

N
1 ~
VoFarr(0pLr) = Z Dn wrr(0BLR)En,

n:l

which completes the proof. O



We now restate and prove Lemma 2.
Lemma 2. Assume that A\ > 0 and recall the definition of L,, from Eq. (8). Then, for all n.:

2INS\, — 2l 6\, | < DD |zall3 (19

NQ)\?’

DSV Nl + IDVIDE [|a]] 5 - (20)

T Tj
[T I\n = 20 f\n| < 533 N2>\3 N2)\2

Furthermore, these bounds continuously decay as the data move from exactly to approximately low
rank in that they are continuous in the singular values of X.

Proof. The proof of Egs. (19) and (20) strongly resembles the proof of Wilson et al. [2020, Lemma 17]
specialized to our current context. We first prove Eq. (19). We begin by applying the Cauchy-Schwarz
inequality to get:

NS\ — Ol < [@nlla | NSy —

The remainder of our proof focuses on bounding ||NS,, — é\n ||l2- Let F\" be the second order Taylor

expansion of F'\" around 6; then NS, ,, is the minimizer of F\n, By the strong convexity of F\":

N 2 N — —
A He\n ~ NS ||| < (NS — 0,0, VEVI(NS,) = VFV (D)) 1)

= (NSy, = 0, VEV'(B,) = VE\(B,)) 22)
Now the goal is to bound this quantity as the remainder in a Taylor expansion. To this end, define
r(0) := (é\n — NS\,,, VF\"(8)). To apply Taylor’s theorem with integral remainder, define g(t) :=
r((1— t)é + té\n) for t € [0, 1]. Then, by a zeroth order Taylor expansion:

1
o(1) = 9(0) +4'0) + [ (¢/(5) ~ g0)) ds.
0
Putting in the values of g and its derivatives:
(O = NS\, VEV' (O4)) = (B — NS\, VEV*(0)) + (B, — NS\, V2V (0) (6 — 6))
1
4 / (O = NSy, (V2EV(1 = )04 sb) = V2E V(D)) (B, — 0))ds
0

Now, subtracting the first two terms on the right hand side from the left, we get can identify the left
with Eq. (22). Thus, Eq. (22) is equal to:

- / 1<é\n — NS\, (VQF\"((l — 8)0 + s,,) — VQF\“'(é)) (O, — 0))ds
J0

We can upper bound this by taking an absolute value, then applying the triangle inequality and
Cauchy-Schwarz to get

ds. (23)

op

< v =Sl B8] [ (21 - 90+ 5800 - v 0)

Using the fact that, on the line segment (1 — .s)é + sé\”, the jjg) are lipschitz with constant C,:
Cp = max ’bf’) ((1 — )0+ sé\n)

s=1in[0,1] ’

we can upper bound the integrand by:

H (V2FV((1 = 9)0+ sb) = V2F\V(9))

op
-1 (ﬁ@)((l—s)é+sé )~ DO (0)) w,
N n \n n me<m
m#n op
Chn a\n
S ———2> lauls.

m#n
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Putting this into Eq. (23) and using Lemma 3 gives the result Eq. (19) with L, =

Now Eq. (20) follows from the triangle inequality [|LJ\,, — 6\, [l2 < [[NS\,, — 0\, []2 + [|[1J,, — N S]|2.
The bound on ||1Jy,, — NS\, |2 follows from Wilson et al. [2020, Lemma 20].

