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Abstract

We study the problem of best-arm identification with fixed confidence in stochastic
linear bandits. The objective is to identify the best arm with a given level of cer-
tainty while minimizing the sampling budget. We devise a simple algorithm whose
sampling complexity matches known instance-specific lower bounds, asymptoti-
cally almost surely and in expectation. The algorithm relies on an arm sampling
rule that tracks an optimal proportion of arm draws, and that remarkably can be
updated as rarely as we wish, without compromising its theoretical guarantees.
Moreover, unlike existing best-arm identification strategies, our algorithm uses a
stopping rule that does not depend on the number of arms. Experimental results
suggest that our algorithm significantly outperforms existing algorithms. The paper
further provides a first analysis of the best-arm identification problem in linear
bandits with a continuous set of arms.

1 Introduction

The stochastic linear bandit [1, 2] is a sequential decision-making problem that generalizes the
classical stochastic Multi-Armed Bandit (MAB) problem [3, 4] by assuming that the average reward
is a linear function of the arm. Linear bandits have been extensively applied in online services such us
online advertisement and recommendation systems [5, 6, 7], and constitute arguably the most relevant
structured bandit model in practice. Most existing analyses of stochastic linear bandits concern regret
minimization [2, 8, 9, 10, 11], i.e., the problem of devising an online algorithm maximizing the
expected reward accumulated over a given time horizon. When the set of arms is finite, this problem
is solved in the sense that we know an instance-specific regret lower bound, and a simple algorithm
whose regret matches this fundamental limit [10, 11].

The best-arm identification problem (also referred to as pure exploration problem) in linear bandits
with finite set of arms has received less attention [12, 13, 14, 15, 16], and does not admit a fully
satisfactory solution. In the pure exploration problem with fixed confidence, one has to design a
δ-PAC algorithm (able to identify the best arm with probability at least 1− δ) using as few samples
as possible. Such an algorithm consists of a sampling rule (an active policy to sequentially select
arms), a stopping rule, and a decision rule that outputs the estimated best arm. The number of rounds
before the algorithm stops is referred to as its sample complexity. An instance-specific information-
theoretical lower bound of the expected sample complexity has been derived in [17]. However, we
are lacking simple and practical algorithms achieving this bound. Importantly, existing algorithms
exhibit scalability issues as they always include subroutines that explicitly depend on the number of
arms (refer to the related work for details). They may also be computationally involved.

In this paper, we present a new best-arm identification algorithm for linear bandits with finite set of
arms, whose sample complexity matches the information-theoretical lower bound. The algorithm
follows the track-and-stop principle proposed in [18] for pure exploration in bandits without structure.
Its sampling rule tracks the optimal proportion of arm draws, predicted by the sample complexity
lower bound and estimated using the least-squares estimator of the system parameter. Remarkably,
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this tracking procedure can be made as lazy as we wish (the estimated optimal proportion of draws
can be updated rarely – not every round) without compromising the asymptotic optimality of the
algorithm. The stopping rule of our algorithm is classically based on a generalized likelihood ratio
test. However the exploration threshold defining its stopping condition is novel, and critically, we
manage to make it independent of the number of arms. Overall our algorithm is simple, scalable, and
yet asymptotically optimal. In addition, its computational complexity can be tuned by changing the
frequency at which the tracking rule is updated, without affecting its theoretical guarantees.

We also study the pure exploration problem in linear bandits with a continuous set of arms. We restrict
our attention to the case where the set of arms consists of the (d− 1)-dimensional unit sphere. We
establish a sample complexity lower bound satisfied by any (ε, δ)-PAC algorithm (such algorithms
identify an ε-optimal arm with probability at least 1− δ). This bound scales as d

ε log(1/δ). We finally
propose an algorithm whose sample complexity matches the lower bound order-wise.