Finally, the continuity of the bounds in Egs. (19) and (20) follows from Lemma 4. In particular,

the [)5,/1), 152,2), and ﬁs’) in both bounds are evaluated at 0 A1 R, Which is shown to be a continuous
function of the ¢,, in Lemma 4. The ¢,, are, in turn, continuous functions of the lower singular values
of the covariate matrix. a

D.3 Proof of Theorem 1

Proof. We first note that the runtime claim is immediate, as Algorithm 2 runs in O(NDK + K?3)
time. That the bounds are computable in O(DK) time for each n follows as all derivatives [)7(11)
and D) need only the inner product of ,, and 6, which takes O(D) time. Each norm ||z, |2 is
computable in O(D). For models for which the optimization problem in Proposition 1 can be quickly
solved — such as Poisson or logistic regression — we need only to compute a bound on |61 ,, — 0|2,
which we can do in O(D) via Lemma 3. The only remaining quantity to compute is the 7,,, which,
by Proposition 2, is computed via a projection onto the orthogonal complement of a K -dimensional
subspace. We can compute this projection in O(DK). Thus our overall runtime is O(DK) per
datapoint.

To prove Eq. (7), we use the triangle inequality \wgf]\” — :L'Zé\n| < Jal1dy, — wgé\n| + 2l 1y, —
.T?Zﬁ\nl We upper bound the first term by using Lemma 2. For the latter, we note that |z 1J \n —

xfﬁ\n} = |15§L1) [|Qn — Qn|, which we can bound via the 7,, of Proposition 2. The proof for NS\,
is similar. O

D.4 Proof of Corollary 1

Proof. Notice that ) from Algorithm 2 captures a rank- K subspace of the column span of X. The
error bound 7),, is the norm of x,, projected outside of this subspace divided by A. Now, assume that

we have K > R. Then, as the singular values o4 ford = R+ 1,..., D go to zero, the norm of any
x, outside this subspace must also go to zero. Thus 7,, goes to zero. As F,, is a continuous function
of ,,, we also have E,, — 0. O

E Proofs and discussion from Section 5

E.1 Proofs

For convenience, we first restate each claimed result from the main text before giving its proof.

Proposition 2. Let A > 0 and suppose there is some subspace B on which H and H exactly agree.
Then H=' and H™' agree exactly on the subspace A := HB, and foralln = 1,...,N:

2
|1"Tﬁ71xn - in S

v

(24)

where Pj denotes projection onto the orthogonal complement of A.
Proof. First, if H and H agree on B, then for A = HB = HB, wehave H A =B =H ' A, as
claimed. Then:
|Qn — .LZI:‘VI_IJ,H = el H e, — xf]fl_lln\
< [(Pran)(H ™" — H)(Pyzy,)|
<||Pgeal3 || - A7

)
op, AL
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where |-, 4. is the operator norm of a matrix restricted to the subspace A" On this subspace, the

action of H~1is 1 /\ times the identity, whereas all eigenvalues of H ~! are all between 0 and 1/\.
Thus:

i

= max {UTH_LU — UTH_l’U}
op, A+ ve AL, |jvl,=1

1
= max Z —oTH W < =,
vEAL, |lvfl,=1 A

We next restate and proof Proposition 4.

Proposition 4. The Q,, = 2T H 'z,, satisfy 0 < Q,, < |zn|2/(A + D ||z, ||2). Furthermore,

letting Q,, := min{zZH 'z, |z, Hg /(A + D ||:vn||§)}, we have the error bound

~ PLa, |2 3
|Qn - in < IIlin{ H A)\ H2, HAQJ;Z)HQ 5 } . (25)
A+ Dy [|znl3

Proof. Let b, := 1/ D@z, Let {vd}dDzl be the eigenvectors of H with eigenvalues {y; + /\}dDz1
with v; > 72 > --+ > 7p. The quantity bZH —1p,, is maximized if b,, is parallel to vp; in this
case, bTH b, = ||bu|l2 /(0 + A). Now, recall that the 4 are the eigenvalues of 3 b,b”

n?

meaning Y., (b,,vp)? = vp. So, if b, is parallel to vp, it must be that yp > ||bn||§ Thus,
b H-1p, < ||bn||§ /(an||§ + A). Dividing by D gives that Q,, = 1 H 1z, satisfies:

2
15

O S Q’n S <9y . _o-°

At D3 laall
If we estimate Q,, by the minimum of this upper bound and xffl —lz,, the error bound from
Proposition 2 implies the error bound claimed here. O

E.2 Relation of Algorithm 2 to techniques from randomized linear algebra

As noted, our Algorithm 2 bears a resemblance to techniques from the randomized numerical linear
algebra literature. Indeed, our inspiration for Algorithm 2 was the work of Tropp et al. [2017].
Tropp et al. [2017] propose a method to find a randomized top-K eigendecomposition of a positive-
semidefinite matrix B. Their method follows the basic steps of (1) produce a random orthonormal
matrix € RP*(5+K) where S > 0 is an oversampling parameter to ensure the stability of the
estimated eigendecomposition, (2) compute the Nystrdm approximation of B,,,s ~ B using {2}, and
(3) compute the eigendecomposition of B,,,; and throw away the lowest S eigenvalues.

Our Algorithm 2 can be seen as using this method of Tropp et al. [2017] to obtain a rank-K

decomposition of the matrix B = (1/N) )", Dg)mnzz with specific choices of .S and (). First,
we notice that S = 0 (i.e., no oversampling) is optimal in our application — the error bound of
Proposition 2 decreases as the size of the subspace 4 increases. As .S > 0 only decreases the size of
this subspace, we see that our specific application is only hurt by oversampling. Next, while Tropp
et al. [2017] recommend completely random matrices €2 for generic applications (e.g., the entries of
Qare i.i.d. N(0, 1)), we note that the results of Proposition 3 suggest that we can improve upon this
choice. With the optimal choice of S = 0, we note that 4 = H. In this case, Proposition 3 implies
it is optimal to set Q = H ~1V.k, where V. are the top- K right singular vectors of X. Algorithm 2
provides an approximation to this optimal choice.

We illustrate the various possible choices of €, including i.i.d. N'(0, 1), in Fig. 6. We generate a

synthetic Poisson regression problem with covariates x4 i1 N(0,1) and y,, ~ Poisson(ewze* ),
where 6* € RP is a true parameter with i.i.d. A'(0, 1) entries. We generate a dataset of size N = 200.

The covariates have dimension D = 150 but are of rank 50. We compute I.J for various settings
of K and (2, as shown in Fig. 6. As suggested by the above discussion, we use no oversampling
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Figure 6: Quality of approximation of 1J\,, on a synthetic Poisson regression problem using the
methods from Section 5. (Left): We show three options for the choice of the matrix (2. Blue shows
the choice of 2 having orthonormal columns selected uniformly at random, orange the optimal
choice of §2 from Proposition 3, and green our approximation to this optimal choice. Percent error

LI\, — IF\J,J /ILJ\n| is reported to give a sense of scale. (Right): Importance of Proposition 4 for
approx1mat1ng Q. We show two approximations along with our upper bounds on their error: (1)

Qn =~ xTH '2,, and (2) our recommended Q,, ~ Qn from Proposition 4. We report absolute error
LI\, — 1J \n| so that both actual and estimated error can be plotted.

(i.e., S = 0). On the left, we see that using a diagonal approximation to H~! and a single subspace
iteration gives a good approximation to the optimal setting of §2. On the right, we see the improvement
made by use of the upper bound on 2 H~'x,, from Proposition 4.

E.3 Implementation of Algorithm 2

As noted by Tropp et al. [2017], finding the decomposition of B in Algorithm 2 as-written can result
in numerical issues. Instead, Tropp et al. [2017] present a numerically stable version which we use in
our experiments. For completeness, we state this implementation here, which relies on computing the
Nystrom approximation of the shifted matrix B, = B + vIp, for some small v > 0:

1. Construct the shifted matrix sketch G, := BQ + v).
. Form C = QT@G,,.

. Compute the Cholesky decomposition C' = I'T'”".

. Compute £ = G,

Compute the SVD E = UXVT.