Related work. Best-arm identification algorithms in linear bandits with a finite set of K arms have
been proposed and analyzed in [12, 13, 14, 15, 16]. Soare et al. [12] leverage tools from G-optimal
experimental design to devise the XY-adaptive algorithm returning the best arm and with sample
complexity τ satisfying τ . (M? ∨ T ?µ log(K2/δ))(log log(K2/δ) + log(1/∆2

min)), w.p. 1 − δ,
where µ is the parameter defining the reward function, ∆min is the minimal gap between the best
and a sub-optimal arm, T ?µ log(1/δ) is the information theoretical lower bound for the expected
sample complexity of δ-PAC algorithms, and where M? is an instance-dependent constant. XY-
adaptive runs in phases, and eliminates arms at the end of each phase. The use of phases requires
rounding procedures, which come with d2 additional rounds in the sample complexity. The algorithm
also requires to solve in each round an optimization problem similar to that leading to the sample
complexity lower bound (see §3.1). Improved versions ofXY-adaptive have been proposed in [15, 16].
ALBA [15] relies on a novel estimator for µ (removing the need of rounding procedures). RAGE [16]
offers an improved sample complexity τ . T ∗µ log(1/∆2

min)(log(K2/δ) + d log(1/∆2
min)) (slightly

simplifying the expression). The aforementioned algorithms are rather complicated, and explicitly
use the number K of arms in some of their components: K is present in the arm elimination function
in XY-adaptive, in the phase durations in [15, 16]. Importantly, their sample complexity does not
match the information-theoretical lower bound when δ decreases. There is also no guarantees for
their expected sample complexity.

[13] proposes an algorithm based on an explore-and-verify framework and with an asymptotically
optimal sample complexity. The algorithm is not practical, but is the first to demonstrate that the
lower bound derived in [17] is achievable. In [14], the authors present LinGapE, an algorithm, as
simple as ours. However, its sampling and stopping rules are both sub-optimal (e.g. the algorithm
needs to sample all arms at least once), which in turn leads to weak performance guarantees with a
sample complexity satisfying τ . K log(1/δ).

Recently, Degenne et al. [19] proposed LinGame and LinGame-C, two track-and-stop algorithms
that achieve the best possible sample complexity asymptotically. Their stopping rule is somewhat
similar to ours, but has the disadvantage of requiring boundedness on the unknown parameter µ.
Their sampling rule is different than ours and relies on a game theoretic approach. The latter consists
in viewing the information theoretic constant T ?µ as the result of a zero-sum game between the agent
and the environment. It is not clear how computationally efficent this algorithm is as it requires
solving a saddle-point problem at each round. Finally, we would like to mention that [19] was not
available to us at the time of submission.

The algorithm we present is as simple as LinGapE, does not run in phases, does not explicitly use
the number of arms in its sampling and stopping rules, and has an asymptotically optimal sample
complexity, both almost surely and in expectation.

We are not aware of any work on best-arm identification in linear bandits with a continuous set of
arms. We provide here the first results.

2 Model and Objective

We consider a bandit problem with a set A ⊂ Rd of arms. In round t ≥ 1, if the decision maker
selects arm a, she observes as a feedback a random reward rt = µ>a + ηt. µ ∈ Rd is unknown,
and (ηt)t≥1 is a sequence of i.i.d. Gaussian random variables, ηt ∼ N (0, σ2). The objective is to
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learn the arm a?µ with the highest expected reward a?µ = arg maxa∈A µ
>a. Throughout the paper,

we assume that µ and A are such that the best arm a?µ is unique. We also assume that the set of arms
A spans Rd.

A best-arm identification algorithm consists of a sampling rule, a stopping rule, and a decision rule.
The sampling rule decides which arm at is selected in round t based on past observations: at is
Ft−1-measurable, where Ft is the σ-algebra generated by (a1, r1, . . . , at, rt). The stopping rule
decides when to stop sampling, and is defined by τ , a stopping time w.r.t. the filtration (Ft)t≥1.
The decision rule outputs a guess âτ of the best arm based on observations collected up to round
τ , i.e., âτ is Fτ -measurable. The performance of an identification algorithm is assessed through its
probabilistic guarantees, and through its sample complexity τ . We consider different probabilistic
guarantees, depending on whether the set of arms A is finite or continuous. Specifically: for ε, δ > 0,

Definition 1 (Finite set of arms A). An algorithm is δ-PAC if for all µ, Pµ[âτ 6= a?µ] ≤ δ and
Pµ[τ <∞] = 1.

Definition 2 (Continuous set of arms A). An algorithm is (ε, δ)-PAC if for all µ,
Pµ[µ>(a?µ − âτ ) > ε] ≤ δ and Pµ[τ <∞] = 1.

When the set of arms A is finite (resp. continuous), the objective is to devise a δ-PAC (resp. (ε, δ)-
PAC) algorithm with minimal expceted sample complexity Eµ[τ ].

Notation. Let K = |A| when A is finite. Λ = {x ∈ [0, 1]A :
∑
a∈A xa = 1} denotes the simplex

in dimension K. For a, b ∈ [0, 1], kl(a, b) is the KL divergence between two Bernoulli distributions
of respective means a and b. For any w,w′ ∈ RA, we denote d∞(w,w′) = maxa∈A |wa − w′a|,
and for any compact set C ⊂ RA, d∞(w,C) = minw′∈C d∞(w,w′). For w ∈ RA, supp(w) =
{a ∈ A : wa 6= 0} denotes the support of w. Pµ (resp. Eµ) denotes the probability measure (resp.
expectation) of observations generated under µ; in absence of ambiguity, we simply use P (resp. E).
For two functions f and g, we write f . g iff there exists a universal constant C such that for all x,
f(x) ≤ Cg(x).

3 Finite set of arms

Consider a finite set A of K arms. We first recall existing lower bounds on the expected complexity
of δ-PAC algorithms, and then present our algorithm along with an analysis of its sample complexity.

3.1 Sample complexity lower bound

Soare [17] derived the following sample complexity lower bound, using the method developed by
Garivier and Kaufmann [20] in the case of bandits without structure.

Theorem 1. The sample complexity of any δ-PAC algorithm satisfies: ∀µ, Eµ[τ ] ≥ σ2T ?µkl(δ, 1−δ),
where

(T ?µ)−1 = sup
w∈Λ

min
a∈A\a?µ

(µ>(a?µ − a))2

2(a?µ − a)>
(∑

a∈A waaa
>
)−1

(a?µ − a)
. (1)

In the above lower bound, w may be interpreted as the proportions of arm draws, also referred
to as allocation. For a ∈ A, wa represents the fraction of rounds where arm a is selected. This
interpretation stems from the proof of Theorem 1, where wa = Eµ[Na(τ)]/Eµ[τ ] and Na(t) is the
number of times a is selected up to and including round t (see [17]). The lower bound is obtained by
taking the supremum over w, i.e., over the best possible allocation.

A different way to define (T ?µ)−1 is supw∈Λ ψ(µ,w) (a convex program) [17], where

ψ(µ,w) = min
{λ:∃a 6=a?µ,λ>(a?−a)<0}

1

2
(µ− λ)>

(∑
a∈A

waaa
>

)
(µ− λ). (2)

The next lemmas, proved in Appendix B, confirm that the two definitions of T ?µ are equivalent, and
provide useful properties of the function ψ and of its maximizers.
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Lemma 1. We have:

ψ(µ,w) =

mina∈A\a?µ
〈µ,a?µ−a〉

2

2(a?µ−a)>(
∑K
i=1 wiaia

>
i )
−1

(a?µ−a)
if
∑
a∈A waaa

> � 0,

0 otherwise.
(3)

In addition, ψ is continuous in both µ and w, and w 7→ ψ(µ,w) attains its maximum in Λ at a point
w?µ such that

∑
a∈A(w?µ)aaa

> is invertible.

Lemma 2. (Maximum theorem) Let µ ∈ Rd such that a?µ is unique. Define ψ∗(µ) =
maxw∈Λ ψ(µ,w) and C?(µ) = arg maxw∈Λ ψ(µ,w). Then ψ? is continuous at µ, and C?(µ)
is convex, compact and non-empty. Furthermore, we have1 for any open neighborhood V of C?(µ),
there exists an open neighborhood U of µ, such that for all µ′ ∈ U , we have C?(µ′) ⊆ V .

3.2 Least-squares estimator

Our algorithm and its analysis rely on the least-squares estimator of µ and on its performance. This
estimator µ̂t based on the observations in the t first rounds is: µ̂t = (

∑t
s=1 asa

>
s )†(

∑t
s=1 asrs).