<R T N VR

Return U and 32 — v as the approximate eigenvectors and eigenvalues of B.

F Error bound experiments

Here, we provide more details on our investigation of the error bounds of Theorem 1 from Fig. 4.
In Section 6, we showed that, over five randomly generated synthetic datasets, our error bound on
1) \n implies upper bounds on out-of-sample error that are reasonably tight. However, we noted
that these bounds can occasionally be vacuously loose. On the left of Appendix F, we show this
is the case by repeating the experiment in Fig. 4 for an additional fifteen trials. While most trials
have similar behavior to the first five, trial 16 finds an upper bound of the out-of-sample error that
is too loose by two orders of magnitude. However, we note that this behavior is mostly due to two
offending points n. Indeed, on the right of Appendix F, we show the same results having replaced the
two largest bound values with those from exact CV.
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Figure 7: Experiments from Appendix F. (Leff): Error bounds can be vacuously large; for trial
number 16, our bound exceeds exact CV by two orders of magnitude. (Right): By computing our
bound for all n and re-running exact CV for the two largest values, we obtain estimates that are much
closer to exact CV.

G Real data experiments

Here we provide more details about the three real datasets used in Section 6.

1. The p53 dataset is from Danziger et al. [2009, 2007, 2006]. The full dataset contains
D = 5,408 features describing attributes of mutated p53 proteins. The task is to classify
each protein as either “transcriptionally competent” or inactive. To keep the dimension high
relative to the number of observations NV, we subsampled N = 8,000 datapoints uniformly

at random for our experiments here. We fix K = 500 to compute Q,, for both z2'1J \n and

2. The rcv1 dataset is from Lewis et al. [2004]. The full dataset is of size N = 20,242
and D = 47,236. Each datapoint corresponds to a Reuters news article given one of four
labels according to its subject: “Corporate/Industrial,” “Economics,” “Government/Social,”
and “Markets.” We use a pre-processed binarized version from https://www.csie.ntu.
edu.tw/"cjlin/libsvmtools/datasets/binary.html, which combines the first two
categories into a “positive” label and the latter two into a “negative” label. We found running
CV on the full dataset to be too computationally intensive, and instead formed a smaller
dataset of size N = D = 20,000. The data matrix is highly sparse, so we chose our
20,000 dimensions by selecting the most common (i.e., least sparse) features. We then chose
N = 20,000 datapoints by subsampling uniformly at random. We fix K = 1,000 in this
experiment.

3. The blog dataset is from Buza [2014]. The base dataset contains D = 280 features about
N = 52,397 blogs. Each feature represents a statistic about web traffic to the given blog
over a 72 hour period. The task is to predict the number of unique visitors to the blog in
the subsequent 24 hour period. We first generate a larger dataset by considering all possible
pairwise features 2,4, Tnd, for di,ds € {1,..., D}. The resulting problem has too high
N and D to run exact CV on in a reasonable amount of time, so we again subsample to
N = 20,000 and D = 20,280. We again choose the 20,000 least sparse parwise features and
then add in the original 280 features. Finally, we choose our 20,000 datapoints uniformly at
random.

H Sensitivity of results to A

In our main real-data experiments in Section 6, we chose a moderate value of A = 5.0 to speed
up the convergence of exact CV. Here, we investigate how sensitive our results are to the choice
of this parameter. We randomly select N = 600, D = 400 subsets of the p53 and blog datasets.

We exactly compute @),,, as well as compute our approximation én from Algorithm 2 for K €
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Figure 8: Experiment from Appendix H. We report average error in the estimate of @,

(1/N)> >, |Qn — Qn|/|@n| for both the p53 and blog datasets. We note that the errors when
using K = 300, 350, 400 are visually indistinguishable from one another.

{100, 150, 200, 250, 300, 350, 400}. In Fig. 8, we see that the choice of \ has only a mild effect on
the results.
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