The following result provides a sufficient condition on the sampling rule for the convergence of µ̂t to
µ. This condition depends on the asymptotic spectral properties of the covariates matrix

∑t
s=1 asa

>
s .

We also provide a concentration result for the least-squares estimator. Refer to Appendix C for the
proofs of the following lemmas.

Lemma 3. Assume that the sampling rule satisfies lim inft→∞ λmin

(
1
tα

∑t
s=1 asa

>
s

)
> 0 almost

surely (a.s.), for some α ∈ (0, 1). Then, limt→∞ µ̂t = µ a.s.. More precisely, for all β ∈ (0, α/2),
‖µ̂t − µ‖ = o(t−β) a.s..

Lemma 4. Let α > 0 and L = maxa∈A ‖a‖. Assume that λmin(
∑t
s=1 asa

>
s ) ≥ ctα a.s. for all

t ≥ t0 for some t0 ≥ 0 and some constant c > 0. Then

∀t ≥ t0 P (‖µ̂t − µ‖ ≥ ε) ≤ (c−1/2L)dt
(1−α)d

2 exp

(
−cε

2tα

4σ2

)
. (4)

The least-squares estimator is used in our decision rule. After the algorithm stops in round τ , it
returns the arm âτ ∈ arg maxa∈A µ̂

>
τ a.

3.3 Sampling rule

To design an algorithm with minimal sample complexity, the sampling rule should match optimal
proportions of arm draws, i.e., an allocation in the set C?(µ). Since µ is unknown, our sampling rule
will track, in round t, allocations in the plug-in estimate C?(µ̂t). To successfully apply this certainty
equivalence principle, we need to at least make sure that using our sampling rule, µ̂t converges to µ.
Using Lemma 3, we can design a family of sampling rules with this guarantee:
Lemma 5. (Forced exploration) Let A0 = {a0(1), . . . , a0(d)} ⊆ A : λmin(

∑
a∈A0

aa>) > 0.
Let (bt)t≥1 be an arbitrary sequence of arms. Furthermore, define for all t ≥ 1, f(t) = cA0

√
t where

cA0
= 1√

d
λmin

(∑
a∈A0

aa>
)
. Consider the sampling rule, defined recursively as: i0 = 1, and for

t ≥ 0, it+1 = (it mod d) + 1{λmin(
∑t
s=1 asa

>
s )<f(t)} and

at+1 =

{
a0(it) if λmin

(∑t
s=1 asa

>
s

)
< f(t),

bt otherwise.
(5)

Then for all t ≥ 5d
4 + 1

4d + 3
2 , we have λmin

(∑t
s=1 asa

>
s

)
≥ f(t− d− 1).

A sampling rule of the family defined in Lemma 5 is forced to explore an arm in A0 (in a round robin
manner) if λmin(

∑t
s=1 asa

>
s ) is too small. According to Lemma 3, this forced exploration is enough

to ensure that µ̂t converges to µ a.s.. Next in the following tracking lemma, we show how to design
the sequence (bt)t≥1 so that the sampling rule gets close to a set C we wish to track.

1This statement is that of upper hemicontinuity of a correspondence.
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Lemma 6. (Tracking a set C) Let (w(t))t≥1 be a sequence taking values in Λ, such that there
exists a compact, convex and non empty subset C in Λ, there exists ε > 0 and t0(ε) ≥ 1 such that
∀t ≥ t0, d∞(w(t), C) ≤ ε.
Define for all a ∈ A, Na(0) = 0. Consider a sampling rule defined by (5) and

bt = arg min
a∈supp(

∑t
s=1 w(s))

(
Na(t)−

t∑
s=1

wa(s)

)
, (6)

where Na(0) = 0 and for t ≥ 0, Na(t+ 1) = Na(t) + 1{at=a}.
Then there exists t1(ε) ≥ t0(ε) such that ∀t ≥ t1(ε), d∞((Na(t)/t)a∈A, C) ≤ (pt + d− 1)ε where
pt = |supp(

∑t
s=1 w(s))\A0| ≤ K − d.

The lazy tracking rule. The design of our tracking rule is completed by choosing the sequence
(w(t))t≥1 in (6). The only requirement we actually impose on this sequence is the following condition:
there exists a non-decreasing sequence (`(t))t≥1 of integers with `(1) = 1, `(t) ≤ t− 1 for t > 1
and limt→∞ `(t) =∞ and such that

lim
t→∞

min
s≥`(t)

d∞(w(t), C?(µ̂s)) = 0. a.s.. (7)

This condition is referred to as the lazy condition, since it is very easy to ensure in practice. For
example, it holds for the following lazy tracking rule. Let T = {tn : n ≥ 1} be a deterministic
increasing set of integers such that tn →∞ as n→∞, we can define (w(t))t≥1 such that it tracks
C?(µ̂t) only when t ∈ T . Specifically, if t ∈ T , w(t+ 1) ∈ C?(µ̂t), and w(t+ 1) = w(t) otherwise.
For this sequence, (7) holds with `(t) = t− 1. The lazy condition is sufficient to guarantee the almost
sure asymptotical optimality of the algorithm. To achieve optimality in terms of expected sample
complexity, we will need a slightly stronger condition, also easily satisfied under some of the above
lazy tracking rules, see details in §3.5.

The following proposition states that the lazy sampling rule is able to track the set C∗(µ). It follows
from the fact that µ̂t converges to µ (thanks to Lemmas 3 and 5) and from combining the maximum
theorem (Lemma 2) and Lemma 6. All proofs related to the sampling rule are presented in Appendix
E.
Proposition 1. Under any sampling rule (5)-(6) satisfying the lazy condition (7), the proportions of
arm draws approach C?(µ): limt→∞ d∞((Na(t)/t)a∈A, C

?(µ)) = 0, a.s..

3.4 Stopping rule

We use the classical Chernoff’s stopping time. Define the generalized log-likelihood ratio for all pair
of arms a, b ∈ A, t ≥ 1, and ε ≥ 0 as

Za,b,ε(t) = log

(
max{µ:µ>(a−b)≥−ε} fµ(rt, at, . . . , r1, a1)

max{µ:µ>(a−b)≤−ε} fµ(rt, at, . . . , r1, a1)

)
,

where fµ(rt, at, . . . , r1, a1) ∝ exp(− 1
2

∑t
s=1(rs − µ>as)2) under our Gaussian noise assumption.

We may actually derive an explicit expression of Za,b,ε(t) (see Appendix D for a proof):

Lemma 7. Let t ≥ 1 and assume that
∑t
s=1 asa

>
s � 0. For all a, b ∈ A, we have:

Za,b,ε(t) = sgn(µ̂>t (a− b) + ε)
(µ̂>t (a− b) + ε)2

2(a− b)>
(∑t

s=1 asa
>
s

)−1

(a− b)
.

Here we use Za,b(t) = Za,b,0(t) (Za,b,ε will be used in the case of continuous set of arms). Note that
Za,b(t) ≥ 0 iff a ∈ arg maxa∈A µ̂

>
t a. Denoting Z(t) = maxa∈Aminb∈A\a Za,b(t), the stopping

rule is defined as follows:

τ = inf

{
t ∈ N∗ : Z(t) > β(δ, t) and

t∑
s=1

asa
>
s � cId

}
(8)

where β(δ, t) is referred to as the exploration threshold and c is some positive constant (refer to
Remark 1 for a convenient choice for c). The exploration threshold β(δ, t) should be chosen so that
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the algorithm is δ-PAC. We also wish to design a threshold that does not depend in the number K
of arms. These requirements leads to the exploration threshold defined in the proposition below (its
proof is presented in Appendix D and relies on a concentration result for self-normalized processes
[9]).
Proposition 2. Let u > 0, and define:

β(δ, t) = (1 + u)σ2 log

det
(

(uc)−1
∑t
s=1 asa

>
s + Id

) 1
2

δ

 . (9)

Under any sampling rule, and a stopping rule (8) with exploration rate (9), we have:
P
(
τ <∞, µ>(a?µ − âτ ) > 0

)
≤ δ.

The above proposition is valid for any sampling rule, but just ensures that ’if’ the algorithm stops, it
does not make any mistake w.p. 1− δ. To get a δ-PAC algorithm, we need to specify the sampling
rule.
Remark 1. (Choosing c and u) A convenient choice for the constant c involved in (8) and (9) is
c = maxa∈A ‖a‖2. With this choice, we have: det(c−1

∑t
s=1 asa

>
s + Id) ≤ (t+ 1)d. The constant

u should be chosen so that the threshold in (9) is lowered for instance one my choose u = 1. From
these choices the threshold can be as simple as β(δ, t) = 2σ2 log(t

d
2 /δ). In addition, if we use

a sampling rule with forced exploration as in (5), then in view of Lemma 5, the second stopping
condition

∑t
s=1 asa

>
s � cId is satisfied as soon as t exceeds d+ 1 + c2d

λmin(
∑
a∈A0

aa>)
.

3.5 Sample complexity analysis

Algorithm 1: Lazy Track-and-Stop (LT&S)
Input: Arms A, confidence level δ, set T of lazy updates
Initialization: t = 0, i = 0, A0 = 0, Z(0) = 0, N(0) = (Na(0))a∈A = 0;
while (λmin(At) < c) or (Z(t) < β(δ, t)) do

if λmin(At) < f(t) then
a← a0(i+ 1), i← (i+ 1 mod d)

else
a← arg minb∈supp(

∑t
s=1 w(s))

(
Nb(t)−

∑t
s=1 wb(s)

)
,

end
t← t+ 1, sample arm a and update N(t), µ̂t, Z(t), At ← At−1 + aa>, w(t)← w(t− 1)
if t ∈ T then

w(t) = arg maxw∈Λ ψ(µ̂t, w)
end

end
return âτ = arg maxa∈A µ̂

>
τ a

In this section, we establish that combining a sampling rule (5)-(6) satisfying the lazy condition (7)
and the stopping rule (8)-(9), we obtain an asymptotically optimal algorithm. Refer to Appendix
F for proofs. An example of such algorithm is the Lazy Track-and-Stop (LT&S) algorithm, whose
pseudo-code is presented in Algorithm 1. LT&S just updates the tracking rule in rounds in a set T .
Theorem 2. (Almost sure sample complexity upper bound) An algorithm defined by (5)-(6)-(8)-(9)
with a lazy sampling rule (satisfying (7)) is δ-PAC. Its sample complexity verifies:

P(lim sup
δ→0

τ

log( 1
δ )
. σ2T ∗µ) = 1.

To obtain an algorithm with optimal expected sample complexity, we need to consider lazy tracking
rules that satisfy the following condition: there exist α > 0 and a non-decreasing sequence (`(t))t≥1

of integers with `(1) = 1, `(t) ≤ t and lim inft→∞ `(t)/tγ > 0 for some γ > 0 and such that

∀ε > 0, ∃h(ε) : ∀t ≥ 1, P
(

min
s≥`(t)

d∞(w(t), C?(µ̂s)) > ε

)
≤ h(ε)

t2+α
. (10)
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The condition (10) is again easy to ensure. Assume that we updatew(t) only if t ∈ T = {tn : n ≥ 1},
where tn is increasing sequence of integers such that tn → ∞ as n → ∞. Then (10) holds for
the sequence (`(t))t≥1 such that `(ti+1) = ti for all i, provided that lim infn→∞ tn+1/t

γ
n > 0

for some γ > 0. Examples include: (i) periodic updates of w(t): T = {1 + kP, k ∈ N} and
`(t) = max{1, t− P}; (ii) exponential updates T = {2k, k ∈ N} and `(t) = max{1, bt/2c}. The
condition (10) may seem too loose, but we have to keep in mind that in practice, the performance of
the algorithm will depend on the update frequency of w(t). However for asymptotic optimality, (10)
is enough (the key point is to have some concentration of µ̂t around µ, which is guaranteed via the
forced exploration part of the sampling rule).

Theorem 3. (Expected sample complexity upper bound) An algorithm defined by (5)-(6)-(8)-(9)
with a sampling rule satisfying (7) and (10) is δ-PAC. Its sample complexity verifies:

lim sup
δ→0

E [τ ]

log
(

1
δ

) . σ2T ?µ .

4 Continuous set of arms

We now investigate the case where A = Sd−1 is the (d− 1)-dimensional unit sphere. Without loss
of generality, we restrict our attention to problems where µ ∈M(ε0) = {η : η>a?η > ε0} for some
ε0 > 0. The results of this section are proved in Appendix G.

4.1 Sample complexity lower bound

Theorem 4. Let ε ∈ (0, ε0/5), and δ ∈ (0, 1). The sample complexity of any (δ, ε)-PAC algorithm
satisfies: for all µ ∈M(ε0), Eµ[τ ] ≥ σ2(d−1)

20‖µ‖ε kl(δ, 1− δ).

The above theorem is obtained by first applying the classical change-of-measure argument (see e.g.
Lemma 19 [20]). Such an argument implies that under any (ε, δ)-PAC algorithm, for all confusing λ
such that {a ∈ Sd−1 : µ>(a?µ − a) ≤ ε} and {a ∈ Sd−1 : λ>(a∗λ − a) ≤ ε} are disjoint,

(µ− λ)>E

[
τ∑
s=1

asa
>
s

]
(µ− λ) ≥ 2kl(δ, 1− δ).

We then study the solution of the following max-min problem: max(at)t≥1
minλ∈Bε(µ)(µ −

λ)>E
[∑τ

s=1 asa
>
s

]
(µ− λ), where Bε(µ) denotes the set of confusing parameters. The continuous

action space makes this analysis challenging. We show that the value of the max-min problem is
smaller than Eµ[τ ] 10‖µ‖ε

σ2(d−1) , which leads to the claimed lower bound.

4.2 Algorithm

We present a simple algorithm whose sample complexity approach our lower bound. We describe its
three components below. The decision rule is the same as before, based on the least-squares estimator
of µ: ât ∈ arg maxa∈A µ̂

>
t a.

Sampling rule. Let U = {u1, u2, . . . , ud} be subset of Sd−1, that forms an orthonormal basis of Rd.
The sampling rule just consists in selecting an arms from U in a round robin manner: for all t ≥ 1,
at = u(t mod d).

Stopping rule. As for the case of finite set of arms, the stopping rule relies on a generalized
loglikelihood ratio test. Define Z(t) = inf{b∈A:|µ̂>t (ât−b)|≥εt} Zât,b,εt(t), where an expression of
Zât,b,εt(t) is given in Lemma 7. We consider the following stopping time:

τ = inf

{
t ∈ N∗ : Z(t) ≥ β(δ, t) and λmin

(
t∑

s=1

asa
>
s

)
≥ max

{
c,
ρ(δ, t)

‖µ̂t‖2

}}
. (11)

Hence compared to the case of finite set of arms, we add a stopping condition defined by the threshold
ρ(δ, t) and related to the spectral properties of the covariates matrix.
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Proposition 3. Let (δt)t≥1, (εt)t≥1 be two sequences with values in (0, 1) and (0, ε), respectively,

and such that
∑∞
t=1 δt < δ, and limt→∞ εt = ε. Let ζt = log(2 det

(
c−1

∑t
s=1 asa

>
s + Id

) 1
2

) −
log(δt), and define:

β(δ, t) = 2σ2ζt and ρ(δ, t) =
4σ2ε2

t ζt
(ε− εt)2

(12)

Then under the stopping rule (11)-(12), we have: Pµ
(
τ <∞, µ>(a?µ − âτ ) > ε

)
≤ δ.

4.3 Sample complexity analysis

Under specific choices for the sequence (εt)t≥1, we can analyze the sample complexity of our
algorithm, and show its optimality order-wise.

Theorem 5. Choose in the stopping rule εt = ε
(
1 + ε(4σ2 log( 4

δt

⌈
t
d

⌉
))−1/2

)−1
(observe that

εt < ε and limt→∞ εt = ε). Then under the aforementioned sampling rule, and the stopping rule
(11)-(12), we have: P

(
lim supδ→0

τ
log(1/δ) .

σ2d
‖µ‖ε

)
= 1 and lim supδ→0

E[τ ]
log(1/δ) .

σ2d
‖µ‖ε .

5 Experiments

We present here a few experimental results comparing the performance of our algorithm to that of
RAGE, the state-of-the-art algorithm [16], in the case of finite set of arms. We compare LT&S and
RAGE only because they outperform other existing algorithms. Further experimental results can be
found in Appendix A.

Experimental set-up. We use the following toy experiment which corresponds to the many arms
example in [16]. d = 2 and A = {(1, 0), ej3π/4, ej(π/4+φi), i ∈ [n− 2]} ⊂ C where (φi) are i.i.d.
∼ N (0, 0.09). µ = (1, 0). Experiments are made with the risk δ = 0.05.

Implementation of LT&S. To update the allocation w(t), we use Frank-Wolfe algorithm [21]
(without any rounding procedure). Our implementation of Frank-Wolfe is similar to that of Fiez
et al. [16] (refer to Appendix A.3. for further comments). At each update, the previous allocation
is fed as an initial value for the new optimization problem. We implement the exponential lazy
update scheme T = {2k, k ∈ N}. The parameters of our stopping rule are c = cA0

√
d (so

that after d steps the second condition of the stopping rule is satisfied) and u = 1; we use the
threshold β(6δ/π2t2, t). The initial exploration matrix A0 is chosen at random. We implemented
two versions of LT&S. The first one does not track the average but only the current allocation w(t):
a ← arg minb∈supp(w(t))(Nb(t) − twb(t)). The second version tracks the average allocations as
described in Algorithm 1.

We further compare our results to that of the Oracle algorithm proposed by [12]. The algorithm
samples from a true optimal allocation w? ∈ C?(µ), and applies a stopping rule that depends on K.

Results. From the table below, LT&S outperforms RAGE most of the times, and the performance
improvement gets higher when the number of arms grows. LT&S without averaging shows better
performance, than with averaging. In Appendix A, we present results for another version of LT&S,
with even better performance.

Algorithm LT&S (No averaging) LT&S RAGE Oracle
Sample Complexity Sample Complexity Sample Complexity Sample Complexity

Number of arms Mean (Std) Mean (Std) Mean (Std) Mean (Std)

(K = 1000) 1206.55 (42.2) 1409 (57) 1148.45 (49.82) 476.45 (40.74)
(K = 2500) 1253.60 (47.70) 1404 (57) 1440.75 (149.24) 492.15 (43.88)
(K = 5000) 1247.05 (81.07) 1401 (86) 1540.3 (158.90) 515.60 (47.64)
(K = 7500) 1296.55 (76.78) 1434 (78) 1598.0 (164.60) 547.65 (45.77)

Table 1: Results for the many arms experiment [16]
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6 Conclusion

In this paper, we present LT&S, an algorithm to solve the best-arm identification problem in stochastic
linear bandits. The sampling rule of the algorithm just tracks the optimal allocation predicted by
the sample complexity lower bound. Its stopping rule is defined through generalized log-likelihood
ratio and an exploration threshold that does not depend on the number of arms, but on the ambient
dimension only. LT&S is asymptotically optimal: we have guarantees on its sample complexity, both
almost surely and in expectation. The first experimental results are very promising, as LT&S seems
to exhibit a much better sample complexity than existing algorithms. We also provide the first results
on the pure exploration problem in the linear bandits with a continuous set of arms.

The analysis presented in this paper suggests several extensions. We can easily generalize the results
to non-Gaussian reward distributions (e.g. bounded, from a one-parameter exponential family). It
would be interesting to extend our results in the continuous setting to generic convex sets of arms
(we believe that the instance-specific sample complexity lower bound would just depend on the local
smoothness of the set of arms around the best arm). A more challenging but exciting question is
to derive tight non-asymptotic sample complexity upper bound for LT&S, so as to characterize the
trade-off between the laziness of the algorithm and its sample complexity.

Broader impact

This work is mostly theoretical. Our results may provide guidelines and insights towards an improved
design of algorithms for linear bandits. Linear bandit algorithms are versatile, and in particular used
in clinical trials and recommendation systems. Hence our results can benefit users and developers
of such systems. In clinical trials, minimizing the sample complexity is crucial, and the use of
our algorithm there can be really beneficial. Our algorithm has the additional advantage of being
computationally efficient. Overall, we do not foresee any direct negative impact of our work. However,
it worth noting that there is some concern about the potential use of recommender systems for opinion
influence.
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